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THE EMBODIED PERSPECTIVE ON MUSIC COGNITION

has stressed the central role of the body and body move-
ments in musical meaning formation processes. In the
present study, we investigate by means of a behavioral
experiment how free body movements in response to
music (i.e., action) can be linked to specific linguistic,
metaphorical descriptions people use to describe the
expressive qualities they perceive in the music (i.e., per-
ception). We introduce a dimensional model based on
the Effort/Shape theory of Laban in order to target
musical expressivity from an embodied perspective.
Also, we investigate whether a coupling between action
and perception is dependent on the musical background
of the participants (i.e., trained versus untrained). The
results show that the physical appearance of the free
body movements that participants perform in response
to music are reliably linked to the linguistic descriptions
of musical expressiveness in terms of the underlying
quality. Moreover, this result is found to be independent
of the participants’ musical background.
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W HEN PEOPLE SPEAK ABOUT WESTERN ART

music, metaphors are ubiquitous (Cox,
2011; Guck, 1994). Embodied, sensory-

motor experiences are considered to play an important
role in the use and understanding of metaphors
(Crawford, 2009; Gibbs, Costa Lima, & Francozo,
2004). Metaphorical constructs (e.g., ‘‘life is a journey’’)
tend to elucidate abstract ideas (e.g., ‘‘life’’) by relating
them to concrete, sensory-motor experiences (e.g.,
‘‘journey’’). In the context of music, research has

indicated that a substantial part of musical metaphors
relate to people’s experience of physical motion and
space (Cox, 2011; Johnson & Larson, 2003; Larson,
2012). Moreover, in the general paradigm of embodied
music cognition, theories have been developed explaining
how people perceive and understand music, at least
partly, in terms of the body movements that music
induces. Examples are the motor model of musical
expressiveness (Leman, 2007), the motor-mimetic theory
(Godøy, 2003), and the mimetic hypothesis (Cox, 2011).
In the present study, we elaborate on the idea that the
embodied experience of music is an important factor in
people’s use and understanding of musical metaphors.

People often respond to music by making body move-
ments that reflect aspects of its melodic and rhythmic
contours, or of the sound-producing gestures from
which it originated (Godøy, 2010). This may instigate
a sense of imagined participation with the production
of the sound, an idea that is addressed in a broad range
of musicological studies under different names, such as
imagined activity (Maus, 1988), kinaesthetic empathy
(Mead, 1999), imaginary agency (Levinson, 2006), sim-
ulated control (Leman, 2007), and active perception
(Krueger, 2009). What all of these accounts have in
common is their reference to a direct, sensory-motor
engagement with music; to how music literally ‘‘moves’’
people, and to how they feel they are immersed in, and
resonate with, the physical sound energy. In the present
study, we ask how this form of embodied sensory-
motor engagement with music might be related to the
use of musical metaphors. We present an experiment
designed to investigate the extent to which physical and
expressive properties of music-induced body move-
ments (i.e., action) are reflected in the linguistic meta-
phors that people use to describe the expressive
qualities they recognize in the music (i.e., perception).
Here, perception refers to the identification, organiza-
tion, and interpretation of what is received through
the senses (here, the auditory sense), and involves a
combination of ‘‘bottom-up’’ sensory processing, and
‘‘top-down’’ processes (expectation, knowledge, etc.).
Accordingly, perception itself pertains to a level of
understanding that could be conceptualized as linguis-
tic metaphors.
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Our analytical framework for mapping low-level
physical movement properties onto high-level expressive
linguistic concepts will be the Effort/Shape model that
originated in the Laban Movement Analysis (LMA)
method (Laban, 1947; Laban & Ullmann, 1966/2011).
This is an integrated conceptual system that relates
physical movements to expressive qualities such as
emotion, intentionality, and so on. By adapting the
model, we are able to incorporate linguistic metaphors
to our analysis. The Effort/Shape model has been
applied in earlier studies of expressive movement
responses to music (Camurri, Mazzarino, Ricchetti,
Timmers, & Volpe, 2004; Maes, Leman, Lesaffre,
Demey, & Moelants, 2010), although no attempts have
been made to use it to clarify the relationship between
free movement responses to music and the use of lin-
guistic musical metaphors. As the name implies, the
model consists of two main components: Effort, which
refers to the subtle, energetic qualities of an expressive
movement; and Shape, which relates to changes in body
shape. Both components are subdivided into different
categories. There are four categories within the Effort
component, and in turn these are structured around a
conceptual opposition: 1) Effort-weight relates to the
qualities strong-light; 2) Effort-time relates to sudden-
sustained; 3) Effort-flow is structured around bound-
free; and 4) Effort-space is classified as direct-indirect.
Similarly, the Shape component is divided into three
categories structured around the polarities spreading-
enclosing, rising-descending, and advancing-retreating.
This last opposition is not taken into account in the

present study as it is not relevant to hand gestures (see
below). The crux of our study is to incorporate relevant
movement features and linguistic metaphors to this
model, reflecting the categories listed above and the
oppositions around which they are structured (see
Table 1). This enables us to study movements in
response to, and the conceptualization of expressiveness
within music, and to see how those two components
correlate.

Our adapted version of the model can be described as
follows: Effort-weight is related to the movement fea-
ture acceleration, and the bipolar indicators heavy-light,
vigorous-frail, rough-delicate, and hard-soft. Effort-time
is related to the movement feature impulsiveness, and the
bipolar indicators fast-slow, nervous-tranquil, energetic-
soothing, and active-passive. Effort-flow is related to the
movement features jerk and smoothness error (i.e., mea-
sured as the deviation from the smoothest trajectory in
m/sample), and the bipolar indicators rigid-fluent, anx-
ious-secure, worried-carefree, and serious-playful. Jerk
and smoothness error are related in the sense that the
smoothness error is quantified as a function of jerk (cf.
minimum jerk model; Todorov & Jordan, 1998). As the
derivative of movement acceleration, jerk represents the
rate of change in movement acceleration. Hence,
‘‘smoothness’’ is equivalent to small rates of change in
movement acceleration (i.e., low jerk). Effort-space is
related to the movement feature directness index, and the
bipolar indicators compact-airy, dense-diffuse, regular-
chaotic, and balanced-unbalanced. The directness index
is calculated for individual segments of the motion

TABLE 1. Expressive Model Based on Laban’s Effort/Shape Theory.

EFFORT CATEGORIES SHAPE CATEGORIES

WEIGHT TIME FLOW SPACE
Spreading-
Enclosing

Rising-
DescendingStrong Light Sudden Sustained Bound Free Direct Indirect

LINGUISTIC LABELS

heavy light fast slow rigid fluent compact airy big small high low
vigorous frail nervous tranquil anxious secure dense diffuse broad narrow vertical horizontal
rough delicate energetic soothing worried carefree regular chaotic thick thin dominant humble
hard soft active passive serious playful balanced unbalanced exalting serene bright muted

MOVEMENT FEATURES

Acceleration Impulsiveness Smoothness Directness Index (DI) Size Height

high low high low low high straight indirect big small high low
Jerk

high low

Note: Linguistic labels and movement characteristics highlighted in grey are the ones that participants associated with the heroic music, the others with the lyric music.
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trajectories of the dominant hand. This measure
expresses the ratio between the length of the straight
trajectory connecting the beginning and end point of
a motion segment and the distance of the actual covered
trajectory between these two points. Shape-spreading/
enclosing is related to the movement feature size, and the
bipolar indicators big-small, broad-narrow, thick-thin,
and exalting-serene. Shape-rising/descending is related
to the movement feature height, and the bipolar indica-
tors high-low, vertical-horizontal, dominant-humble, and
bright-muted.

