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We investigate the impact of decisions in the second-level (i.e., over subjects) inferential process in functional magnetic resonance
imaging on (1) the balance between false positives and false negatives and on (2) the data-analytical stability, both proxies for
the reproducibility of results. Second-level analysis based on a mass univariate approach typically consists of 3 phases. First, one
proceeds via a general linear model for a test image that consists of pooled information from different subjects. We evaluate models
that take into account first-level (within-subjects) variability and models that do not take into account this variability. Second, one
proceeds via inference based on parametrical assumptions or via permutation-based inference. Third, we evaluate 3 commonly
used procedures to address the multiple testing problem: familywise error rate correction, False Discovery Rate (FDR) correction,
and a two-step procedure with minimal cluster size. Based on a simulation study and real data we find that the two-step procedure
with minimal cluster size results in most stable results, followed by the familywise error rate correction. The FDR results in most
variable results, for both permutation-based inference and parametrical inference. Modeling the subject-specific variability yields
a better balance between false positives and false negatives when using parametric inference.

1. Introduction

In cognitive neurosciences, functional Magnetic Resonance
Imaging (fMRI) plays an important role to localize brain
regions and to study interactions among those regions (resp.,
functional segregation and functional integration; see, e.g.,
[1]) The analysis of an fMRI time course in a single subject
(first-level analysis) offers some insight into subject-specific
brain functioning while group studies that aggregate results
over individuals (second-level analysis) yield more general-
izable results. In this paper, we focus on the mass univariate
approach in which the brain is divided in small volume units
or voxels, although alternatives exist (e.g., [2]). For each of
these voxels, a general linear model (GLM) is used to model
brain activation, at the first and the second level [3].The acti-
vation is then judged at the voxel level, rather than based on
topological features. The selection of activated voxels can be
viewed as a sequence of different phases [4]. For first-level
analyses, Carp [5] demonstrated the large variation in the
choices made in each of these different phases which impacts
results. In second-level analyses, to a lesser extent, different

combinations of choices are possible too. We consider the
following phases in the analysis of group studies: (1) aggre-
gation of data over subjects, (2) inference, and (3) correction
for multiple testing.

In two commonly used software programs to analyze
fMRI data (i.e., SPM and FSL [5]), the expected activation in
each voxel is modeled in a two-step approach [6]. In the first-
level analysis, the evidence per subject is summarized in a lin-
ear contrast of the parameters, necessary to model the study
design. These contrast images are then passed to the second-
level analysis in which the evidence is weighted over subjects.
To pool this information over subjects, one can either take
into account subject-specific variability in constructing the
voxelwise test statistics or only rely on the estimated contrasts
and not take into account this subject-specific variability [7].

After pooling the data, one proceeds to the second phase,
the inference phase. While parametric inference offers the
advantage of closed-form null distributions that can be used
to obtain 𝑝 values, it depends on strong assumptions which
are not easy to satisfy in practice [8] and have not been
tested extensively [9]. An alternative is to use nonparametric
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methods such as permutation-based inference to create
an empirical null distribution conditional on the observed
sample [9–11].

Third, inference must be corrected for the huge multiple
testing that is induced by the mass univariate approach in
which simultaneously over 100.000 tests are performed. As
Bennett et al. [12] and Lieberman and Cunningham [13]
discuss, there was (and yet is) no golden standard to address
the choice for multiple testing corrections. We consider
three different multiple testing procedures: controlling the
False Discovery Rate (FDR), controlling the familywise error
rate (FWE), and an approach based on uncorrected testing
combined with a minimal cluster size. While FDR [14, 15]
and FWE control (see, e.g., [8]) have a strong theoretical
background with a focus, respectively, on the proportion
of false positives among all selected voxels and on the
probability to observe at least one false positive, the third
approach is purely empirical in nature [13].

These three corrections are designed to control the mul-
tiple testing problem at the voxel level. Other popular alter-
natives that focus on topological features such as cluster size
(i.e., the size of a neighboring collection of voxels) or cluster
height exist as well. In a recent study, Woo et al. [16] advocate
against the use of cluster-based inference and demonstrate
its problematic use when studies are sufficiently powered. By
definition, it is cumbersome to interpret the findings resulting
from “significant clusters” because these may not reflect a
set of significant constituting voxels (see also [9]). On the
other hand, the third approach [13] resembles cluster-based
testing but instead of setting a threshold for cluster size based
on cluster significance, a fixed prespecified threshold for the
minimum cluster size is set. For completeness, we therefore
also extend the third approach by choosing the threshold as
in cluster-based inference. However, it is important to point
out that we do not intend to investigate cluster-based testing
which is fundamentally different from the approach taken
here and relies on different topological assumptions. Instead,
we focus on voxelwise testing (for an elaborate investigation
of cluster-based testing, we refer to [4]).

The choices made in each of the 3 phases of a second-
level analysis is crucial steps in the analysis of fMRI data
and may consequently influence results. The use of such
second-level analyses or group studies is widespread [6,
10, 17, 18] but the impact of varying procedures at the
different phases has not yet been extensively validated. One
can distinguish three different aspects in the evaluation of
methods [4]: validity, reliability, and stability. The validity
can be assessed by verifying whether the false positive rate is
controlled at a predefined, nominal level. Further, the balance
between type I errors (false positives) and type II errors (false
negatives) has long been the main interest in the validation
of testing procedures (e.g., [8]). One has also acknowledged
the importance of investigating the reliability of methods
(e.g., [19, 20]). The extent to which a method is reliable can
be measured through the overlap between activated brain
regions over repeated measures, for example, in test-retest
settings.

The concept of data-analytical stability, originally devel-
oped in genetics [21], was recently introduced into the context

of fMRI data analysis [4]. This measure allows us to quantify
reproducibility of results through the variability on different
measures, for example, the variance on the number of selected
voxels over replications (either in simulation studies with a
known ground truth or through subsampling of real data).
Stable methods are characterized by a low variability on the
number of selected voxels. Data-analytical stability is thus a
useful additional criterion to distinguish between methods.
In this paper, we assess the influence of different choices
made in the three phases on the reproducibility of results. We
hereby focus on the balance between false positives and false
negatives and on the stability as measures for reproducibility.

