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Shadows of anyons and the entanglement structure
of topological phases
J. Haegeman1, V. Zauner2, N. Schuch3 & F. Verstraete1,2

The low-temperature dynamics of quantum systems are dominated by the low-energy

eigenstates. For two-dimensional systems in particular, exotic phenomena such as topological

order and anyon excitations can emerge. While a complete low-energy description of strongly

correlated systems is hard to obtain, essential information about the elementary excitations is

encoded in the eigenvalue structure of the quantum transfer matrix. Here we study the

transfer matrix of topological quantum systems using the tensor network formalism and

demonstrate that topological quantum order requires a particular type of ‘symmetry breaking’

for the fixed point subspace. We also relate physical anyon excitations to domain-wall

excitations at the level of the transfer matrix. This formalism enables us to determine the

structure of the topological sectors in two-dimensional gapped phases very efficiently,

therefore opening novel avenues for studying fundamental questions related to anyon

condensation and confinement.
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O
ne of the major recent advances in the understanding of
strongly correlated quantum many body systems has
been the investigation of quantum entanglement in terms

of area laws1,2, the entanglement spectrum3 and the associated
entanglement Hamiltonian4,5. The structure of entanglement
in gapped quantum systems has resulted in the powerful
parameterization of quantum ground states in terms of so-called
tensor network states, such as matrix product states (MPS)6,7 or
their higher dimensional analogues, projected entangled pair states
(PEPS)8,9. In a translation invariant tensor network state, the
entanglement features can be extracted from the leading
eigenvector of the so-called (quantum) transfer matrix, which
naturally appears whenever the quantum state is mapped to a
classical partition function (using for example, a Trotter
decomposition) and then sliced along the virtual direction, that
is, the Trotter direction or direction of imaginary time10. In a very
recent publication11, we have observed that the other eigenvalues
of the transfer matrix also contain useful information, thst is, they
contain crucial information about the elementary excitations and
the corresponding dispersion relations of the system. This is, in
many ways, surprising as this information is completely encoded in
the ground-state description of the system, a priori without any
information about the original Hamiltonian for which it was the
exact or approximate ground state.

This relation is extremely useful for the case of two-dimensional
systems, where systematic methods to extract the dispersion
relation of elementary excitations are virtually non-existent. This
was illustrated in ref. 11 by studying the Affleck–Kennedy–Lieb–
Tasaki model12,13. However, for the case of two-dimensional
quantum spin systems, exhibiting topological quantum order, the
excitation spectrum can be much richer. In contrast to trivial
phases, where the elementary excitations can provably be created
as Bloch waves of localized perturbations14, elementary excitations
in topological phases are typically anyons that come with ‘strings
attached’. Note that topologically non-trivial excitations also
appear in one-dimensional systems, such as in the Lieb–Liniger
model15 or as a domain-wall excitations in systems with discrete
symmetry breaking. In terms of MPSs, those excitations can be
represented with a Bloch like ansatz where an extra half-infinite
string operator is attached to the local perturbation16–19.

The PEPS representation of topologically ordered ground
states, either as variational approximation20,21 or as exact
description of the Levin–Wen model wave functions22–24, has
been well established. Here we study the full spectrum of
the transfer matrix of topologically ordered PEPS5 on the
infinite plane or cylinder. Much like the prisoners in Plato’s
cave, we observe one-dimensional domain walls in the
spectrum of the transfer matrix as shadows of the true anyons
in the two-dimensional world. By clarifying how the different
anyon sectors are manifested at the virtual level, we can probe
the dispersion relation of single anyon states. We discuss how
the presence of anyons, and thus of topological order, requires a
particular type of symmetry breaking in the fixed point
subspace of the transfer matrix and how anyon condensation
or confinement25,26 is reflected in these virtual description.
We illustrate our results by studying the PEPS description of
the toric code model with string tension and the resonating
valence bond state. Our results also confirm that we can
construct approximate eigenvectors of PEPS transfer matrices
using the matrix product ansatz developed for one-dimensional
quantum Hamiltonians in refs 17,27.