The experiment was conducted in two parts. In one
part - the motor-attuning part - people were asked to
perform free body movements in response to music,
and their responses were recorded with an optical
motion tracking system. In the other part - the self-
report part - people were asked to associate 24 pairs
of bipolar adjectives with the music while simply listen-
ing to the music. Rather than use various, shorter
extracts of music, we opted for a single, continuous
piece in which contrast is an inherent part of the com-
position. Dynamic contrasts are a typical feature of
Late-Romantic music, and the particular music we
chose was the beginning of the first movement of
Brahms’ First Piano Concerto. The reasons for this
choice are threefold. First, listening to a continuous
musical piece is assumed to create a more ecologically
valid listening situation in which participants can
immerse themselves in the music. Second, it allows us
to investigate whether the expressive extremes of the
material within a single piece are reflected in body
movement responses and musical metaphors. Third,
an emphasis on musical contrast corresponds to the
polarities around which the Effort/Shape model is struc-
tured. We extracted acoustic properties from the audio
signal; an energy property (i.e., amplitude) and spec-
trum properties (i.e., irregularity, spectral flatness, spec-
tral sharpness, and spectral variance). Based on the
contrasts we found in the musical material, we defined
two musical styles: heroic and lyric. For each of these
styles we identified three exemplary passages within the
piece, and we asked participants to rate each of those six
passages according to our set of 24 bipolar adjective
scales. Our movement analysis took into account only
those movements that were performed during those six
specific passages, although participants were asked to
perform free body movements continuously throughout
the musical piece.

Three main research questions are asked in the pres-
ent study. First, whether or not contrasts in music are
reflected in people’s movement responses to it, and in
their ratings of its character across the bipolar adjective

scales. Second, whether there are similarities among the
participants’ responses, and whether these relate to the
musical background of the participants (i.e., trained ver-
sus untrained). In addressing this question, we hypothe-
sized that differences in movement responses and verbal
descriptions between the two musical styles would be
more pronounced in people with a musical background,
as perception is influenced by learned, ‘‘top-down’’ pro-
cesses involving expectation and knowledge. Third, using
the Effort/Shape model, we wanted to investigate the
correlation between people’s movement responses and
the musical metaphors they attribute to the music.

Method

PARTICIPANTS

We invited 36 students enrolled in a broad range of
academic disciplines at Ghent University to participate
in the experiment. They received no compensation for
participating in the study. None of the participants
received formal dance training in the past. Two distinct
groups of participants were recruited systematically, on
the basis of their musical background. The musically
trained group comprised 18 participants (10 male, 8
female) with a mean age of 23.8 years (SD ¼ 3.7) and
who played a musical instrument and had a mean num-
ber of 9.7 years (SD ¼ 5.4) of music training. The musi-
cally untrained group comprised 18 participants (10
male, 8 female) with a mean age of 24.6 (SD ¼ 4.8) and
who did not have either music education of any sort
(except for the obligatory courses in primary and sec-
ondary school) or play a musical instrument. In addi-
tion, we asked after the experiment how familiar
participants were with the type of music used in the
experiment. This question was rated on a five-point
Likert scale, with 1 as not at all familiar, 3 as somewhat
familiar, and 5 as extremely familiar. The mean rating of
the participants in the musically trained group was 4.17
(SD¼ 0.38), whereas the mean musical familiarity rating
for the musically untrained group was 1.67 (SD ¼ 0.48).

We also tested the level of introversion/extraversion
of each participant as we considered that this might be
an influential factor. For this measure, we used the
Dutch translation of the Big Five Inventory test (Denis-
sen, Geenen, Van Aken, Gosling, & Potter, 2008) provid-
ing a score from 1 to 5, with 1 equalling very introvert and
5 equalling very extravert. A statistical t-test indicated
that there was no significant difference between the two
groups: for the musically trained group, (M¼ 3.49, SD¼
0.62), and for the musically untrained group (M ¼ 3.51,
SD ¼ 0.67), t(34) ¼ ".10, p > .05 (p ¼ .92). So, both
groups were highly homogeneous in this respect.
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MATERIALS

Musical stimulus. The musical stimulus that was used in
the experiment is Johannes Brahms’ First Piano Con-
certo, Opus 15 in D minor from 1858. The recording we
used was made by Krystian Zimmerman, accompanied
by the Berlin Philharmonic Orchestra conducted by
Simon Rattle. For the experiment, we used the first 6
min 10 s of the Maestoso movement (see Figure 1). In
this excerpt three heroic passages alternate with three
lyric passages (see Figure 1). The first of the lyric pas-
sages is relatively long in comparison with the other
two, so we deleted a portion of that passage (1 min
56 s - 2 min 46 s of the recording), which was not
evident for those unfamiliar with the piece. Thus, the
eventual stimulus had a duration of 5 min 20 s. Frag-
ments of equal duration were required for the move-
ment analysis and self-report analysis, so we defined six
fragments with a duration of 30 s each - three heroic
and three lyric, as explained above. Contrary to what
these labels might suggest, these two categories were not
defined in terms of their expressive content, but purely
in terms of the physical acoustic properties of the audio
signal. We used the VAMP libXtract plugin (Bullock,
2007, 2008) hosted in Sonic Visualizer (Cannam, Land-
one, & Sandler, 2010) to extract the acoustic properties
(see above). Precise details of the specific extraction
methods can be found in Bullock (2008). For each
acoustic property we obtained a continuous time series
and then, for each one, the two distributions of sam-
ples (corresponding to the heroic and lyric fragments)
were statistically analyzed and compared by means of
a nonparametric Mann-Whitney U test. The results show
that the levels of amplitude, irregularity, spectral sharp-
ness, and spectral variance were significantly higher in the

heroic fragments compared to lyric fragments, and that
the levels of spectral flatness were significantly lower
in the heroic fragments compared to the lyric fragments
(p < .001).

Questionnaire (self-report part). The questionnaire was
based on the semantic differential method (Osgood,
Suci, & Tannenbaum, 1957), which can be used to assess
people’s attitudes towards all sorts of concepts, objects,
events, etc. In particular, the method has proved useful
in rating people’s emotional experience of musical frag-
ments (e.g., Fujihara & Tagashira, 1984; Murakami &
Kroonenberg, 2003; Nielzén & Cesarec, 1981; O’Briant
& Wilbanks, 1978; Senju & Ohgushi, 1987; Swanwick,
1973; White & Butler, 1968). The method is based on
a set of scales consisting of bipolar pairs of adjectives,
placed at each end of a continuous rating scale (usually
a seven-point scale, although five-point and nine-point
scales are also used). Respondents are asked to tick one of
the seven points in between each bipolar adjective pair,
indicating the rate of association (cf. intensity) of a par-
ticular concept, object, event, etc. with one of the adjec-
tives (cf. direction). In our study, we used a 24-item, nine-
point, semantic differential list to rate the six musical
fragments, as we were interested in small nuances
between different respondents. Each category in the
Effort/Shape model itself is constituted by four bipolar
adjective indicators (Table 1), and we chose our adjectives
from the Laban Movement Analysis (LMA) effort bank
(http://www.lmaeffortbank.com) as well as the Hevner
adjective circle. The latter presents adjectives that are
supposed to reflect the principal feelings that can be
evoked in humans by listening to music (Hevner,
1936). Respondents were asked to rate the six musical
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FIGURE 1. Waveform of the musical stimulus used in the experiment (i.e., the first five minutes of the first movement of Brahms’ First Piano
Concerto). The hatched regions (each 30 s long) indicate the three heroic fragments, the cross-hatched regions (each 30 s long) the three lyric
fragments.
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fragments while they listened to the corresponding music.
The questionnaire was administered with Qualtrics
(www.qualtrics.com) running online on a MacBook Pro.