In Section 2 we give a brief overview of the different
techniques.Next, we describe the details and the results of our
simulation study. In Section 4, we present the results and the
details from the real data application. In Discussion, we sum-
marize our findings and endwith some recommendations for
the practitioner.

2. Methods

In this section we provide an overview on the different
inferential techniques that we will consider in the simulation
study and real data example. First, we describe the methods
for pooling the evidence over subjects in the mass univariate
GLM approach for fMRI data at the second level. Next, we
summarize different multiple testing strategies that are fre-
quently exploited in the fMRI literature, such as approaches
that control the familywise error rate, approaches for control
of the False Discovery Rate, and a two-step procedure based
on anuncorrected threshold but requiring aminimumcluster
size. Finally, we discuss the construction of test statistics
under the null hypothesis that rely on parametric assump-
tions versus nonparametric approaches.

2.1. Voxel-Based GLM Approach to Analyzing fMRI Data at
the Group Level. Group-level inference typically proceeds
via a two-step procedure [6]. In the first step, an analysis is
conducted at the voxel level for each subject 𝑚 separately
(with 𝑚 = 1, . . . ,𝑀), and an appropriate contrast of interest
is constructed. In a second step, these contrast images are
combined to weight evidence over the𝑀 subjects.

2.1.1. First-Level Analysis. For each subject𝑚, the BOLD sig-
nal is sampled on 𝑇 time points in every voxel V (with V =
1, . . . , 𝑉) during an fMRI experiment. For every voxel V, a
general linear model (GLM) is then used to relate the voxels’
time course (i.e., the BOLD signal)Yk = (𝑌V1, . . . , 𝑌V𝑡, . . .,𝑌V𝑇)
to the expected BOLD signal under brain activation in the
experimental setup (the design matrix X) (see, e.g., [22–25]):

Yk = X𝛽k + 𝜀k. (1)

The designmatrixX is the product of a convolution of the
stimulus onset function with a hemodynamic response func-
tion (HRF) (e.g., [26]). When fitting model (1), one needs to
account for the residual correlation between consecutive time
points. Let A𝜎2

𝜀
represent the variance-covariance matrix

of 𝜀V in model (1). To deal with the temporal correlation,
a matrix Σd is typically constructed such that ΣdAΣtd = I
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holds. IfA andX are correctly specified, 𝛽k can be unbiasedly
estimated via a simple least squares approach. By relying on
“decorrelated” or whitened outcome and predictor, that is,
Y and X are premultiplied by Σ−1d , an unbiased estimator
for the variance of the estimator for 𝛽k is obtained (see,
e.g., [3, 27, 28]). Testing for specific differences between the
activation in conditions for voxel V is then possible by testing
the appropriate contrasts of the elements of𝛽V with a contrast
vector c, that is, test𝐻

0
: c𝛽V = 0.

2.1.2. Second-Level Analysis. Next we focus on the group level
analysis for a specific voxel V (V = 1, . . . , 𝑉). For ease of
notation, we will drop the voxel index V in the text below.
For the contrast of interest, let b = [𝑏

1
, . . . , 𝑏

𝑀
]𝑡 denote

[c𝛽̂1, . . . , c𝛽̂M]
𝑡, the estimated contrasts at the first level for

subjects 1 to 𝑀. Obviously, those contrasts are not exactly
known but estimated with some imprecision. Suppose for
now that those contrasts are known and denoted by c𝛽, then
a GLM can be used to weight the group evidence (e.g., [18]):

c𝛽 = XM𝛾 + 𝜂, (2)

where XM denotes the design matrix. In the simplest case
where one is interested in knowingwhether there is activation
over all subjects, the design matrix XM equals a simple
column matrix consisting of 𝑀 elements 1. Alternatively,
in the presence of between-subjects conditions or groups
(e.g., one wants to know whether the activation is different
between males and females), XM can take more complex
forms with additional regressors. Furthermore 𝜂 is the group
error vector, with Var(𝜂) = 𝜎2

𝜂
IM with IM the identity matrix

of dimension𝑀 and 𝜎2
𝜂
the between-subject variance.

In practice however c𝛽 is unknown, and instead b is used
as outcome:

b = XM𝛾 + 𝜂
∗
, (3)

with 𝜂∗ = [𝜂∗
1
, . . . , 𝜂∗

𝑀
]𝑡 and 𝜂∗ ∼ 𝑁(0,Σ∗

𝜂
). Since 𝜂∗ =

c𝛽 − b + 𝜂, it follows that the variance-covariance matrix Σ∗
𝜂

consists of the sum of two parts:

Σ
∗

𝜂
= var
𝑀
(b) + 𝜎2

𝜂
IM, (4)

Σ
∗

𝜂
= ΣM + 𝜎

2

𝜂
IM, (5)

Σ
∗

𝜂
=

[
[
[
[

[

𝜎
2

1
0 0

0
... 0

0 0 𝜎2
𝑀

]
]
]
]

]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
within-subject

+ 𝜎
2

𝜂
IM⏟⏟⏟⏟⏟⏟⏟⏟⏟

between-subject

. (6)

The first term in the right hand side of (4) is inherent
to the uncertainty associated with the estimation of c𝛽m, the
within-subject variability, while the second term is related to
the variability in the estimation of 𝛾, that is, the between-
subjects variance.

In the literature on multisubject fMRI data analysis, two
ways of dealing Σ

𝑚
are frequently used. Below, we refer to

these two approaches as the Ordinary Least Squares (OLS)
approach and the Weighted Least Squares (WLS) approach,
respectively.

OLS: The Homoscedastic Case. In the first case, described in
Holmes and Friston [17], one assumes that within-subject
variances do not differ over subjects and that the residual
noise is homogeneous across all 𝑀 subjects. Assume that
𝜎
2

1
= ⋅ ⋅ ⋅ = 𝜎2

𝑀
simplifies the form of Σ∗

𝜂
(in model (6)) to

Σ𝜂∗ = 𝜎
2

olsIM. (7)

This implies that the within- and between-subject variability
cannot be disentangled.

Mumford and Nichols [18] demonstrate that 𝛾 in model
(3) (p 1470, in (6)) can then be estimated as 𝛾̂ols = X−1m b
while the residual error variance 𝜎2ols is estimated as (b −
Xm𝛾̂)
󸀠(b − Xm𝛾̂)/(𝑀 − 1). Hence, this simply amounts to

solving the normal equations in the simple linear regression
case and inference proceeds as usual under the GLM [28].
This is implemented in FSL [29] under OLS while in SPM
[30] this is the standard implementation. In AFNI [31] this
is implemented under 3dttest++ (see also [32]).