Results
Topological order in PEPS. The convience of the tensor network
description of quantum states is that the global, topological

properties of the state are reflected in the symmetries of the
local tensors. Since topological phases are not characterized by
local order parameters, these symmetries act purely on the virtual
levels of the tensors. In particular, it was recently established that
topological order in PEPS can be characterized by the existence of
matrix product operators (MPO), which can be pulled through
the lattice at the virtual level (see Fig. 1)28–30. Closed MPO
loops around a topologically trivial region define the invariant
subspace on which the PEPS tensors are supported and in
this way characterizes the topological properties of the state, such
as the topological corrections to the entanglement entropy.
They act as virtual operators Oi and satisfy a fusion algebra
OiOj ¼

P
k Nk

i;jOk. Indeed, as shown in ref. 30, for the case of the
Levin–Wen string net models, the different MPOs Oi can be
associated to and labelled by the different string types i¼ 1,y,N
of the input category that defines the string net model. A PEPS in
a trivial phase is characterized by a single MPO O1 that acts as the
identity in the relevant subspace. Another interesting case is that
of the quantum double models, which can be described using
G-injective PEPS28. This is a special case of the formalism of ref.
30 where the MPOs are labelled by the group elements gAG and
correspond to representations Og¼U(g) of the group action at
the virtual level. The pulling-through condition is satisfied since
the tensors are only supported on the invariant subspace defined
by the projector P¼

P
gOg.

While the pulling-through conditions ensure that the presence
of an MPO string cannot be detected locally, noncontractible
MPO loops can have global effects, such as adding a non-trivial
flux in the system, and can, therefore, be used to map one
ground state to another one. The relevance of these virtual MPOs
is that also away from the the renormalization group fixed
point—where the physical string operators are spread out and not
exactly known31—the MPOs at the virtual level remain strictly
local and the ‘pulling-through’ symmetry of the PEPS tensor is
exactly preserved.

Anyon excitations in the PEPS picture. Having a translation
invariant PEPS description of the ground state of a topological
phase, one can easily argue that a suitable ansatz to model single
anyon excitations is obtained by modifying the ground-state
tensors in a local region (for example, a single site) and attaching
a half-infinite string to it, which is exactly given by this MPO at
the virtual level. The MPO will give rise to the non-trivial
braiding statistics of these excitations, while the ‘pulling-through’
assures that the bulk of the string is locally unobservable, so that
the energy density is left at its ground-state value sufficiently far
away from the end point. Away from the renormalization group
fixed point, these excitations will disperse and a proper eigenstate
can be obtained by building a momentum superposition with the
momentum kx and ky in the x and y direction.

= =,

Figure 1 | Topological order in PEPS. When representing the state of a

quantum lattice system as a PEPS, a local tensor (red) with four virtual

indices (which are contracted in the network) and one physical index

(pointing upwards) is associated to every site. The PEPS description of

topologically ordered states are characterized by the existence of string

operators living at the virtual level of the network (acting only on the

contracted indices) and that can be pulled through the lattice, such that

they are locally invisible. When the string operators are expressed as

MPOs, the pulling through yields a local symmetry condition between the

PEPS tensor (red) and the MPO tensors (blue), which characterizes the

global topological order in the full-quantum state.
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Note that the topological quantum numbers of the anyon
excitations are not completely specified by the string type i,
but are determined by the structure of the excitation tensor in
the ansatz of Fig. 2. For the case of the quantum doubles, it
has been shown that the string type corresponds to the magnetic
flux, whereas the charge quantum number is determined by
the representation space on which the local tensor is supported28.
A complete characterization of the different anyon sectors in
the PEPS formalism would take us to far and is presented
elsewhere (N. Bultinck, M. Mariën, D. Williamson, J. Haegeman,
F. Verstraete, manuscript in preparation).