PROCEDURE

Participants took part in the experiment individually,
and beforehand, they were each given an explanation
of the procedure and the tasks they had to carry out.
Necessarily, they were equipped with the motion cap-
ture jacket and followed calibration procedure. The
order in which the two parts of the experiment
(motor-attuning part, self-report part) were executed
was counterbalanced to eliminate order effects. Both
parts of the study were carried out in the motion cap-
ture space, an octagonal area of 6.5 m diameter,
enclosed by black curtains in order to separate the
participants from the experimenters. Prior to the
motor-attuning part of the experiment, the partici-
pants received the following instructions: ‘‘Translate
your experience of the music into free full-body move-
ment. Try to become absorbed in the music that is
presented and express your feelings into body move-
ment. There is no good or wrong way of doing it. Just
perform what comes up in you.’’ They were allowed to
use a space indicated by a round carpet, with a diameter
of 4 m. We made the room completely dark, as the pilot
study had indicated that this helped participants to feel
more comfortable and less constrained in executing
their task. The music was played through a stereo setup
comprising two Behringer B2031A Truth Active Studio
Monitors at a predefined, comfortable volume. In the
self-report part of the experiment, participants filled in
the questionnaire at a table adjacent to the carpet. They
were asked to fill in the questionnaire while listening to
the music. Again, the room was darkened and the same
playback system was used, just as in the motor-
attuning part of the experiment. Participants were
instructed to tick one of the nine points between each
bipolar adjective pair, indicating the level of associa-
tion they perceived between the descriptors and each
of the musical fragments. The order of the musical
fragments was counterbalanced, to avoid order effects.
From beginning to end, each experiment lasted for
about one hour, at the end of which people were asked
to fill in an exit questionnaire about their experience of
the experiment. Finally, participants were offered
refreshments while the experimenters explained the
purpose of the experiment.

MOVEMENT DATA ACQUISITION (MOTOR-ATTUNING PART)

In our study, we focused on hand gestures. This choice
was motivated by previous research showing that the

hands play a privileged role in music-induced gestures
(Godøy, 2010). Three-dimensional movements of both
hands were captured with an OPTITRACK infrared
optical system consisting of 12 synchronized cameras
and recorded with the ARENA motion capture software
(http://www.naturalpoint.com). Participants were asked
to wear a special jacket on which markers could be
attached with Velcro. A default human upper body skel-
eton model provided in the ARENA software was con-
structed from 19 infrared reflecting markers that were
attached to the jacket in a predefined manner: four
markers for the hip and three markers for the chest,
upper arms, and hands. Following the testing phase,
data from the performances of all participants were
exported into BioVision Hierarchy (BVH) files. Using
the MATLAB motion capture toolbox (http://www.cs.
man.ac.uk/~neill/mocap) complemented with our own
algorithms, we calculated the three-dimensional posi-
tion and displacement of both hands in reference to the
body-center (the center of the hips) independent of how
the participant is positioned or orientated relative to the
motion capture space. The selection and calculation of
the individual movement features (acceleration, impul-
siveness, smoothness error, jerk, directness index, size,
height) was based on previous studies applying the
Effort/Shape model in the study of human movement
behavior (Camurri et al., 2004; Petersen, 2008; Van
Dyck, Maes, Hargreaves, Lesaffre, & Leman, 2013). A
full description of the different features and the proce-
dures used to calculate them is presented in Van Dyck
et al. (2013). Accordingly, for each subject (N ¼ 36) we
obtained a single-value measure per musical style for
each of the seven movement features. With these data,
we drew up seven 36 # 2 (i.e., participants # styles)
matrices for further statistical analysis.

Results

MOTOR-ATTUNING TASK: MOVEMENT ANALYSIS

The seven 36 # 2 matrices representing the general
measures of all movement features were integrated in
a 2 # 2 # 2 mixed-design ANOVA, with musical back-
ground (musically trained/untrained), and task order
(first motor-attuning/self-report) as between-subjects
factors and musical style (heroic/lyric) as a within-
subject factor. The dependent variable, movement
response, is in fact constituted by multiple dependent
measures related to the different movement features
under consideration (i.e., acceleration, impulsiveness,
jerk, smoothness error, directness index, size, height).
The main question concerns the effect of these depen-
dent variables on changes within the two groups,
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rather than intercorrelations between the outcome
variables. Therefore, it is appropriate to apply multiple
univariate analyses on each of the dependent variables
(ANOVA) instead of using a single multivariate anal-
ysis (MANOVA) (cf. Huberty & Morris, 1989; Park &
Schutz, 2006).

Kolmogorov-Smirnov and Levene’s tests showed that
the assumptions of normality and homogeneity of var-
iance could be accepted for all features (p > .05). All
effects displayed in Figure 2 are reported as significant
at p < .001. There was a significant main effect of musi-
cal style for acceleration, F(1, 34) ¼ 163.42, r ¼ .91,
impulsiveness, F(1, 34) ¼ 187.96, r ¼ .92, jerk, F(1, 34)
¼ 171.36, r ¼ .91, smoothness error, F(1, 34) ¼ 124.50,
r ¼ .89, directness index, F(1, 34) ¼ 125.38, r ¼ .89, size,
F(1, 34) ¼ 124.84, r ¼ .89, and height, F(1, 34) ¼ 75.48,
r ¼ .83. These results revealed that, in the lyric condition
(M ¼ 0.79, SD ¼ 0.06), the level of the directness index
was higher than in the heroic condition (M¼ 0.60, SD¼
0.11). In addition, in the heroic condition, levels of accel-
eration (M¼ 0.06, SD¼ 0.02), impulsiveness (M¼ 4.44,
SD ¼ 1.51), jerk (M ¼ 0.005, SD ¼ 0.002), smoothness
error (M¼ 0.06, SD¼ 0.03), size (M¼ 0.90, SD¼ 0.12),
and height (M¼ 0.32, SD¼ 0.15) were higher compared
to the lyric condition (acceleration: M¼ 0.02, SD¼ 0.01;
impulsiveness: M ¼ 1.73, SD ¼ 0.74; jerk: M ¼ 0.002,
SD¼ 0.001; smoothness error: M¼ 0.02, SD¼ 0.01, size:
M ¼ 0.76, SD ¼ 0.11; height: M ¼ 0.17, SD ¼ 0.14).