WLS: Allowing for Heteroscedasticity. The WLS approach, or
more generally the Generalized Least Squares (GLS) approach,
explicitly models the two components of the variance-cova-
riance of 𝜂∗ in (6):

Σ
∗

𝜂
=

[
[
[
[

[

𝜎
2

1
+ 𝜎2
𝜂
0 0

0
... 0

0 0 𝜎2
𝑀
+ 𝜎2
𝜂

]
]
]
]

]

. (8)

More specifically, a weighting matrix𝑊 is constructed such
that more variable estimates 𝑏

𝑚
are down-weighted in the

estimation of 𝛾. In the special case where the design matrix
Xm only consists of a columnof 1’s, the closed form expression
for the estimator of 𝛾 equals [18]

𝛾̂wls =
𝑀

∑
𝑚=𝑀

𝑏
𝑖

𝜎2
𝑚
+ 𝜎2
𝜂

(

𝑀

∑
𝑚=1

1

𝜎2
𝑚
+ 𝜎2
𝜂

)

−1

. (9)

More generally, 𝛾̂wls equals

(Xt
mŴXm)

−1

Xt
mŴ
−1b (10)

withW the weighting matrix:

W =

[
[
[
[

[

(𝜎2
1
+ 𝜎2
𝜂
) 0 0

0
... 0

0 0 (𝜎
2

𝑀
+ 𝜎
2

𝜂
)

]
]
]
]

]

. (11)

Inference for the variance components is more complex
since no closed form solutions exist. Several (restricted)
maximal likelihood approaches have been suggested in the
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Table 1: Table of events for Null Hypothesis Significance Testing
(NHST) in which evidence against a null hypothesis𝐻

0
is evaluated

in the direction of an alternative hypothesis𝐻
1
.

Decision
Conclude𝐻

0
Conclude𝐻

1

Voxel Active False negative (FN) True positive (TP)
Inactive True negative (TN) False positive (FP)

literature (see, e.g., [32]). In practice, the within-subject
variance is often set to the first-level variance estimates ([18],
also in the FSL software package).

In FSL this is implemented under Flame1 while in AFNI
this is implemented under 3dMEMA (see also [33]).

2.2. Dealing with the Multiple Testing Problem. It is well-
known that the mass-univariate approach in which 𝑉 (𝑉 >
100.000) voxels are tested simultaneously is faced with huge
multiple testing problem, even at the second level. Indeed, if
100.000 tests for which 𝐻

0
is true are conducted simultane-

ously, each at a significance level of 𝛼 = 0.05, then, by chance
alone, 5000 voxels will be declared active. Hence, the number
of false positives (FP, see Table 1) becomes unacceptably high.
While the interest lies in minimizing both the number of FPs
and false negatives (FNs), multiple testing procedures aim to
control FP rates (type I error rates).

2.2.1. Familywise Error Rate (FWE). The FWE is the proba-
bility that at least one FP occurs among all tests performed
(see, e.g., [8]). In order to control this error rate, one needs
the null distribution of the maximum statistic over the 𝑉 test
statistics: max(𝑇V). Indeed, assuming that the global null (i.e.,
the null hypothesis holds for all voxels) holds, we have that

𝑃 (FP > 0 | global 𝐻
0
) = 𝑃(

𝑉

⋃
V=1
𝑇V > 𝑢 | global 𝐻0)

= 𝑃 (max (𝑇V) > 𝑢 | global 𝐻0) .

(12)

Hence, when 𝑢 is chosen such that this probability is
lower or equal to 𝛼, the FWE is controlled at level 𝛼. In
fMRI data analysis, the most commonly used approach to
controlling the FWE is based on Random FieldTheory (RFT,
see, e.g., [34]). Relying on parametric assumptions, RFT
allows a closed form approximation of the upper tail of
the null distribution of the maximum statistic. Alternatively,
nonparametric methods for inference such as permutation-
based testing may be used. In the latter case. This will be
discussed more extensively in Section 2.3.2.

Note that the expressions in (12) imply weak control of
the FWE as control is only guaranteed under the assumption
that the null is true for all voxels. Nichols and Hayasaka [8,
Section 2.3] argue that in imaging this weak control of FWE
also entails strong control, that is, control for any subset of
null voxels. This is essential to localize individual significant
voxels.

Further note that the classical Bonferroni correction, in
which the observed 𝑝 value is multiplied with the number
of tests and compared with to 𝛼, can also be used to control
the FWE.The underlying assumption of independence when
using the Bonferroni correction implies very conservative
results in the fMRI context however and makes the Bon-
ferroni correction relatively useless. While corrections for
dependence exist, these are seldom used in the analysis of
neuroimaging data [8].

2.2.2. False Discovery Rate (FDR). FWE is a very stringent
error rate and controlling it leads to conservative corrections.
Given that one is willing to accept more FPs, provided that
this number is small relative to the total number of selected
voxels, one can rely on a different error measure, the False
Discovery Rate (FDR). The FDR equals 𝐸(𝑄) with

𝑄

=
{

{

{

#FP
#selected voxels

=
#FP

#FP + #TP
if # selected voxels > 0

0 otherwise.

(13)

Genovese et al. [15] introduced a procedure to control the
FDR in neuroimaging. Using the procedure of Benjamini and
Hochberg [14], the FDR is considered at level 𝑞 in the sense
that

𝐸 (𝑄) ≤
#FP + #TN

𝑉
𝑞 ≤ 𝑞. (14)

The algorithm is as follows [15]:

(1) Select a level 𝑞.
(2) Order all 𝑉 original 𝑝 values from smallest to largest.

With ℓV representing the Vth smallest 𝑝 value, that is,
𝑝
ℓV
= 𝑝
(V), the ordered 𝑝 values are as follows:

𝑝
(1)
≤ 𝑝
(2)
≤ ⋅ ⋅ ⋅ ≤ 𝑝

(𝑉)
. (15)

(3) Define 𝑟 such that it is the largest V for which 𝑝
(V) ≤

(V/𝑉)𝑞 holds.
(4) Declare all voxels ℓ

1
⋅ ⋅ ⋅ ℓ
𝑟
to be active.