Transfer matrix: symmetries and domain walls. As in ref. 11,
one can now argue that the dominant contribution to the
variational dispersion relation is coming from the normalization
of these states, which is given by the sum of overlaps of ket
and bra with string end points at different positions (x0, y0) and
(x0þDx, y0þDy), as illustrated in Fig. 2. If we orient the strings
along the x direction and first contract the tensor network along
the y direction, the central object will be the transfer matrix E
in the x direction, as defined in Fig. 3. The pulling-through
condition of Fig. 1 ensures that E commutes with infinite
MPO strings along the x axis in the ket and bra level separately.
We thus obtain ½Oi � 1; E� ¼ ½1� �Oi; E� ¼ 0, 8i¼ 1,y, N
where Oi now denotes an infinite MPO of type i along the x axis.
Normalization of the PEPS ground state requires that the
largest eigenvalue of E is 1, and the infinite power of the
transfer matrix E in the overlap of Fig. 2 in the regions yoy0

and y4y0þDy can be replaced by its left and right fixed
point s and r, which we represent as an infinite MPS with
matrices As and Ar (Fig. 3).

The transfer matrix E can have a degenerate fixed point
structure, since for a given right fixed point r, one can build other
fixed points r0 ¼ OirOw

j for all i, j¼ 1,y, N. One could expect
that this generally gives rise to an N2-dimensional fixed point
subspace. However, at the renormalization group fixed point of
the topological phase, we can easily check that the fixed point

subspace of E is exactly spanned by rk¼Ok for k¼ 0,y, N, and is
thus only N-dimensional. The degeneracy and labelling of the
fixed point subspace remains intact throughout the topological
phase, even though rk will no longer exactly equal Ok.
This implies, in particular, that OirkOw

i can be expanded into a
linear combination of

P
lcklrl with ck,k¼ 1, compatible with the

fact that fusing i�k��i will have a fusion channel k. We now argue
why this property is required to support anyonic excitations with
a half-infinite virtual string of type i.

Contracting the tensor network in Fig. 2 from right to left up to
position y0þDy gives rise to some boundary state r in the
fixed-point subspace, whose precise choice is set by the boundary
conditions at y¼ þN. The topological invariance ensures that
this choice has no effect on local expectation values. As we now
further contract from right to left, we pass the position y0þDy
containing the excitation in the bra level. Here the boundary
state is perturbed locally at x¼ x0þDx. In addition, it will
be acted on by a half-infinite MPO string of type i, which has
the effect of changing the MPS tensors from Ar to Ar0 with
r0 ¼ rOw

i xox0þDx. At the level of the transfer matrix, the
boundary state now takes the form of a domain wall interpolating
between the two different fixed points. Because of translation
invariance, all overlaps corresponding to the momentum
superposition in the x direction can be summed and the resulting
state takes the form of a topologically non-trivial state with
momentum kx, similar to the domain-wall excitation ansatz used
for one-dimensional Hamiltonians in ref. 17. We thus have to
consider the spectrum of topologically non-trivial eigenstates xj

(Fig. 3) of E with momentum kx. Indeed, further contracting up to
y0 yields the kx-dependent eigenvalues lj(kx) of xj to some power
Dy, which dictates the ky dependence of the dispersion relation of
the corresponding physical excitation.

At point y0, the boundary state is acted on with a second
half-infinite string (also with momentum kx in the x direction),
now in the ket level. After that, the state is collapsed onto the
topologically trivial left fixed point s. To have a non-vanishing
overlap, the corresponding boundary state—with half-infinite
strings in both the ket and bra level—should have a contribution
in the trivial sector. This will be true if the property stated above
is satisfied, that is, OirOyi ¼ rþ . . . for all r.

x 0 + Δx

y0 + Δy

x 0

y0

x

y

Figure 2 | Overlap of topologically non-trivial PEPS excitation. A PEPS

ansatz for a topologically non-trivial excitation is obtained by replacing a single

tensor of the PEPS ground state (red) at position (x0,y0) with a perturbed

tensor (green), which has a virtual MPO string (blue) attached. Away from a

renormalization group fixed point, excitations will disperse but translation

invariance can be exploited to build a reliable excitation ansatz from a

momentum superposition of the local perturbation. As argued in ref. 11, the

variational excitation energy will depend on the overlap of these states, which

consist of terms where the string end points in ket and bra are separated by

any difference (Dx,Dy) and which carry a momentum factor exp(ikxDxþ ikyDy)

accordingly. For momenta where these terms interfere coherently, a minimum

in the corresponding variational dispersion relations is observed.