Regarding musical background, significant effects
were found for size, F(1, 34) ¼ 4.60, p < .05, r ¼ .34,
and height, F(1, 34) ¼ 7.60, p < .01, r ¼ .43: results for
the musically trained group (size: M ¼ 0.87, SD ¼ 0.12;
height: M¼ 0.30, SD¼ 0.14) were higher than those for
the musically untrained group (size: M ¼ 0.79, SD ¼
0.14; height: M ¼ 0.19, SD ¼ 0.17). However, no such
effect was found for acceleration, F(1, 34) ¼ 1.77, r ¼
.22, impulsiveness, F(1, 34) ¼ 1.98, r ¼ .23, jerk, F(1,
34) ¼ 1.70, r ¼ .22, smoothness error, F(1, 34) ¼ 1.95,
r ¼ .23, or directness index, F(1, 34) ¼ 3.41, r ¼ .30,
indicating that levels for these features were to all
intents and purposes the same in the musically trained
and the musically untrained group. Similarly, task order
did not prove to be influential for acceleration, F(1, 34)
< 1, r ¼ .06, impulsiveness, F(1, 34) < 1, r ¼ .03, jerk,
F(1, 34) < 1, r ¼ .07, smoothness error, F(1, 34) < 1, r ¼
.08, directness index, F(1, 34) < 1, r¼ .14, size, F(1, 34) <
1, r ¼ .04, or height, F(1, 34) ¼ 1.05, r ¼ .17. We
observed no significant interaction effects between
the musical style and musical background. The results
were as follows: for acceleration, F(1, 34)¼ 1.80, r¼ .22;
for impulsiveness, F(1, 34) ¼ 1.18, r ¼ .18; for jerk, F(1,
34) ¼ 2.08, r ¼ .24; for smoothness error, F(1, 34) ¼
2.08, r ¼ .24; for directness index, F(1, 34) ¼ 2.17, r ¼
.24; for size, F(1, 34) < 1, r¼ .16; for height, F(1, 34) < 1,
r ¼ .04. In addition, there was no significant interaction
effect between the musical style and the task order for
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FIGURE 2. Representation of the means over all subjects (N ¼ 36), per group (musically trained/untrained), per condition (heroic/lyric) for all seven
movement features.
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acceleration, F(1, 34)¼ 2.34, r¼ .22, impulsiveness, F(1,
34) ¼ 1.18, r ¼ .18, jerk, F(1, 34) ¼ 2.62, r ¼ .27,
smoothness error, F(1, 34) < 1, r¼ .16, directness index,
F(1, 34) ¼ 3.06, r ¼ .29, size, F(1, 34) < 1, r ¼ .03, or
height, F(1, 34) < 1, r ¼ .10. Finally, we found no sig-
nificant interaction between musical style, musical
background and task order for acceleration, F(1, 34) <
1, r ¼ .16, impulsiveness, F(1, 34) < 1, r ¼ .02, jerk, F(1,
34) < 1, r ¼ .15, smoothness error, F(1, 34) < 1, r ¼ .01,
directness index, F(1, 34) < 1, r ¼ .13, size, F(1, 34) < 1,
r ¼ .05, or height, F(1, 34) < 1, r ¼ .01.

SELF-REPORT TASK: SEMANTIC DIFFERENTIAL SCALE ANALYSIS

The data from the participants’ responses on the seman-
tic differential scales are shown in Table 2, organized
according to group (musically trained/untrained) and
musical style (heroic/lyric). A three-mode principal com-
ponent analysis (PCA) was performed in order to reveal
the relationships between the participants’ musical back-
grounds, the style of the musical fragments and their
responses on the 24 semantic differential scales (Kroo-
nenberg, 1985, 2008; Smilde, Bro, Geladi, & Wiley, 2004;
Tucker, 1966). A standard, two-mode PCA analysis
would have been inadequate, as an average of the results
for one of the modes is required. Thus, there would have

been an implicit assumption that all participants have the
same view on the relationship between the music frag-
ments and the Likert scales. A three-mode PCA, however,
considers participants as a linear combination of ideal-
ized participants, the adjectives as composed of latent
adjectives, and the conditions as composed of prototype
conditions. Although each can be studied in a separate
PCA, analyzing the same variance in the data in three
different ways, it is clear that the components (here
called, ‘‘idealized,’’ ‘‘latent,’’ or ‘‘prototype’’ for the three
modes) extracted are somehow related. The three-mode
PCA does this by considering the data as combinations of
mixtures of idealized participants, latent adjectives, and
prototype conditions. Thus, using three-mode PCA, it is
possible to unravel underlying components in all three
modes, to investigate the relationships between them,
and to assess possible individual differences (for a more
detailed account of the technical aspects, the reader is
referred to the Appendix). A 2# 2# 2 model (fragments
# scales# participants) with two components for each of
the modes was constructed, which had a fit of 62% to the
data, which is more than adequate for interpretation. The
first components of each of the three modes accounted
for 61%, 58%, and 59% of the variance in the data
respectively, the second components for 1%, 4%, and

TABLE 2. Descriptive Data (Mean and Standard Deviation) for the Semantic Differential Scales, per Group and Musical Style.

Heroic style Lyric style

Musically trained Musically untrained Musically trained Musically untrained

heavy - light 0.76 (0.73) 1.02 (1.00) 4.02 (1.96) 3.91 (2.03)
vigorous - frail 1.83 (0.82) 1.96 (1.18) 5.74 (1.77) 5.98 (1.54)
rough - delicate 2.69 (1.27) 2.98 (1.65) 7.37 (1.35) 7.28 (1.11)
hard - soft 2.30 (1.06) 2.65 (1.31) 7.35 (1.10) 7.22 (1.25)
fast - slow 4.20 (2.18) 3.20 (1.75) 6.89 (1.70) 6.81 (1.53)
nervous - tranquil 1.07 (1.24) 1.28 (1.43) 4.31 (1.82) 4.56 (1.85)
energetic - soothing 0.96 (1.54) 0.72 (0.56) 4.70 (1.80) 4.89 (1.72)
active - passive 0.69 (0.61) 1.00 (0.82) 3.59 (1.72) 3.94 (1.74)
rigid - fluent 3.02 (2.23) 3.00 (2.11) 5.50 (1.40) 4.69 (1.78)
anxious - secure 2.70 (1.49) 2.8 (1.35) 5.74 (2.01) 5.54 (2.45)
worried - carefree 1.06 (1.16) 0.81 (0.87) 2.91 (2.02) 3.22 (2.25)
serious - playful 2.31 (1.59) 2.33 (1.13) 4.74 (2.24) 4.74 (2.06)
compact - airy 2.26 (1.81) 2.59 (1.28) 4.02 (1.70) 3.46 (1.11)
dense - diffuse 1.37 (1.34) 2.22 (1.28) 4.33 (1.40) 3.54 (1.48)
regular - chaotic 3.91 (2.17) 3.67 (2.07) 1.28 (1.12) 1.46 (1.44)
balanced - unbalanced 5.56 (2.31) 5.35 (1.87) 4.03 (2.20) 4.00 (2.12)
big - small 2.22 (1.77) 2.50 (1.19) 5.74 (1.93) 5.87 (1.64)
broad - narrow 1.50 (1.82) 1.87 (1.32) 2.91 (1.81) 3.35 (1.56)
thick - thin 1.56 (1.62) 2.02 (1.3) 4.59 (1.67) 4.61 (1.35)
exalting - serene 1.20 (1.31) 1.00 (0.78) 4.96 (1.53) 4.78 (1.86)
high - low 3.70 (2.18) 4.11 (1.83) 4.28 (1.61) 4.80 (1.79)
vertical - horizontal 5.09 (2.67) 4.33 (1.37) 5.83 (2.06) 5.59 (1.41)
dominant - humble 0.81 (1.08) 0.89 (0.63) 4.39 (1.72) 4.78 (1.33)
bright - muted 2.07 (1.74) 1.96 (1.54) 2.17 (1.97) 2.30 (1.74)
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3%. For the purposes of this experiment, we were inter-
ested in (1) the participants’ global consensus about the
characterization of the musical fragments in terms of the
semantic differential scales, and (2) the individual differ-
ences with respect to this consensus characterization which
is expressed via the second component of the participants.
The high consensus among the participants (61% variance
accounted for) dominates the perceived relationships
between the scales and the fragments. However, as indi-
cated below, there are different views for a limited number
of participants with respect to some scale-fragment com-
binations which are worth to pursue even though they only
represent 1% variance accounted for. For instance, a possi-
ble difference between musically trained and untrained
participants can be evaluated in this way.