Genovese et al. [15] argue that this procedure controls
the FDR under the assumption of positive dependence; that is,
noise is Gaussian with nonnegative correlation.This assump-
tion is reasonable given that smoothing images imposes
increased dependency between neighboring voxels (and thus
tests).

2.2.3. Uncorrected Threshold with Minimum Cluster Size.
Based on simulation studies, Lieberman and Cunningham
[13] proposed amore ad hoc two-step procedure that aims for
a better balance between FP and FN. In the first step, the test
image is thresholded at 𝑢, corresponding to an uncorrected 𝛼
of, for example, 0.005. In the second step, only those voxels
belonging to a cluster with minimal cluster size of 10 are
selected.

Relation with Cluster-Based Significance Testing. It should be
noted that the method of an uncorrected threshold with
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a minimum cluster size shows superficial resemblances with
cluster-based significance testing procedures. Cluster-based
significance testing is a popular method to detect activation
[16]. It is however fundamentally different in nature from
the procedures described above. Indeed, it uses topological
features rather than purely voxel-based characteristics and
therefore relies on different assumptions.

As suggested by the reviewers, we added this method
to our comparison in the simulations for completeness (see
Section 3). More specifically, we added the cluster size (𝑆)
based significance testing with FWE-corrected and FDR-
corrected 𝑝 values. This corresponds to the two-step proce-
dure but the minimum cluster size 𝑆 is obtained based on
cluster significance instead of fixing it at 10. Similar to the
two-step procedure, a first threshold 𝛼 is chosen and only
clusters that are sufficiently large are retained as significant.
Without going into technical details for both permutation-
based andparametrical inference (which can be found in, e.g.,
[16, 35, 36]), this procedure determines the significance of a
cluster in order to obtain the minimum cluster size 𝑆. More
specifically, in a first step, after having set a sufficiently high
fixed first threshold (e.g., 𝛼 = 0.001), clusters are determined
by a cluster-forming algorithm. In a second step, for each
of these suprathreshold clusters, the probability to observe
a cluster of size 𝑆 under the null hypothesis of no activation
can be determined.These cluster 𝑝 values can be corrected to
control either the FWE (further referred to as cluster-FWE)
or the FDR (further referred to as cluster-FDR) at cluster
level.

In the two-step procedure with a fixed cluster size of
10, the first threshold 𝛼 can be varied (empirically). For
cluster-based inference on the other hand, it is important to
note that the null distribution of cluster sizes relies on the
assumption that the first (cluster-forming) threshold remains
fixed at a stringent 𝛼-level, typically of 𝛼 = 0.001. This
implies that, in the simulations, it is the minimum cluster
size 𝑆 that is varied empirically for the cluster-based approach
(by imposing different statistical thresholds for cluster sizes
through varying the FWE or FDR) and not the cluster-
forming threshold 𝛼.

2.3. Inference

2.3.1. Parametric Inference. If one is willing to make distri-
butional assumptions for the test statistic of interest, one can
easily derive the thresholds for inferential decision making.
We first discuss such parametric inference for the FWE and
next for the FDR and the two-step approach.

For the FWE correction, one can rely on Random Field
Theory (RFT) to derive the null distribution of max(𝑇V).
Using two essential approximations from Gaussian Random
Field Theory (which we will not discuss in full detail here,
more details can be found elsewhere, e.g., [8, 34]), we have
that

FWE = 𝑃 (max (𝑇V) > 𝑢 | global 𝐻0) (16)

≈ 𝑃 (𝜒
𝑢
> 0) (17)

≈ 𝐸 (𝜒
𝑢
) . (18)

In expression (17), the FWE is approximated by the probabil-
ity that the EulerCharacteristic𝜒

𝑢
is larger than 0.𝜒

𝑢
basically

counts the number of clusters under the null hypothesis, that
is, a collection of neighboring voxels for which 𝑇V > 𝑢 holds.
If the cluster-forming threshold 𝑢 is set sufficiently high the
probability to observe more than 1 cluster is neglected and
one can approximate the FWE with expression (18). The
expected value of 𝜒

𝑢
is estimated through a closed-form

approximation that uses information about the smoothness
of the image of test statistic [8, 34]. Not only does the method
take into account the spatial character of the data through
the smoothness, but also its computational efficiency is a
major advantage [9]. It is challenging however to satisfy the
main underlying assumptions needed for valid inference, that
is, normally distributed noise, sufficient smoothing, and a
sufficiently high threshold (see, e.g., [34, 37]).

For the FDR corrected inference and the two-step pro-
cedure, uncorrected 𝑝 values that are based on the usual
𝑡 distributions of the test statistics which rely on normally
distributed noise, as obtained from the OLS and WLS
approach, can simply be used.

2.3.2. Permutation-Based Inference. Although some tools
exist to verify the distributional assumptions underlying the
test statistic (e.g., [38]), there is no widespread tradition to
check those assumptions in fMRI data analysis [39]. The
parametric null distributions indeed often rely on strong
assumptions, which are seldom entirely fulfilled [10]. There-
fore one could alternatively use nonparametric approaches
such as bootstrap (e.g., [40–42]) and permutation procedures
(e.g., [11, 43, 44]). Using resampling techniques, the permuta-
tion approach, for example, guarantees (asymptotically) valid
inference at nominal levels by creating a null distribution
conditional on the observed data, but that advantage comes
at the cost of increased computational effort.

Focusing on second-level analysis and the scenario where
one simply wants to test for activation over all individuals
(i.e., the design matrix XM is a vector of 1’s), permutation-
based testing proceeds as follows:

(1) Define 𝑃, the number of permutations; the higher
𝑃, the higher the precision of the empirical null
distribution.However, the computational burden also
increases with increasing 𝑃.

(2) Compute for each voxel V the test statistic in the
original sample: 𝑇V0 for each voxel.

(3) Create 𝑃 new samples by randomly flipping the sign
of some of the elements in XM; that is, for randomly
chosen individuals the 1 is changed into −1 [10] (if
the individuals belong to different groups or the study
design is more complex, more appropriate schemes
can be found in, e.g., [45]).