= � =
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A�

A�′

A�
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Figure 3 | Transfer matrix and boundary states. For evaluating the overlap

of Fig. 2, we first define the (normal) transfer matrix E. The contribution of

the infinite number of transfer matrices to the right of y0þDy is captured in

a boundary state r, which corresponds to one of the fixed points of E and is

represented as a MPS with tensors Ar (big red circle). When contracting

the additional column of Fig. 2 at position yþDy containing the excitation,

the boundary state is transformed into a topologically non-trivial state x,

which differs from the fixed point r by a local perturbation (green) and a

half-infinite string (blue). The effect of this string is to transform the MPS

tensors Ar into the MPS tensors Ar0 (cyan) of a different fixed point r0 of

the transfer matrix E. The boundary state can thus be reinterpreted as a

domain-wall excitation of the transfer matrix, which interpolates between

two different fixed points. We can expand it into a full basis of topologically

non-trivial eigenvectors of E with specified momentum kx. Coherent

interference of the different terms in Fig. 2 is obtained when the momentum

ky aligns with (minus) the phase of one of the eigenvalues of the transfer

matrix with large magnitude.
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As we perturb the state out of the topological phase, there are
two ways in which the existence of topologically non-trivial
excitations can break down. If the transfer matrix E has a unique
(maximally ‘symmetric’) fixed point, which is invariant under the
action of any string Oi, then the states x interpolate between the
same fixed point left and right and are thus indistinguishable
from topologically trivial local perturbations (without string).
This scenario is realized when the corresponding anyon has
condensed into the ground state25,26. A second possibility is that
the fixed-point structure of E has an even larger ‘symmetry
breaking’, in such a way that the state with half-infinite strings in
ket and bra level is still completely topologically non-trivial and
has zero overlap with the left fixed point s. More specifically,
the fidelity per site, defined as the largest eigenvalue l ofP

s
As
r00 � As

s with r00 ¼ OirOw
i , satisfies |l|¼ e� to1 and

the normalization of the state goes down as e� tL with L the
length of the strings. Hence, the non-zero value of t acts as a
string tension and only bound states of two excitations connected
by a finite string can exist, corresponding to the mechanism of
confinement.

In the generic case, there can of course be several transitions
corresponding to, for example, the condensation of only
some anyonic sectors and the induced confinement of other
anyon sectors. Note that, since topological phase transitions
correspond to symmetry breaking phase transitions at
the virtual level of the PEPS description, we can also find
virtual order parameters, as illustrated in the toric code
example. A more in-depth study of these aspects of anyon
condensation within the framework of PEPS will be provided
elsewhere (J. Haegeman, N. Schuch, F. Verstraete, manuscript in
preparation).

Mixed transfer matrix and momentum fractionalization. In
the above discussion, we have explained how information
about anyon excitations in topological phases can be obtained
from the topologically non-trivial excitations of the translation
invariant transfer matrix, which has a degenerate fixed
point subspace in the case of topological order. Fig. 4 motivates
an alternative approach. By using the pulling-through property
of the MPO, we can rewrite the eigenvalue equation for a
topologically non-trivial excitation of E as a normal (topologically
trivial) eigenvalue problem for a so-called mixed transfer
matrix. The latter is threaded by an MPO string and is thus
defined on a larger vector space corresponding to the presence of
additional MPO indices. Physically, we are effectively rotating the
MPO strings attached to the anyon excitation to lie along the y
direction.

By doing so, we can make the x direction finite and periodic,
which allows to work on a cylinder with finite circumference. The
fixed points of these mixed transfer matrices were first studied in
ref. 5. In this case, physical translations in the x direction have a
representation as modified translation operators at the virtual
level of the transfer matrix with a non-trivial action on the extra
MPO indices (see Fig. 5). This results in a momentum label that
can have a fractional discretization in the circumference of the
cylinder, similar to what is observed in the case of momentum
polarization32. We elaborate on this aspect in Supplementary
Note 1 and Supplementary Figs 1 and 2.