CONSENSUS AMONG PARTICIPANTS

By investigating the component coefficients of the
music fragments component jointly with those of the
semantic differential scales, the consensus among parti-
cipants as to the character of the musical fragments can
be identified. Both can be projected into a single space,
known as a joint biplot representation (Murakami &
Kroonenberg, 2003, p. 260) or (Kroonenberg, 2008,
p. 273). In three-mode PCA, such joint biplots can
be constructed for each component of the third mode
(here, participants). Figure 3 (top) shows the partici-
pants’ consensus regarding the characterization of the
musical fragments in terms of the semantic differential
scales. The graph shows clearly that the participants
rated the heroic and lyric fragments at opposite ends of
the scale. Further, nearly all the semantic differential
scales show a stark contrast between the heroic and
lyric fragments as they project appropriately on the
first axis as do the fragments. The extent to which each
participant agreed with this consensus judgement of
the relations between fragments and scales can be
gleaned from the size of the coefficients on the first
participant component. Figure 4 shows that all partici-
pants gave positive scores to the first component and
thus the consensus configuration corresponds with their
judgements to some degree. Alternatively, one might say
that the configuration is larger for the participants with
a large coefficient on the first component and smaller for
those with a smaller coefficient. Moreover, by looking at
Figure 4, it seems almost self-evident that there is no
systematic grouping of the subjects on the basis of their
level of music training.

FIGURE 3. Joint biplot for music fragments and scales representing the
consensus (top) and the qualitative individual differences (bottom).
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FIGURE 4. Visualization of the subject space.
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INDIVIDUAL DIFFERENCES BETWEEN PARTICIPANTS

Figure 3 (bottom) shows which fragments received sub-
stantially different judgments from different partici-
pants. Whereas the top part of Figure 3 shows the
general consensus among the participants, the bottom
part also shows those fragments for which participants
had mostly small deviations from the consensus, which
were usually small. Whether or not a participant devi-
ated from the general consensus is indicated by their
scores on the second subject component in Figure 4:
a score of zero implies that the consensus represents the
individual’s judgements; a sizeable positive score for the
second participant component (the two most extreme
are marked with a ‘‘U’’) implies that they consider the
lyric fragments more unbalanced, serious, and anxious
than is indicated in Figure 3 (top) and the heroic frag-
ments more balanced, secure, and playful. Thus, their
deviation from the general consensus takes the form
represented in Figure 3 (bottom). Conversely, if a partic-
ipant has a negative score on the second subject com-
ponent (as per the participant marked ‘‘T’’) the situation
is reversed: the lyric fragments are considered more
balanced, secure, and playful and the heroic fragments
more unbalanced, serious, and anxious by that partici-
pant than one would derive from the consensus.

CORRELATION ANALYSIS

An important part of the study was to investigate whether
body movements and the expressive concepts associated
with the music correlate in terms of expressiveness. For
this purpose, we introduced an expressive model based
on Laban’s Effort/Shape model. In accordance with the
results described above, the linguistic concepts and move-
ment characteristics that were associated with the heroic
musical fragments are highlighted in grey inTable 1, while
those not highlighted are associated with the lyric musical
fragments. Arguably, the polarities of movement fea-
tures identified in our adaptation of the Laban frame-
work correlate consistently with those of the semantic
differential scales attributed to the respective music styles.
Thus, our qualitative approach brings to light a correla-
tion between movement characteristics and the linguis-
tic labels associated with music.

To quantify this correlation further, we applied a PCA
on 30 items (7 movement features and 23 metaphors)
with promax rotation. One metaphor – ‘‘bright’’ - was
removed from the analysis as the KMO sampling ade-
quacy value for this item was .35, while Kaiser (1974)
recommends a bare minimum of .05. The Kaiser-
Meyer-Olkin measure verified the sampling adequacy
for the analysis, KMO ¼ .89, and all KMO values for
individual items were higher than .58. Bartlett’s test of

sphericity, !2(43) ¼ 3042.83, p < .001, indicated that
correlations between items were sufficiently large for
PCA. We ran an initial analysis to obtain eigenvalues
for each component in the data. Five components had
eigenvalues over Kaiser’s criterion of 1, and in combi-
nation these explained 80.78% of the variance. How-
ever, 57.54% of the variance was due to the first
component, which consisted of the majority of the
movement features and metaphors, while the other
four components only contributed to a minor extent
to the total variance. Therefore, we are justified in
saying that the movement features and metaphors are
correlated.

Discussion

The results of the experiment show that the participants
exhibited contrasting body movement responses corre-
sponding to the heroic and lyric musical fragments: the
heroic music evoked body movements that are higher in
acceleration, jerk, and impulsiveness, lower in smooth-
ness and directness, larger in size, and more elevated
than those performed in response to the lyric music. We
observed a significant effect of musical background (i.e.,
musically trained/untrained) on the size and height of
participants’ movements. It is possible that the nonmu-
sicians felt more constrained moving freely in response
to the music than the musically trained participants. In
our exit questionnaire, the participants were asked
about how spontaneous they felt while moving to the
music. They gave ratings on a five-point Likert scale,
with 1 as totally disagree, 3 as neutral, and 5 as totally
agree. The median for the musically trained group was
4, while that for the musically untrained group was 2. It
seems plausible, therefore, that nonmusicians’ less-
pronounced, smaller, and less elevated body movements
might be put down to their having felt less spontaneous
during the motor-attuning part of the experiment. The
movement analysis shows that there is no significant
interaction effect imposed by the participants’ musical
background, as the contrast in movement responses to
the heroic and the lyric musical fragments is manifest
similarly in both in musicians and nonmusicians. This
confirms findings of other behavioral studies, which
show that people can translate acoustic properties of
sound and music into body movements quite consistently
(Caramiaux, Bevilacqua, & Schnell, 2010; Godøy, 2010;
Küssner, 2013; Kozak, Nymoen, & Godøy, 2012; Leman,
Desmet, Styns, Van Noorden, & Moelants, 2009). How-
ever, Küssner (2013) reports that musicians are more
consistent (i.e., less diverse) in visualizing sound and
music by means of drawings. In our study, rather general
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measures of expressive movement behavior (up to the
level of individual gesture segments) were taken into
account, and thereby, data captured over large time scales
were reduced to single-value measures. Thus, specific
dynamic processes over time were cancelled out. Func-
tional data analysis (FDA) could provide a valuable alter-
native as it can model data, drawn from continuous
processes, as functions of time. This approach enables
us to reveal underlying dynamic processes and could
provide the means for further investigation of the con-
sistency and diversity of movement behavior in response
to music.