(4) For each of the𝑃 (with𝑝 = 1, . . . , 𝑃) samples compute
the test statistic 𝑇V𝑝.

(5) The permutation null distribution for voxel V is then
defined as the empirical distribution of 𝑇V𝑝’s. Clearly,
the smaller the number of permutations𝑃 is, themore
discrete the null distribution will be.
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Permutation
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Figure 1: ROC for the low signal strength (SNR = 1) and for the high signal strength (SNR = 2.5); for differences in the subject-specific
variability (unequal) or identical subject-specific variability (equal); for permutation-based inference and for parametric inference. FWE:
familywise error correction, FDR: False Discovery Rate correction, and BCL: two-step procedure with a Bonferroni-like first threshold and
minimal cluster size of 10. OLS: Ordinary Least Squares approach and WLS: Weighted Least Squares approach.
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WLS: Weighted Least Squares approach.



Computational Intelligence and Neuroscience 9

Parametric Permutation

0.00

0.25

0.50

0.75

1.00

0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
FP FP

TP

0.00

0.25

0.50

0.75

1.00

TP

SNR 1

Parametric Permutation

0.00

0.25

0.50

0.75

1.00

0 0.0025 0.005 0.0075 0.01 0 0.0025 0.005 0.0075 0.01
FP FP

TP

0.00

0.25

0.50

0.75

1.00

TP

SNR 2.5

Model
OLS
WLS

Multiplicity
BCL
Cluster-FDR
Cluster-FWE

Model
OLS
WLS

Multiplicity
BCL
Cluster-FDR
Cluster-FWE

Figure 4: ROC for the low signal strength (SNR = 1) and for the high signal strength (SNR = 2.5) with identical subject-specific variability;
for permutation-based inference and for parametric inference for cluster-based inference with 𝛼 = 0.001: cluster-FWE: familywise error
correction based on cluster-size inference, cluster-FDR: False Discovery Rate correction based on cluster-size inference, and BCL: two-step
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Within a mass-univariate approach, empirical 𝑝 values are
obtained per voxel using 𝑃 (𝑇

𝑝V ≥ 𝑇V0), the probability to
observe a test statistic in the permutation null distribution
that is at least as large as the test statistic observed in
the sample at hand. The FDR correction and the two-step
procedure are performed on these 𝑝 values.

For the FWE correction, permutation based inference
proceeds via the empirical sampling of themaximum statistic
over all voxels to obtain the null distribution of themaximum
statistic. This implies that in step (4) the maximum over the
test statistic of all voxels is calculated: 𝑇

𝑝
= max(𝑇

𝑝V) with
(V = 1, . . . , 𝑉).

3. Simulations

3.1. Data Generation. For every subject (𝑚 = 1, . . . , 15) and
for every voxel in a 3-dimensional space (45 × 45 × 45), we
generate a time series y for the signal on the first level using
the following model:

y = X𝛽 + Zd + 𝜖, (19)

with 𝛽 = [𝛽
0
, 𝛽
1
]𝑡 and with X the design matrix, consisting

of a column for the intercept and a column describing the
expected signal under a simple block design. Z is identical to
X, and d contains a random intercept 𝑑

0
and random slope

𝑑
1
. The random intercept variance was set to zero, while a

random slope 𝑑
1
is drawn from𝑁(0, 𝜎2

𝑑
1

) for every subject to
allow for heterogeneous effects of X on y between subjects.
For every subject, voxel, and time point, 𝜖 is drawn from
𝑁(0, 𝜎2

𝑚
). In the simulation studyno temporal correlationwas

induced as this unnecessarily might influence our variance
estimates and consequent inference (see, e.g., [46], for an
investigation of the impact of modeling the temporal auto-
correlation in fMRI).We further define a signal-to-noise ratio
(SNR) as the maximum amplitude (x𝛽

1
) divided by 𝜎

𝑑
1

and
focus on a simple contrast c𝛽 with c = [0, 1].

The between-subjects standard deviation, 𝜎
𝑑
1

, was set
such that SNR = 1 (low signal strength) or SNR = 2.5. The
variance 𝜎2

𝑚
is either constant or varying over the𝑀 subjects.

To ensure comparability between both scenarios in terms of
the average total amount of variability, the variance 𝜎2

𝑚
under

the constant scenario is set to the average of all values under
the varying scenario.

We use the neuRosim R package [47] and a canonical
HRF to set up the first level activation [26] in (19). In total
there are 1934 active voxels, distributed over two clusters, and
89191 inactive voxels in a 45 × 45 × 45 volume (±2.5% of the
voxels). The noise images that were added to the activation
image were minimally smoothed in order to comply with the
basic assumptions for RFT [3, 34, 39].

In total, 1000 simulations are performed for all 4 data
generating mechanisms (2 SNR and constant versus varying
𝜎
2

𝑚
).

3.2. Analysis and Evaluation Details

3.2.1. Analysis. We focus on the OLS and WLS approach
to combining the individual evidence from the 𝑀 subjects.
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Figure 5: Uncorrected𝑝 values for theOLS and theWLS procedure,
with their corresponding FDR corrected 𝑞-values based on one
specific simulation under SNR = 1 with equal variance among
subjects.

FSL (version 5.0.7, [29]), one of the most frequently used
software packages to analyze fMRI data [5], has bothmethods
implemented. First, the estimates c𝛽̂ (see (1)) are obtained
and next used for the second-level analysis. In the WLS
approach, for every subject 𝑚𝜎2

𝑚
is estimated (see (6)) and

then used to weight the evidence per subject as outlined
in (11). For the parametrical inference in the OLS case,
inference is based on the 𝑡 distribution with𝑀 − 1 degrees
of freedom. The WLS method uses an intrinsic Bayesian
procedure that takes into account both the subject-specific
variability and the variability on the estimation of c𝛽. Fur-
ther inference proceeds via a back-transformation of the
posterior probability 𝑃 (c𝛾 > 0 | b) (see (3) and [7]) to a
𝑍-map.

