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Abstract—This paper proposes a sequential sampling technique
to generate efficiently multidimensional X-parameters models for
microwave transistors, while guaranteeing X-parameters’ validity
and overcoming simulator convergence issues. The sequential
sampling process selects a set of samples that are subsequently
used to construct behavioral models with radial basis func-
tions. The proposed method was compared with a tabular X-
parameters model with cubic spline interpolation. The radial
basis function models demonstrate very fast convergence and
greater accuracy already for a few tens of samples. The proposed
technique is illustrated for a GaAs HEMT using Curtice3 and
Chalmers empirical model simulations as the data source.

Index Terms—X-parameters, sequential sampling, behavioral
modeling, computer simulation

I. INTRODUCTION

PAST developments in measurement instrumentation allow
to automatically gather large-signal response of high-

frequency nonlinear devices. One way to characterize a device
is to provide complex amplitudes of incident and reflected
waves for a given set of Large Signal Operating Points
(LSOPs) (frequency, incident wave power, bias voltages, etc.).
Since this results in an extremely large problem size, the
X-parametersTM concept was introduced [1]. This approach
assumes that the higher-order harmonics are small enough to
meet the superposition principle. Therefore, one can describe a
nonlinear device at an LSOP by using only the ratios between
wave components.

In the case of simulations of active elements, especially
transistors, the data dimensionality is still an issue, despite
using X-parameters. It results in high simulation and extraction
cost. Therefore, global optimization is not feasible, and the
optimal LSOP in amplifier design is determined in a number
of subsequent stages in which only a subset of variables is
used in optimization [2]. Moreover, a simulator error for a
single sample may result in termination of the whole multidi-
mensional simulator sweep. There are few ways to overcome
this problem such as limiting the sweep ranges or perform-
ing multiple sweeps over smaller ranges and combining the
results. However, each of these solutions involves a lot of
additional resources and is not an optimal choice. Moreover,
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X-parameters model validity-region is limited to the space
where the superposition principle is met [3].

In this paper, we propose an accurate and efficient X-
parameters modeling technique. It is used to construct X-
parameters behavioral models with a small number of samples,
and at the same time of handling errors related to lack of sim-
ulator convergence and violation of the linearity assumptions.
The technique is based on sequential sampling and behavioral
modeling using Radial Basis Function (RBF) models [4]. First,
we investigate two common empirical GaAs HEMT models
(i.e., Chalmers [5] and Curtice3 [6] models) with respect
to their validity region using the sequential sampling. Then,
for the same empirical models, we build the X-parameters
RBF model and compare it with the standard tabular model
interpolated with cubic spline functions.

II. METHOD DESCRIPTION

A. Modeling procedure

The X-parameters samples are usually chosen by selecting
a set of points in the range of interest for each of the LSOP
parameters, and then taking all possible combinations (tensor
product data grid). Such Design of Experiments (DoE) are
easy to interpolate but can take a lot of resources. However,
not every sample brings the same amount of information.
Therefore, the DoE can be optimized. In order to maximize
the information gain, one can use active learning techniques
and sequentially select the samples with the highest added
information value.

For those purposes we use methods provided by the SUr-
rogate MOdeling (SUMO) toolbox [7]. It contains a set of
techniques for automatic building of accurate metamodels with
a limited number of samples. In this work, it was extended
with a dedicated Matlab wrapper for the Agilent hpeesof-
sim simulator. The toolbox provides a number of sequential
sampling strategies (Voronoi, Kriging, LOcal Linear Approx-
imation (LOLA), etc.). We use the LOLA-Voronoi sampling
strategy [4], which implements a trade-off between exploration
(filling up the space to sample as equally as possible) and
exploitation (selecting data points in highly nonlinear regions).
The LOLA method identifies non-linear regions by comparing
the gradients at the neighboring samples, while the Voronoi
tessellation maximizes the distances among the samples.

After evaluating new samples, the behavioral model is built.
Several behavioral model types may be considered: Artificial
Neural Networks, RBF, Kriging, etc. However, there is no
universal model type and one has to tailor the model type to
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the measured or simulated device. For the considered transistor
modeling in this work, RBF models were chosen, since they
show good trade-off between extraction and evaluation times,
as well as good accuracy.

The last step is evaluating the model towards a specified
accuracy measure. If the model accuracy requirement is satis-
fied, the model extraction is stopped. Otherwise, the procedure
requests new samples and the whole loop is repeated. This
strategy prevents under- and over-sampling.

B. Assuring X-parameters model validity

There are two types of errors, which might occur during X-
parameters extraction. The first one is a critical error, which
occurs when the harmonic balance simulator does not converge
to a solution. In CAD environments, such as Agilent’s ADS,
it results in aborting the whole simulation, which may be very
costly in the case of a multidimensional sweep.