The results of the analysis of the semantic differen-
tial scales show that the heroic and lyric fragments
were associated with opposite adjectives in terms of
expressive quality. Moreover, a high degree of consen-
sus among the participants’ responses was found, with
no differentiation between musicians and nonmusi-
cians. This finding could be related to the work of
Bigand and colleagues, who report that emotional
responses to music are stable and only weakly influenced
by musical expertise (Bigand & Poulin-Charronnat, 2006;
Bigand, Vieillard, Madurell, Marozeau, & Dacquet, 2005).
Possibly, this can be explained by the fact that nowadays
people are exposed to music on a regular basis, often
similar to that used in the experiment, in various
everyday-life contexts (film, television, etc.). This allows
people to develop a specific attitude towards expression
of the music.

Currently, there are very few studies explicitly ad-
dressing how body movements performed in response
to music might be related to people’s descriptions of musi-
cal expressivity and emotion (Maes et al., 2010; Sievers,
Polansky, Casey, & Wheatley, 2013). For that purpose, we
introduced a dimensional model, enabling us to com-
pare body movement features and linguistic labels
based on their underlying expressive qualities. These
qualities were defined in terms of the taxonomy out-
lined in Laban’s Effort/Shape model. As explained
above, the polarities of the movement features correlate
consistently with those of the semantic differential
scales, in relation the different musical styles. Considering
the semantic differential scales, the model was strongly
confirmed for the categories Effort-weight, Effort-time,
Effort-flow, and Shape-spreading/enclosing. For the cate-
gory Shape-rising/descending, we observed a tendency
towards correlation although substantially weaker. The
category Effort-space resulted in negative correlations for
the linguistic labels compact and dense. It could be argued
that neither of these labels were perfectly suited for the
category Effort-space and that this resulted in negative
correlations. However, the overall results indicate that,

generally speaking, body movements performed in
response to the music reflect expressive qualities similar
to the linguistic labels that are associated with that music.
In other words, body movements correlate with the lin-
guistic labels on the level of qualities related to expressive
gestures. There is, therefore, a strong basis for supporting
our hypothesis that linguistic descriptions of music share
common grounds with the body movements that are asso-
ciated with music. A grounded, modal view on cognition
and emotion could possibly explain the connection
between body movements in response to music and
cross-domain associations of music explicated in lin-
guistic descriptions (Barsalou, 2008; Lindquist, Wager,
Kober, Bliss-Moreau, & Barrett, 2012). Studies have shown
that sensory, motor (Bangert et al., 2006; Chen, Penhune,
& Zatorre, 2008; Haueisen & Knösche, 2001), and intro-
spective (Alluri et al., 2011; Chapin, Jantzen, Kelso,
Steinberg, & Large, 2010) brain areas become activated
when people listen to music passively. Studies have also
indicated that the processing of action-related concepts,
abstract concepts, as well as those relating to abstract
emotional states recruit neural cell assemblies distributed
over sensory (vision, audition, etc.), motor (movement,
proprioception, etc.) and introspective (mental states
that include affect, motivation, intentions, meta-
cognition, etc.) brain areas (e.g., Aziz-Zadeh & Dama-
sio, 2008; Citron, 2012; Moseley, Carota, Hauk, Mohr, &
Pulvermuller, 2012). So, both listening to music, and the
processing of concepts create, what Barsalou (1999)
calls, perceptual symbols (i.e., neural networks distrib-
uted over sensory, motor and introspective brain areas).
It seems plausible therefore, that if both perceptual sym-
bols partially overlap, that one gets associated with the
other. Our study suggests that this overlap can occur, at
least partly, in motor-related processing areas.

That the general physical appearance of the move-
ment responses to the music shared similar character-
istics across participant groups is a highly interesting
finding, all the more because the body movements can
be related to a vocabulary of expressive qualities and
concepts. This indicates that the human body can func-
tion as a nonverbal means for communicating social
meaning, as well as emotion and intentionality in gen-
eral. Further, it provides support for the idea that the
human body functions as a mediator, turning purely
subjective phenomena (like feelings, intentions and
ideas) into physical phenomena (vision, audition and
so on) and vice versa. Moreover, our results suggest that
the human body plays an important role in the process
of musical meaning formation, albeit not an exclusive
one. The present study shows that people’s engagement
with the music was structured around a dynamic
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contrast and tension between opposite qualities that
could be related to expressive gestures. For the purpose
of the study, the beginning of the first movement of
Brahms’ First Piano Concerto was ideally suited as it
covers all of the categories, as well as the oppositions
within each category, of Laban’s Effort/Shape model.
However, the method we have introduced, combining
the Effort/Shape model, semantic differential scales, and
the various algorithms for the extraction of expressive
movement features, could easily be extended to other
music as well. Moreover, it would be interesting to
investigate whether the Effort/Shape model could be
used to annotate people’s own descriptions and imagery
related to how they perceive musical expressivity.

Based on our findings, it is tempting to conclude that
our embodied understanding of music (i.e., action)
mediates the cross-domain linguistic descriptions
ascribed to the music (i.e., perception). However, we can
only draw limited conclusions about the relationship
between action and perception. That a correlation exists
between both does not imply that there is a causal rela-
tionship. However, previous literature claims that the
use of metaphors is grounded in, and structured by,
physically embodied experiences (Crawford, 2009;
Gibbs et al., 2004), and in turn, this idea suggests that
moving to music may shape people’s interpretation and
understanding of its expressiveness. A recent study by
Maes and Leman (2013) seems to support this idea. In
this study, two groups of children were trained (condi-
tioned) to perform either a happy or a sad choreography
in response to the same music, which had an expres-
sively ambiguous character. Afterwards, the children’s
perception of musical expressiveness was assessed in
terms of valence and arousal. The results suggested that
the expressive qualities of the choreographed move-
ments had a significant impact on how the children
perceived musical expressiveness. In addition, studies
have started to devote attention to the effects that peo-
ple’s body movements may exert on how they perceive
other aspects of music, like pitch (Repp & Knoblich,
2009), meter (Phillips-Silver & Trainor, 2005, 2007), and
musical preference (Sedlmeier, Weigelt, & Walther, 2011).
Alongside the results of the present study, it seems

increasingly evident that human motor processes are
a substantial - although not exclusive - part of people’s
engagement with music. Moreover, these results provide
an argument for the development of methodologies in
music education that exploit an active engagement of
people’s bodies with music.