For both the OLS and the WLS we use the permuta-
tion technique based on sign-flipping; see Section 2.3.2. The
command line tool randomised allows for permutation based
on the OLS method. For the WLS approach we followed
the same protocol, but via an in-house R script with the
test statistic as in (9). The permutation null distributions are
based on 5000 permutations. On a standard laptop computer
the computational time for the OLS permutation was less
than 10 minutes compared to over about 40 minutes for
the WLS permutation. We note that compared to the FSL
implementation our in-house script was not fully optimized
to speed up computational time.
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threshold and minimal cluster size of 10. OLS: Ordinary Least Squares approach and WLS: Weighted Least Squares approach.

3.2.2. Evaluation. The performance of the different combi-
nation of techniques is evaluated based on the Receiving
Operating Characteristics (ROC) curves. The ROC curves
show the true positives (TP) rate in function of the false
positives (FP) rate, with the FPs defined as voxels that are
declared active but not in the true activation region and the
TPs as the voxels that are declared active and in the true
activation region.

ROC-curves provide a means to investigate the balance
between the FP and TP rate; however, bias may be introduced
for imbalanced data. As in fMRI, there are typicallymore true
inactive than true active voxels; we also provide theMatthews
correlation coefficient [48]. This measure takes into account
the four cells as displayed in Table 1 and is therefore a more
comprehensive measure for the quality of a test criterion,
even for imbalanced data (see, e.g., [49], for an application in
the genetical context). The Matthews correlation coefficient
(MCC) is calculated as follows:

MCC

=
TP × TN − FP × FN

√(TP + FP) (TP + FN) (TN + FP) (TN + FN)
.

(20)

Values close to 1 indicate more correct decisions, values close
to 0 indicate randomdecisions, and values close to−1 indicate
more incorrect decisions.

Furthermore we study stability through the variation on
the number of correctly selected voxels. Stable methods are
methods that do not induce much variability on the number

of selected voxels. At last, from the above, it should be clear
that all measures are defined in voxel-based way.

3.3. Results. In Figure 1 we present the ROC curves under
each of the four data generatingmechanisms (low versus high
SNR in left versus right panel, equal versus unequal 𝜎2

𝑚
in

the upper versus lower panel). In total 12 ROC curves are
presented, one for each of the 2 × 2 × 3 combinations of
selection procedures (OLS versus WLS, parametric versus
nonparametric inference, FWE versus FDR versus 2-step
procedure). We summarize the most important findings
below.

First, we find that under all scenarios the two-step
procedure with a Bonferroni-like first threshold andminimal
cluster size of 10 (further denoted as BCL) has a better trade-
off between FP andTP than the FWE-control or FDR-control.

Second, under both high and low signal strength, the
ROC of the permutation-based method and the parametric
inference have very similar shapes at almost the same height
when focusing on the OLS approach. When considering
the WLS approach, one finds that the ROC curves are
substantially higher with permutation-based inference than
with the parametric inference under both SNR (regardless of
the type of control).

Third, in almost all panels of Figure 1 we find a good
performance of the WLS versus the OLS method under the
parametric approach, regardless of the type of multiplicity
control. When permutation-based inference is used a similar
performance of OLS and WLS is observed when the SNR is
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Figure 7: Plot with the reselection rates of the voxels that are larger than 0.5 over 100 bootstrap samples for real data for parametric inference
(a) and for permutation-based inference (b). FWE: familywise error correction, FDR: False Discovery Rate correction, and BCL: two-step
procedure with a Bonferroni-like first threshold and minimal cluster size of 10. OLS: Ordinary Least Squares approach and WLS: Weighted
Least Squares approach. The indicated percentage denotes the number of voxels that is declared active in more than 90% of the bootstrap
cases.
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Figure 8: Plot with the reselection rates that are larger than 0.75 for the HPC data for parametric inference (a–f) and for permutation-
based inference (g–l). FWE: familywise error correction, FDR: False Discovery Rate correction, and BCL: Bonferroni-like first threshold and
minimal cluster size. OLS: Ordinary Least Squares approach and WLS: Weighted Least Squares approach. The average number of activated
voxels was kept constant for all cases. Red/orange: closer to 0.75; white: closer to 1.
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low, but the WLS seems to perform worse than OLS when
the SNR is high. It should be noted that this is due to the
discreteness of the permutation-based inference, which is
mostly apparent when the signal is strong.

In Figure 2, the MCC is depicted for, respectively, a low
and high signal strength with respect to the total number
of selected voxels (FP + FN). While the findings based on
the pattern of the ROC-curve are mostly confirmed in these
figures, the differences under high SNR are somewhat less
pronounced. This may indicate that under high SNR the
decisions diverge less than when the SNR is lower for a same
number of selected voxels.

Figure 3 shows the proportion of correctly selected voxels
on the 𝑥-axis and its corresponding standard deviation on the
𝑦-axis. For all 4 data-generatingmechanisms, we find that the
FDR correction formultiple testing results inmore variability
than the other two procedures that correct for multiple
testing. We also find that the FWE correction results in
slightly more variable results than the BCL based corrections.
Furthermore, this pattern is not altered by the choice for
permutation-based inference or parametric inference. One
exception is however observed. Indeed, we find that, for the
WLS procedure, under the high SNR, the BCL procedure
becomesmore variable than the FWEprocedure.We attribute
this, again, to the discreteness of the permutationmethod and
the high signal present in this simulation.

Figure 4 depicts the comparison between the BCL proce-
dure and the pure cluster-size based inference in the ROC-
curve in the simulations with no between-subject differences
in the residual variability. The results for the case with
differences in the within-subject variability and the results for
the stability plots and the MCC are presented in Appendix B.
We note that, due to the first fixed threshold in pure cluster-
based testing, the maximum number of selected voxels is
limited. For the ROC-curves and for the stability we find
discrete patterns. These are a logical consequence of our
simulation setup, in which two relatively large clusters are
set active. Based on the ROC-curve we find a good trade-off
between FP and TP for the cluster-based inference when the
SNR is high, but not when the SNR is low. For the stability, it
is hard to draw conclusions based on the observed results due
to the above-mentioned limitations.

Finally note that, under the lowest signal strength, we
find a peak in the variability for the WLS approach in
combination with the FDR correction. Further inspection of
the 𝑝 values for the WLS approach reveals that this is due
to more discreteness in the highest 𝑝 values compared to the
OLS procedure (Figure 5).