= = � = �

Figure 4 | Mixed transfer matrix. Using the pulling-through property of the

virtual string, we can transfer the eigenvalue equation for topologically non-

trivial excitations of the transfer matrix into a normal eigenvalue problem

for a so-called ‘mixed’ transfer matrix. The mixed transfer matrix differs

from the normal transfer matrix as it is threaded by an MPO string in ket

and bra (which can be the identity) and, therefore, acts on a larger space

corresponding to the two additional MPO indices. This identification is

useful when putting the system on a long cylinder instead of on the infinite

plane, as it allows to use periodic boundary conditions in the x direction.
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Figure 6 | Phase diagram of the filtered toric code. The phase diagram of

the filtered toric code in Equation (1) can be obtained by measuring the

expectation value of the virtual order parameters. The expectation value of

X#X is used as green intensity and of X#1 as red intensity. If both are

zero (black region) the transfer matrix has a unique symmetric fixed point

corresponding to a trivial phase where the string-like excitations (flux) are

condensed and charges are confined. If X#X is non-zero but X#1 is zero

(green region), the transfer matrix fixed-point subspace is two-dimensional

and breaks the Z�Nx � 1 symmetry but is symmetric under the action of

Z�Nx � Z�Nx corresponding to the topological phase with anyon

excitations. If both expectation values are non-zero (note that green and

red combine to the yellow region), the transfer matrix fixed point subspace

is four-dimensional and breaks the complete symmetry group. This

corresponds to a trivial phase in which the string-like excitations (flux) are

confined and charges are condensed. Points (a) to (h) indicate the

parameter combinations for the different spectra presented in Fig. 7.
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Figure 5 | Virtual representation of the translation operator. When the

system is studied on a long cylinder, translations around the cylinder will

also affect the string of the topological excitations, which thus leads to a

non-trivial representation t of the translation operator on the virtual level.

Consequently, the mixed transfer matrix defined in Fig. 4 will be invariant

under the action of t � �t and its spectrum can be labelled with the

corresponding momentum quantum numbers. Due to the non-trivial

interaction with the string, this can give rise to momentum fractionalization.
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Toric code model with string tension. Let us now illustrate this
approach using the toric code ground state, to which we apply a
local filtering
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with |Oi the fully polarized spin state jOi ¼ � ej"ie. The filtering
induces dynamics to the elementary excitations of the toric code
ground state and can drive the system into a trivial phase. Along the

coordination axes bx¼ 0 or bz¼ 0, it can be interpreted as string
tension in either the group or representation basis and can be solved
exactly33,34. The full two-dimensional phase diagram as a function
of bx and bz was studied in ref. 35 using a fidelity approach36–38.

The PEPS representation of the toric code ground state was first
constructed in ref. 39 and its properties were discussed at length in
ref. 28. The PEPS tensors satisfy the property of G-injectivity,
where in this case G ¼ Z2. For this particular case, it means
that the MPO projector P is given as O0þO1¼ 1#LþZ#L,
with L the length of the MPO string and Z a representation
of the non-trivial element of Z2. Correspondingly, the transfer
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Figure 7 | Transfer matrix spectra for the filtered toric code. We show (minus logarithm of) the eigenvalues l of the transfer matrix as function of

momentum kh for the different points (bz,bx) indicated by the markers (a–h) in Fig. 6. In the topological phase (a,b,e,f), colours indicate topologically trivial