Conclusion

In this experiment, participants were obliged to fulfil
two tasks. First, they were to translate the musical
expressiveness they experienced into corresponding
body movements. Second, they had to rate the perceived
association between the music and specific linguistic
labels. The results of the study show that contrasts in
musical style (heroic/lyric) were clearly reflected in the
free body movements made in response to the music,
and that participants associated distinct sets of linguistic
labels to those musical styles. The results for both tasks
were independent of the musical background of the
participants (i.e., musically trained/untrained). More-
over, it was shown that there are correlations between
body movement features (i.e., action) and linguistic
labels (i.e., perception) based on their underlying
expressive qualities. This action-perception correlation
can possibly be explained by a grounded, modal view on
music cognition and perception. However, more
research is required to reveal causal relationships
between action and perception in musical signification
processes.
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Appendix

DATA STRUCTURE AND RESEARCH QUESTIONS

The semantic differential data described in the main
part of the paper have the form of music fragments #
(semantic differential) scales # participants. In other
words participants listened to music fragments and used
the nine-point bipolar scales (for details of the scales,
see Table A1) to indicate the nature of the music. In
particular, the music fragments could be heavy versus
light, soft versus loud, etc.

The basic aim was to find out how the participants
characterised the music fragments in terms of the scales
and whether there were differences between the subjects
in general and between persons with and without some
music training.

Three-mode analysis of three-mode data was chosen
as the appropriate technique for the analysis. The tech-
nique used — three-mode principal component analysis
— is an extension of principal component analysis to
three-mode data; for full details of the technique see
Kroonenberg (2008) and Murakami and Kroonenberg
(2003) for a comparable use of the technique in musical
appreciation. Without going into detail we will present
primarily an appropriate way to interpret the informa-
tion displayed in Figures 3 and 4 in the main body of the
paper.

MEAN DIFFERENCES BETWEEN THE MUSICALLY TRAINED AND

UNTRAINED PARTICIPANTS

Before entering into a discussion of the relationships
between the music fragments and scales we analyzed
whether serious mean differences existed between the
musically trained and untrained participants. Even
though their number is actually much too small for com-
prehensive multivariate testing and for adequate power,
we nevertheless performed per fragment a Hotelling’s T2

test for testing the differences between the groups using
all 24 scales as the multivariate response. Multivariate
tests provided the following p values for the six frag-
ments, respectively: p ¼ .36, .76, .66, .62, .15, .69. In
addition, of the 24 scales per fragment, at most two of
them showed a univariate significant difference between
the two groups with only one scale being significantly
different in two different fragments. Given the outcomes
of these tests, we take the point of view that it is a rea-
sonable to assume that the observed differences are pri-
marily due to chance, so that we may treat the two groups
together. Note that this does not automatically imply that
also their perceived relationships between the fragments
and scales are negligible.

NO INDIVIDUAL DIFFERENCES IN STRUCTURE

To start on familiar ground, assume that all participants
agree in an equal manner on the structure in the relations
between the music fragments and scales. In such a case
there is no necessity to look for individual differences and
one might as well sum over participants to get a music
fragments # scales matrix with means, here indicated by
M. One may consider the mean music fragments# scales
matrix as the consensus containing the common opinion
of the participants about the relations between the scales
and the music fragments.

Taking the mean over all participants to create a mean
matrix M is equivalent to giving each subject a weight 1

K,
where K is the number of participants. If we indicate an
arbitrary subject by k and the fragments by scales data
matrix produced by the participant Dk then the sum-
mation equation looks like

M ¼ 1
K

D1 þ
1
K

D2 . . .
1
K

DK ¼
XK

k

1
K

Dk ð1Þ

Another way of looking at the situation is to assume
that each data matrix can be modelled by the mean
matrix plus random error. To describe each data matrix
it suffices to describe the mean matrix or consensus as
the difference between data matrix and the model
matrix or mean is only random error.

A simple analogy would be that we first calculate the
mean height of a group of persons and use that mean to
estimate or model the height of an arbitrary person
from that group. We know that we are not exactly
correct but it is the best we can do without any further
information.

DIFFERENCES IN SIZE

It need not necessarily be true that each participant
contributes equally to the consensus. Thus let us asso-
ciate a weight wk with each participant k where the
weight indicates the size of the contribution of the par-
ticipant to the consensus matrix. In the previous para-
graph this weight was 1

K for each participant but now the
weights are unequal.

!M ¼ w1D1 þ w2D2 . . . wK DK ¼
XK

k
wkDk ð2Þ

To take again the inverse look, we can say that each
data matrix Dk can be modelled by 1

wk
M: Now the mean

matrix is no longer sufficient for modelling a partici-
pant’s data matrix but we have to take into account that
some participants have larger 1

wk
> 0 configurations

than the mean, while others have smaller 1
wk

< 0 config-
urations. Participants who answer randomly have
1

wk
¼ 0:
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In our length analogy we could try to predict the
length of a person on the basis of the mean length over
all persons to get a better estimate for the real length. To
model the difference in length we multiply the mean
length for each participant with some coefficient wk.

DIFFERENCES IN QUALITY

In practice there are more differences between partici-
pants than only differences in size. There are generally
also difference in quality. Some participants have a
different interpretation or evaluation of the relation
between the soft – hard and the light – dark contrasts
for particular music fragments. They agree overall with
the consensus but for these fragments they consider the
two contrasts more appropriate than one could be
described by the consensus alone. In component anal-
ysis such effects show up as an additional component.
This additional component for the participants has an
additional matrix M2 associated with it.

!M2 ¼ v1D1 þ v2D2 . . . vK DK ¼
XK

k
vkDk ð3Þ

Thus M2 is constituted with different weights, where
a small weight for a participant means that his or her

data do not contribute to the construction of the addi-
tional mean-like matrix.

If we look at the inverse problem of estimating the
original scores from the model information we can
model the data of a participant k by adding the mean
and the mean-like matrix with different weights. We
should choose these weights in such a way that the
difference between the data and the weighted sum of
the two mean matrices is as small as possible.

In the (imperfect) length analogy in the case when we
have men and women, we try to find a coefficient to
multiply the mean with and one to apply to the typical
deviation, for instance the average deviation over per-
sons. The length of a man m1 is thus lengthm1 ¼ 1

wm1
#

MeanLengthþ 1
vm1
#Typical deviationþ errorm1 and for

a woman v1 this is lengthv1 ¼ 1
wv1
#MeanLengthþ 1

vv1
#

Typical deviationþerrorv1, where vm1 is positive and vv1 is
negative because on average men are taller than women
and thus we predict a higher weight.

Plotting Mean Matrices: Biplots
The relevant mean matrix for our study was portrayed
in Table A1. It is obvious that such a matrix cannot

TABLE A1. Scale means for music fragments.