The second source of error is related to the violation of the
X-parameters linearization assumption [3]. As a measure to
quantify this error, one can use

eX =

∣∣∣∣X(∆Pext ∈ [−30,−20] dB)

X(∆Pext = −50 dB)
− 1

∣∣∣∣ (1)

where ∆Pext is the ratio between the extraction tone power
and the fundamental tone power in dB scale. Although the
error will diminish as the extraction tone power decreases,
∆Pext should be kept in the range of [-30,-20] dB [8]. In
that case, the simulation will resemble the measurements, in
which the response of the device to the very small extraction
tone may be obscured by noise. The value of ∆Pext in the
denominator of (1) was set to -50 dB, as it is achievable in the
measurements with averaging and at the same time meets the
superposition principle [3]. However, in the simulation envi-
ronment this value can be further decreased as the digital noise
is significantly lower. In the standard X-parameter modeling
approach, errors of X-parameter values cannot be identified
during the simulation. Therefore, a custom post-processing
must be done.

Using sequential sampling techniques, one can easily handle
the described errors. If the evaluation of the sample results in
an error, the sample is considered as failed, and is not used in
the model building. However, it is still kept for the sequential
sampler. While generating new samples, the algorithm fills up
the variable space such that the new samples do not lie near
the already evaluated ones. Apart from a good space filling, it
prevents the algorithm from exploring the region with samples
marked as failed.

III. RESULTS AND DISCUSSION

A. Model validity

We evaluated the proposed approach by using empirical
transistor model simulations as the data source. We have
extracted RBF models for each of the X-parameters’ terms
separately. This allowed us to investigate the validity region in
more details, since we sample each of the terms independently
from the others. The well-established Chalmers (extracted
from measurements [9]) and Curtice3 models were selected for

(a)

(b)

(c)

Fig. 1. Number of samples failed for different X-parameter terms as a function
of the fundamental tone power in 2-dB bins; (a)- errors due to violating
X-parameters linearization assumption for Chalmers model, (b) - errors in
simulation for Curtice3 model, (c) - errors due to violating X-parameters
linearization assumption for Curtice3 model.

this purpose. The following ranges were set for the samples
(LSOPs): gate voltage V g ∈ [−0.4, 0.4] V, drain voltage
V d ∈ [2, 6] V, fundamental tone frequency f ∈ [2, 4] GHz,
fundamental tone incident wave power P ∈ [−10, 20] dBm.
∆Pext was set to -20 dB. A 16-sample factorial design was
used as the initial DoE [7]. The modeling stop criterion was
the root relative square error equal to 0.05 in the cross-
validation measure. The threshold value eX (1), beyond which
the sample was considered as failed due to violating the
linearity assumption, was set to 1%.

Fig. 1 shows the number of failed samples as a function
of the fundamental tone power with respect to the model
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type, the error origin and the X-parameters term. There were
no simulator errors during the Chalmers model evaluation.
Contrary to the Curtice3 model, where the current is pro-
portional to the third order polynomial of the gate voltage,
the current in the Chalmers model saturates at higher power
levels. Therefore, the harmonic balance simulator convergence
can be preserved at high input power values. One can also
notice that the number of errors grows non-monotonically
as a function of power. This may indicate that the errors
depend also on the other LSOP parameters. Therefore, the
X-parameters validity region cannot be described by a simple
hyperrectangle and sequential sampling techniques should be
applied. One can also see that the number of errors related
to the violation of linearity assumptions is strongly dependent
on the X-parameters term. There are almost no errors in X(F )

terms. This behavior might be explained by the relatively small
influence of the extraction tone comparing to the main-tone
incident-wave power.

B. Model accuracy

In order to assess the proposed modeling technique, it was
compared with the standard ADS tabular model interpolated
with the cubic spline functions. The tabular model was built
on a tensor product grid with n equally distant points per
variable, where n ∈ [2, 10]. The variable ranges were the
same as for the model validity analysis, with exception to the
fundamental tone power. It was limited to [−10, 6] dBm range,
which allowed to avoid the simulator convergence problems
in the classical sweep, thus making models comparable.

The tabular and RBF models (Xm) have been compared
with the empirical models (Xref ) using a validation dataset
composed of N = 10000 random samples (xi) with a uniform
distribution. Then, the mean relative error (2) and the relative
worst case error (3) were calculated.

emean =
1

N

N∑
i=1

∣∣∣∣1− Xm(xi)

Xref (xi)

∣∣∣∣ (2)

eworst = max
i∈[1,N ]

∣∣∣∣1− Xm(xi)

Xref (xi)

∣∣∣∣ (3)

Fig. 2 shows the error comparison between the imaginary
parts of the tabular and RBF X-parameters models extracted
from the Chalmers model. Similar results were obtained for
the real part, as well as for the models extracted from the
Curtice3 model.

It can be perceived that the mean error is smaller for the
RBF models. Especially when the response is smooth, as in
X

(F )
21 , the tabular model needs much more samples to achieve

a performance similar to the RBF model. Moreover, the RBF
models converge much faster. It proves the usability of the
sequential sampling technique, in which the samples taken first
usually carry the most of information. No major difference
between the RBF and tabular models were observed for the
worst case error levels.

Fig. 2. Comparison between the mean relative errors for the imaginary part
of the tabular (dotted lines) and the RBF model (solid lines) for the Chalmers
model as a function of the number of samples used to build a model.

IV. CONCLUSIONS

We have presented an efficient and accurate modeling tech-
nique for X-parameters using sequential sampling in the model
generation process and the RBF representation as behavioral
model. The method has been proven useful to assure model
validity over wide range of variable values. The constructed
models showed fast convergence and smaller relative mean
error even for a small number of samples.
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