(blue) or non-trivial (red) excitations (flux difference between ket and bra), while the symbol refers to equal (plus sign) or unequal (circle) charge between

ket and bra level. As we move closer to the phase transition to the charge condensed phase (a-b), the gap of charge excitations decrease. In the charge

condensed phase (c,d), charges can no longer be measured (dot symbols) and the Z#N#Z#N symmetry is broken. This results in a new topologically

non-trivial excitation (green) with a string in both ket and bra. The gap in this sector acts as string tension, indicating that flux excitations become confined,

and increases as we move deeper into the trivial phase (c-d). Analogously, the gap of the flux excitations decreases when moving in the topological phase

from e to f and eventually results in flux condensation. In the flux condensed phase (g,h), the full symmetry is restored and no domain-wall excitations of

the transfer matrix exist, since they are equivalent to local excitations. In addition, charge can be measured in both ket and bra separately. The states with

charge difference (circle) can have individual ket and bra charges þ , � and � , þ but remain degenerate. States with no charge difference can have ket

and bra charges þ , þ (plus sign) or � , � (square). The gap in the latter sector acts as string tension between charges and thus indicates charge

confinement; it increases when moving deeper into the trivial phase (g-h).
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matrix E along the x direction has the global symmetry
1� ;Z�Nx � 1; 1� Z�Nx ;Z�Nx � Z�Nxð Þ with Nx the

number of sites in the x direction. The filtering operation is
applied at the physical level of the PEPS and has no effect on any of
these properties. It does, however, influence the manifestation of
the symmetry in the fixed point subspace of the transfer matrix.

At the virtual level of the PEPS, we can use local order
parameters X#1 and X#X to detect the symmetry breaking of
Z#Z and Z#1, respectively, in the fixed-point subspace, where
X is an operator such that XZ¼ �ZX. Fig. 6 shows the structure
of the fixed point subspace. The topological ‘toric code’ phase is
characterized by a doubly degenerate fixed point, which is
invariant under the subgroup 1� ;Z�Nx � 1Z�Nx

� �
but breaks

the symmetry under the action of Z�Nx � 1. Creating a physical
excitation with flux quantum number 0 (string of identities) or 1
(string of Z’s) is manifested at the virtual level as a boundary
state in the topologically trivial or, respectively, topologically
non-trivial sector. That is, excitations with non-trivial flux
correspond to domain-wall excitations at the level of the
transfer matrix. The charge of the physical excitation can
be measured as a charge difference between the ket and bra
level of the boundary state using the Z�Nx � Z�Nx

operator (which is a symmetry, that is, eigenvalue 1, for the
fixed point subspace).

Following ref. 11, we can now probe the dispersion relation of
the elementary excitations of the model by inspecting the
spectrum of (minus logarithm of) the eigenvalues of the
transfer matrix in the different sectors, for which we use the
one-dimensional excitation ansatz of ref. 17. The result is
illustrated for various values of bz and bx inside and outside
the topological phase in Fig. 6. In the topological phase (plots (a),
(b), (e) and (f)), the eigenvectors can be labelled by the charge
difference between ket and bra (corresponding to the physical
charge) and the absence or presence of a half-infinite string
(corresponding to the physical flux). We can then relate the
spectrum of the transfer matrix to the dispersion relation within
the four physical topological sectors and recognize the charge and
flux as elementary excitations (isolated branch). In the first
column of Fig. 7, the gap in the charge sector closes, resulting in

charge condensation and a phase transition to the trivial phase
(plots (c) and (d)). Here the fixed point subspace breaks the full
symmetry 1 � 1;Z�Nx � 1; 1� Z�Nx ;Z�Nx � Z�Nxð Þ of the
transfer matrix and the charge differences between ket and bra is
no longer well defined. Correspondingly, we can create new
topologically non-trivial excitations with a half-infinite string of
Z’s in both ket and bra. That this sector has a gap DZZ indicates
that physical flux excitations can no longer exist in isolation and
must be confined to pairs, since their normalization goes down as
exp(�DZZL) with L the length of the string. In the right column
of Fig. 7, the gap in the flux sector closes, corresponding to
physical flux condensation. This triggers a phase transition to the
trivial phase and results at the virtual level in a unique fixed point
with the full symmetry of the transfer matrix. Correspondingly,
there are no more topologically non-trivial excitations and we can
now measure individual charge numbers of the ket and the bra
level. That there is a gap in the (� ,� ) sector with negative
charge in ket and bra indicates that physical charge excitations
can no longer exist in isolation and must be confined.