4. Real Data Example

4.1. Human Connectome Project Dataset. To check the find-
ings from the simulation study on real data, we use data
from the Human Connectome Project (HCP, [50]). Those
data are analyzed on the first level, using a standard protocol
that is described elsewhere [51]. To mimic a typical fMRI
study with about 15 subjects, we select the first 15 subjects
(subject identifiers can be found in Appendix A.) from the
HCP dataset with a focus on contrast 4, which entails the
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Figure 9: Test-retest correspondence measured trough the cor-
respondence between two binary images (selected/nonselected
voxels). Each BCL threshold corresponds to a specific number of
selected voxels which may vary between images but not between
methods.

difference between a mathematical task and a story-telling
task.

4.2. Stability of the Selected Voxels. For the HCP data, we
determine the stability of the different proposed methods
by bootstrapping subjects from the original sample, that
is, drawing subjects with replacement from the original
sample. In total, 100 bootstrap samples are taken.The number
of active voxels at level 2 is determined in each of these
bootstrapped datasets, using one of 12 the aforementioned
combinations for inference at the second level. The stability
on the number of selected voxels over bootstrap samples
is further assessed by considering the reselection rate of a
specific voxel, which is the proportion of bootstrap samples
in which that voxel is declared active.

4.3. Results. In Figure 6, we find the same pattern as in the
simulations when using parametric inference, that is, the
FDR based correction for multiple testing results in more
variability on the number of selected voxels. Also, we find that
the FWE and the BCL correction result in similar variability.
This finding holds for both the WLS and the OLS approach.
In contrast to the simulation study, we find however that the
WLS approach is always less variable than the OLS approach
for a given type of multiplicity control.

For the permutation-based inference we find that when
the number of selected voxels is relatively low (less than ±5%
of the ±200.000 voxels) the FDR correction with the OLS is
far more variable than all other combinations. We note again
that the WLS suffers from the discreteness of 𝑝 values in
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Figure 10: Receiver operating curve for a signal-to-noise ratio of 1 over the range [0; 0.01].

the permutation-based inference when the FDR correction
is used. Due to this discreteness, several small original 𝑝
values are converted to only one corrected 𝑞 value, causing
the straight line from the origin to the first point. For the two-
step procedure, there is a similar artifact when using WLS.
This can be attributed to the fact that the lower 𝑝 values
do not occur in clusters larger than 10, until these reach a
certain threshold that results in a huge amount of activation.
If more than 5% of the voxels are selected, the results aremore
variable if one uses the FWE correction for multiple testing,
compared to the other methods.

Based on Figure 6, we next determine the thresholds
for which 10.000 voxels are selected on average over the
100 bootstrap samples. These thresholds are then used to
determine the reselection rate of each specific voxel over the
100 bootstrap samples. Figure 7 depicts the histograms of the
reselection rates that are larger than 50%.The header of each
histogram shows the percentage of voxels that are selected in
more than 90% of the samples.

From Figure 7 we find the highest reselection rates when
using the FWE or BCL multiplicity control in the parametric
inference framework (i.e., the 6 upper panel histograms).

In the permutation-based inference framework (i.e., the 6
lower panel histograms), we find that the FDR achieves
higher reselection rates than the FWE if the OLS approach
is used, but the highest reselection rates are found with the
BCL multiplicity control with both the OLS and the WLS
approach.

To take into account the localization of voxels that are
frequently reselected, we also constructed brain images in
Figure 8, where we identified all voxels that have a reselection
rate of at least 75%. Although we acknowledge that the slice
depicted is only exemplary, the above-described trends are
clearly confirmed.

4.4. Test-Retest Correspondence. As suggested by one of the
reviewers, stable methods should reflect more similar results
using different real samples. To study this, we used an
additional run for each of the 15 subjects in the HCP data.
We exemplary demonstrate this test-retest similarity for the
parametrical analysis. We matched the number of selected
voxels per image in the FWE/FDR method by the respective
numbers that are found using the two-step BCL procedure.
Indeed, when selecting the 𝑁 voxels with the 𝑁 smallest 𝑝
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Figure 11: Receiver operating curve for a signal-to-noise ratio of 2.5 over the range [0; 0.01].

values, the FWE and FDR method results are identical. This
matching on the number of selected voxels is motivated by
the simulation findings that the larger number of selected
voxels results in a higher MCC. In a test-retest setting, the
MCC coincides with the correlation between two binary
images (selected/nonselected voxels). In Figure 9 we see that
indeed the BCL outperforms the FDR/FWEand that theWLS
outperforms the OLS. We note however that this methods
has a major drawback as it does not allow us to calculate the
variability on these numbers and it requires a second sample.

5. Discussion

In this study we investigated both the balance between true
positives (TP), true negatives (TN), false positives (FP),
and false negatives (FN) and data-analytical stability of
methodological choices in the second-level analysis of fMRI
data. Following the traditional evaluation of techniques in the
fMRI literature, we first focused on the balance between FP
and TP, using ROC-curves, and on the Matthews correlation
coefficient (MCC), a measure that takes all possible decisions
into account. Aiming for more reproducible brain imaging

research, we believe however that data-analytical stability is
also an important criterion that offers an additional unique
perspective on the behavior of methods. While studies using
the criterion of data-analytical stability are sparse and mostly
focused on the first-level inferential decisions (e.g., [4, 52], for,
resp., a focus on mass univariate inference and topological
inference), this study filled this gap through considering
data-analytical stability of different methods at the second-
level analysis. Unlike the NPAIRS framework [53, 54] that
allows exploring overall stability, we furthermore focused on
the selected voxels, obtained via thresholded images, when
assessing the data-analytical stability.

More specifically, we assessed in this paper the impact
of three different choices that the researcher has to make
when analyzing fMRI data at the second level: (1) should one
use a WLS-approach or an OLS-approach, (2) should one
rely on parametric assumptions for the test statistic or rely
on a nonparametric framework, such as permutation-based
inference, and (3) which type of control should one use to
limit the multiplicity issue. The impact of these choices was
assessed from the ROC-curves,MCC, and the data-analytical
stability perspective.
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Figure 12: % of correctly activated voxels with their standard deviation for a signal-to-noise ratio of 1.

