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Abstract
Solving a delegation graph for transitive votes is already a non-trivial task for many programmers. When extending the
current main paradigm, where each voter can only appoint a single transitive delegation, to a system where each vote
can be separated over multiple delegations, solving the delegation graph becomes even harder. This article presents a
solution of an example graph, and a non-formal proof of why this algorithm works.
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Introduction
In the area of voting systems, there is a growing interest
into the topic of liquid democracy, in which votes can be
delegated to others in order to deal with the complexity of
the topic at hand. In these voting systems, many currently
use a single proxy system, in which you delegate your vote to
one other user. This other user can in its turn further delegate
his and your vote in a transitive chain. However, when the
user who receives the delegated vote decides not to use it
(possibly unintentionally), the vote goes to waste.

However, there is no mathematical need for a user to
only delegate to a single other user. In this paper, I propose
a multi-proxy delegation system. This system fulfills the
following requirements:

• Every user has one vote, which can be delegated.
• The delegation is transitive, meaning that it can be

further delegated.
• This vote is distributed equally between all the user’s

direct delegates who actually vote, potentially through
further delegations.

This approach can be used in addition to vote counting
systems, as long as each vote in the counting system can be
weighted with the total number of votes each user received.

Preparing the example
Suppose we have the following delegation graph for 25
people, as presented in Figure 1. These people either vote
themselves, and are shown as green nodes, or they did not
vote, and are shown as blue nodes. We chose this example
to show all relevant difficulties encountered in solving the
delegation graph.

In order to tackle the problem using a flow graph, there
are still multiple problems which need fixing. Therefore, we
need the following initial steps:

• Remove all edges starting from people who vote
themselves.

• Descend the tree starting from the people who vote
themselves, and collect all nodes encountered this way.

Remove all nodes not encountered from this descend, as
their vote cannot be cast in a meaningful way.

After this process, we end up with the graph depicted in
Figure 2.

Solving the delegation graph: the first
method
In this section, I will introduce a first approach to solving
this delegation graph, based on solving a system of linear
equations. As you can see, D receives one vote from C in
addition to the vote he already had. Therefore:

D = 1 + C.

M started with a vote, and receives one third of a vote from
I, and half of a vote from J:

M = 1 +
1

3
I +

1

2
J

If we do this for all votes, we end up with the following set
of linear equations.

A = 1

C = 1

D = 1 + C

E = 1

F = 1

G = 1

H = 1 +G

I = 1 +
1

2
H

J = 1 +
1

2
H
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Figure 1. The delegation graph for 25 people we solve as an
example in this paper. These people either vote themselves,
and are shown as green nodes, or they did not vote, and are
shown as blue nodes. Every edge from A to B represents a
delegation from person A to person B.
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Figure 2. The simplified delegation graph.
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We can solve system this linear system exactly for all
variable A through Y , by converting it to a a matrix system,
as shown in equation 3.

This system can easily be solved by inverting the matrix
B, if it is not singular, and B is never singular, since it
represents a bijective transformation.

S = B−1 · J, (1)

This solution is shown in equation 4.
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Solving the delegation graph: the second
method
A second way to look at this, is by constructing the adjacency
matrix D of our directed graph. Now, we know that after zero
steps in the delegation chain S = J. After one step in the
delegation chain S = A.J, after two steps S = A2.J, and so
on. Therefore the total number of votes everybody has after
an infinite number of delegation steps is

S = lim
n→+∞

n∑
i=0

An · J,

and since lim
n→+∞

An = 0,

S =

(
lim

n→+∞

n∑
i=0

An

)
· J.

Because this is a Neumann series

S = (I−A)−1 · J. (2)

Note that B = I−A, and hence, the solutions in 1 and 2 are
identical.

How to interprete the results
We could just look at the matrix S to find out the total
amount of votes the people who actually voted received from
the delegation graph. It might be tempting to interpret the
elements of S of nodes not voting, as the number of votes
they would have had, if they would have voted. This is not
correct. Take for example the amount of votes of node O. The
matrix S indicates that O would have had 2.333 votes. This
is not true, you can easily verify that O actually only would
have had 1.75 votes. The reason is that the edge O → P is
removed if O votes, changing the flow of votes altogether.

But there is more information: the matrix B−1 contains
more useful information about the origin of each vote. If we
take for instance the solution to our specific problem shown
in equation 4, we can see that each element of Bij indicates
the contribution of node j to the amount of votes of i, if and
only if i actually votes. This allows for detailed feedback to
each user as to why he voted exactly this, or to why he voted

with a certain amount of votes. It is however not possible to
trace the exact route of each vote, since it might be – and
often is – infinitely long.

How to implement the algorithm
While inverting a matrix is a very common operation, this
is non-trivial for large networks. A matrix inversion is
of the order O(N3) for speed and O(N2) with N the
rank of the matrix, here the number of nodes. Since our
matrix is however most likely sparse, since the expected
number of delegations per user E[D]� N . This allows for
more specialized approaches developed especially for sparse
matrices, such that the the memory use scales with O(ND)
and the speed scales approximately with O(N2) as well (Li,
2009). Since usually E[D] is really small, we have used
the algorithm provided in the scipy package without notable
problems, even though it is slower. It does have the benefit of
only needing a limited amount of memory.

Further extensions
This approach can easily be extended to allow for other
ideas in liquid voting systems, such as decaying votes when
the trust chain grows (by making the sum of outgoing
edges smaller than 1), or where the user can weigh the
distribution of his vote for his proxies autonomously rather
than presuming the vote is distributed equally.
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