Resonating valence bond state on the hexagonal lattice. Finally,
in Fig. 8 we present the spectrum of the transfer matrix for the
resonating valence bond state40 on the Kagome lattice, for which
the PEPS is also Z2-injective41,42. The Kagome lattice was blocked
as illustrated in Fig. 9b, and the eigenvalues of the transfer matrix
along the lattice vector~e1 were computed, giving full access to the
momentum k1. The phase of these eigenvalues can then be
interpreted as momentum k2, which allows to map them to the
Brillouin zone according to Fig. 9c. This clearly allows to extract
the physical elementary excitations43,44, namely the spinons
(S¼ 1/2, no string) and visons (S¼ 0, string), but also vison–
spinon bound states (S¼ 1/2, string), which seem to occur at
energies lower than the vison energies. Finally, there are also an
isolated branch of trivial spinless excitations (S¼ 0, no string),
which could be a bound state of either a vison pair or a spinon
pair. For this model, the transfer matrix is a non-hermitian MPO
and one can question the validity of an excitation ansatz based on
a local perturbation on top of the fixed point (which is
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Figure 8 | Transfer matrix spectrum of the resonating valence bond state on the Kagome lattice. In every sector with momentum k1, we obtain a set of

complex eigenvalues l of the transfer matrix. We interpret (minus the logarithm of) the magnitude of those eigenvalues as energy and obtain the plot in a.

By also associating the phase of these eigenvalues to a momentum k2, we can plot this spectrum in the two-dimensional Brilluoin zone of the Kagome

lattice, as in b. Colours indicate total spin S (red: 0, green: 1/2, blue: 1, cyan: 3/2) whereas markers indicates eigenvalues in the trivial (dot) or non-trivial
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approximated as MPS), as this ansatz is only provably justified for
the case of local Hamiltonians14. Numerical evidence for the
validity of our results is provided in Supplementary Note 2 and
Supplementary Figs 2 and 3.

Discussion
We have illustrated how the eigenvalue spectrum of the one-
dimensional (quantum) transfer matrix provides a holographic
description of the dispersion relations of elementary excitations in
the full two-dimensional quantum system. This holds true even in
systems with topological order, where the elementary excitations
are anyons. The presense of topological order gives rise to
particular (virtual) symmetries of the transfer matrix. By carefully
studying the manifestation of these symmetries in the fixed-point
subspace, we were able to relate the different topological sectors
of the physical excitations to corresponding topologically non-
trivial symmetry sectors (domain walls) at the virtual level. This
shows, in particular, that the existence of anyon excitations
requires a particular type of symmetry breaking of the doubled
virtual symmetry in the fixed-point subspace of the transfer
matrix, whereas topological phase transitions give rise to a fixed-
point subspace with a larger or smaller degeneracy.

While these results might be reminiscent of the closely related
bulk-edge correspondence observed in chiral topological
phases45,46, we would like point out the subtle differences. In
the PEPS formalism, the properties of the edge states are
determined by the fixed points of the transfer matrix47, whereas
here we explicitly consider the complete (long-distance) spectrum
of the transfer matrix. In addition, the framework for
characterizing topological order in PEPS using MPOs, which is
of central importance for our results, has so far only been made
explicit for the non-chiral string net models, and it remains to be
clarified how the recently discovered chiral PEPS48–50 fit within
this framework.

This technique holds a powerful potential for studying
fundamental questions of topological order and topological phase
transitions. While we have studied transfer matrices originating
from a tensor network representation of the ground state, the
results presented in this paper should generalize to the full-
quantum transfer matrix obtained from representing the ground
state as an imaginary time-path integral. Whereas the exact path
integral representation can have a gauge theory as virtual
boundary, the PEPS truncation will eliminate the gauge degrees
of freedom. Correspondingly, the local order parameter measur-
ing the symmetry breaking transitions at the PEPS virtual level
will map to a string operator in the temporal direction of the full-
path integral.
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