For the balance in the decision context, based on the
ROC-curves and the MCC, results were pretty clear when
parametric inference is used. Regardless of the choice of
the multiple testing correction, we found that the WLS-
method yields a better balance between FP and TP than
when the OLS-method is used. While the MCCs confirmed
most of the results based on the ROC-curves, they revealed
the fact that differences are more obvious when the SNR
was low. Under the high signal strength, the balance in
the decision context did not diverge remarkably between
methods. These findings on the balance between FP and TP
are in line with Mumford and Nichols [18], although the
magnitude of the difference betweenWLS andOLSwasmore
pronounced, based on the ROC-curves, in our simulation
study.When permutation-based inference is used, there were
barely any differences between OLS and WLS. We found
however that there were some effects of discreteness when
permutation-based inference was used in combination with
WLS. In the simulation settings this was associated with
spiky patterns under a high SNR due to substantial jumps in
the number of voxels that are selected. But also in the real
data application, we found some evidence for discreteness

with the WLS statistic when jumps in the activation occur.
When comparing the parametric with the nonparametric
approach, we found in contrast to Thirion et al. [43] no
evidence for a better performance of permutation based
inference. Note however that in all our simulation settings
the basic assumptions of parametric inference were satisfied
(Gaussian noise and sufficient smoothing). Upon inspection
of the ROC-curves we also found in our simulation study
that the two-step procedure, which ignores multiplicity first
but requires a minimal cluster size next, outperforms the
traditional FWE-control and FDR-control.

From a data-analytical stability perspective, there were
substantial differences between the three approaches we con-
sidered for multiple testing correction. In line with previous
findings at the first level of analysis [21, 52], FDR-based
corrections for multiple testing resulted in more variable
selections. In both the simulation study and the real data
application, we found that FWE based correction formultiple
testing and a two-step procedure result in more stable results,
as assessed by the variability on the number of selected
voxels. This weaker performance of the FDR is observed,
regardless of theWLS-approach versus OLS-approach, or the
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Figure 13: % of correctly activated voxels with their standard deviation for a signal-to-noise ratio of 2.5.

parametric versus nonparametric framework for inference.
Interestingly, when we focused on the reselection rate of a
specific voxel in the data application, we also found superior
performance of the two-step procedure. As noted by one of
the reviewers, the increased stability for the FWE and two-
step procedures relying on parametrical inference might be
attributed to the fact that these approaches exploit topological
features of the data in contrast to the FDR.

While voxel-based inference is only one approach to
controlling for multiple testing, several alternatives exist.
Cluster-based inference (see, e.g., [35, 36]) is a very popular
alternative that relies explicitly on topological features such
as the cluster size and has been advocated because of the
potential increase in power. However, Woo et al. [16] showed
that the commonly used two-step procedure for cluster-based
inference is nonrobust when too liberal first thresholds are
used at the voxel level and that this results in unpractically
large clusters when studies are sufficiently powered. This
complicates the interpretation of the results as clusters could

become as large as half of the hemisphere. In the same vein,
Woo et al. [16] and Nichols [9] argue that the conceptual
definition of a “significant cluster” is complicated by the fact
that it is a randomly sized collection of voxels of which one
can only claim that at least some are significant. We con-
cur with Nichols [9] and Woo et al. [16] that voxel-wise
inference remains a useful alternative and therefore opted
for an extensive evaluation of commonly used voxel-based
inference techniques.

The FP rates are evaluated only in a simulation study.
While this might lack biological validity, this procedure
allows us to have strict control on the ground truth and
consequent determination of TN and TP. With an exhaustive
simulation study (2 SNR and varying within-subject variabil-
ity assumptions), we have covered some of the properties
present in real data. Any simulation study comes naturally
with the arbitrariness of these settings. However, compared
to using real data to determine FP rates, simulation stud-
ies have the advantage to exclude unnecessary artifacts in
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Figure 14: MCC for a signal-to-noise ratio of 1.

the procedure to determine the TP and the TN (see, e.g.,
[55], for differences in test errors based on the design) or its
underlying assumptions.

Gathering all the above-described evidence, we would
recommend the brain imaging researcher to use WLS at the
second level in combination with the two-step procedure,
hereby relying on the parametric framework for inference.
Note that throughout the paper, we have assumed that all
images at the first level are correctly normalized such that
individuals are perfectly coregistered. It should be stressed
that further exploration of the robustness against violations
of the parametric assumptions is warranted. However, the
proposed strategy in this paper to assess data-analytical
stability of different methods on real data could be used in
any future application and ultimately reveal the best choice
from a data-analytical stability perspective in practice. Such
validation on real data may also yield further insight into
the appropriateness of the rather ad hoc but commonly used
BCL-approach which lacks inferential justification.

Appendices

A. Additional Details HCP Dataset

Data were provided by the Human Connectome Project,
WU-Minn Consortium (Principal Investigators: David Van
Essen and Kamil Ugurbil; 1U54MH091657) funded by the 16
NIH Institutes and Centers that support the NIH Blueprint
for Neuroscience Research and by the McDonnell Center for
Systems Neuroscience at Washington University.

The list of subject identifiers used in the real data applica-
tion of this study can be found in

100408 101915 103414

105115 106016 110411

111312 111716 113619

115320 117122 118730

118932 120111 122317

(A.1)

Subjects come from the 80 unrelated subjects dataset,
release 𝑄3 [50].
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Figure 15: MCC for a signal-to-noise ratio of 2.5.

B. Additional Figures on the Relationship
between Cluster-Based Inference and
the Uncorrected Threshold Method with
Minimal Cluster Size

This section contains the additional figures in which the
BCL procedures are compared with cluster-based inference
procedures. For all of the following pictures the following
abbreviations are used: (1) SNR = 1: low signal strength, SNR
= 2.5: high signal strength; (2) cluster-FWE: familywise error
correction based on cluster-size inference, cluster-FDR: False
Discovery Rate correction based on cluster-size inference,
and BCL: two-step procedure with a Bonferroni-like first
threshold and minimal cluster size of 10; (3) OLS: Ordinary
Least Squares approach and WLS: Weighted Least Squares
approach; (4) unequal: differences in the subject-specific
variability, equal: identical subject-specific variability.

B.1. ROC-Curves. In Figures 10 and 11 the voxel-based ROC-
curves are depicted.

B.2. Stability on the Percentage of TPs. In Figures 12 and 13 the
voxel-based stability plots are depicted.

B.3. MCC. In Figures 14 and 15 the voxel-based stability plots
are depicted.
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