Music Fragments

High score end Heroic 1 Heroic 2 Heroic 3 Lyric 1 Lyric 2 Lyric 3 Low score end Category

dominant 23 8.1 7.8 7.6 3.4 3.0 3.9 humble 6
active 8 8.1 7.7 7.7 3.9 4.1 4.9 passive 2
worried 11 8.0 7.5 7.4 4.5 5.3 5.1 carefree 3
heavy 1 7.9 7.6 7.3 3.5 4.2 4.6 light 1
energetic 7 7.9 7.8 7.6 2.9 2.9 3.9 easeful 2
nervous 6 7.6 7.2 7.6 3.3 3.5 4.0 tranquil 2
exalting 20 7.5 7.7 7.0 2.9 2.9 3.6 serene 5
dense 14 6.9 6.3 6.0 3.7 4.3 4.2 diffuse 4
broad 18 6.8 6.8 6.5 4.4 5.5 5.0 narrow 5
thick 19 6.6 6.6 6.3 3.4 3.3 3.6 thin 5
clear 24 6.1 6.0 6.4 5.8 5.7 6.4 muted 6
unbalanced 16 5.8 5.6 5.0 3.7 4.2 4.1 balanced 4
compact 13 5.7 5.8 5.8 4.4 3.9 4.5 airy 4
rigid 9 5.0 5.2 5.2 3.3 2.2 3.3 fluent 3
low 21 4.4 3.6 3.8 4.8 4.6 4.2 high 6
playful 12 2.0 2.4 2.6 5.1 4.3 4.8 serious 3
small 17 2.0 2.6 2.6 6.0 6.0 5.4 big 5
horizontal 22 4.5 4.5 5.2 5.5 6.1 5.5 vertical 6
frail 2 1.7 2.0 2.0 6.3 5.8 5.5 vigorous 1
secure 10 2.3 2.8 3.2 5.9 5.4 5.6 anxious 3
slow 5 3.8 3.6 3.7 7.1 7.5 5.9 fast 2
regular 15 3.8 4.3 5.0 6.9 7.0 6.7 chaotic 4
Soft 4 2.3 2.3 2.8 7.3 7.6 6.9 hard 1
delicate 3 2.5 2.8 3.2 7.3 7.5 7.2 rough 1

Note: Scales run from 1 to 9; 5 is the neutral category. Means of 5.5 or higher are set in bold. The column ‘‘Category’’ refers to the Effort/Space model categories.
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fruitfully be inspected by eye even though we have
applied a few tricks to make it as easy as possible. For
a proper investigation one generally subtracts the mean
of each scale on the assumption that it is not the abso-
lute scale value one is interested in but only how the
fragments are located with respect to the mean of each
scale or alternatively how the scales apply to a particular
fragment. These centred mean scores are used to con-
struct a biplot (Gabriel, 1971).

Interpretational Rules for (Joint) Biplots
The basic rules for the interpretation of biplots are the
following (see Figure A1). (1) Due to the centering, the
origin represents the mean of each of the scales. (2) One
of the modes is represented by points (here, scales) and
the other mode by arrows (here, fragments). The rela-
tion between a music fragment and a scale can be found
by dropping a perpendicular from the scales onto the
arrow of the fragment. A fragment located in origin has
an average score on all scales. If the end point of a scale
projects onto the end of a fragment arrow, the fragment
has a high value for that adjective (e.g., small) and a low
value for the adjective associated with the other end of
the scale (e.g., fast). The relative positions of the scales’
projections on a fragment indicate to what extent the
participants associated the scales with that fragment.
(3) Arrows that have small angles have similar projec-
tions on them. Thus with respect to the scales, fragment
arrows close together were characterized in the same way.
(4) The importance of a scale to characterize a fragment
depends only on the position of the scale’s projection on
the fragment and not on the distance a scale has to the
fragment. For instance, a scale above and a scale below
the arrow of a fragment can be equally important in
describing the fragment even though they are far apart,
as long as their projections on that fragment are more or

less the same. (5) Scale points close together have more or
less the same profile over the fragments. (6) Long frag-
ment arrows indicate that the participant’s award scale
scores to those fragments far away from the scale mean.
When an arrow is short, the participants give the frag-
ment only mean scale scores (little variance).

In technical terms, the aim of using biplots is to portray
simultaneously the rows and the columns in such a way
that the inner products between the rows and the columns
reproduce the values in the centred mean matrix as well as
possible. The size of an inner product is the product of the
length of the fragment vector from the origin (e.g., Lyric 1)
times the length of the projection of the scale on the frag-
ment vector (e.g., the length of s in the figure).

FROM TWO-MODE MEANS TO THREE-MODE JOINT BIPLOTS

A problem with the approach sketched above is that
we have to deal with possibly very large tables for which
it is difficult to see the structure and to interpret the
patterns properly. The standard solution for examining
the patterns in such tables is to make a biplot in which
we portray both the rows (music fragments) and the
columns (scales) in such a way that we can view the
patterns from the plot. For the original description of
a biplot see Gabriel (1971); in Kroonenberg (1995) an
elementary description is given with detailed interpre-
tational guidelines, also for three-mode data discussed
here. The biplot is constructed using the same compu-
tational algorithm that lies at the heart of principal
component analysis.

In Table A1 we have presented the mean or consensus
matrix for our data and Figure A2 is the two-dimensional
biplot for this mean matrix. It shows a reasonable close
resemblance to the joint biplot in the main body of the
paper, because in this experiment there was a general
consensus about the relations between the fragments and
the scales.

FIGURE A1. Biplot of the mean matrix.

FIGURE A2. Biplot of the mean matrix.
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We could also produce a biplot for the mean-like
matrix M2 we discussed in Section ‘‘Differences in Qual-
ity.’’ To get a proper model for the original data we have
to find a way to combine the two biplots. This is what is
done via the three-mode principal component analysis
of the complete three-mode dataset.

THREE-MODE PCA

In order to interpret the outcomes of a three-mode PCA
the following steps need to be followed: (1) preprocessing
(centring and/or normalizing); (2) selecting model com-
plexity (selecting the number of components for each
mode); (3) carrying out the analysis and evaluating its
appropriateness; (4) constructing plots for interpretation
(in particular, joint biplots).

Preprocessing
First, the data have to be centered in an appropriate
manner. In standard PCA of a participant by variable
matrix this is done by calculating deviation scores for
the participants with respect to the variable means. In
semantic differential data for a single person, the equiv-
alent is to calculate deviation scores for the concepts
(here, music fragments) with respect to the scale means.
For several persons the procedure is the same, each
person’s judgements are analyzed by looking at devia-
tion scores of their own scale means; this process is
referred to as centering. More formally, .~xijk ¼ xijk " x:jk

Complexity Selection
The complexity of the three-mode PCA model is deter-
mined by the numbers of components of the three
modes. On the one hand, one desires sufficient compo-
nents to describe the data adequately with enough detail
for interpretation, on the other hand the more parsimo-
nious the model is the less parameters have to be inter-
preted. To find an adequate model we have made use of
both a deviance plot portraying the deviance or residual
sum of squares of the models versus their degrees of
freedom and a three-mode scree plot portraying the
deviance versus the sums of the numbers of compo-
nents from all modes of the data array; for a detailed
explanation, see e.g., Kroonenberg (2008, Chapter 8).
The examination of the two plots led us to choose the
2 # 2 # 2 model.

THREE-MODE JOINT BIPLOTS

Similar to the biplot of the mean matrix one can con-
struct biplots that depict the relationships between the
fragments and the scales; they are generally called joint
biplots. There is a joint biplot for each of the compo-
nents of the participants. As the first component of the
participant space shows all positive coefficients for the

participants, it implies that all subjects weight the asso-
ciated joint biplot in the same manner so that we may
speak of a consensus joint biplot. Then the size of the
coefficients indicates to what extent this consensus
biplot depicts the judgements of the participants (see
Table A2). For instance, participant M2 has a large
coefficient on the first component (0.31) so that the
consensus contributes a lot towards describing the
answers while for participant M12 this value 0.06 so
that the consensus configuration is practically irrelevant

TABLE A2. Participant space sorted with respect to both first and
second components.

Sorted Sorted

Id 1st 2nd Id 1st 2nd

M12 .06 ".37 NF14 .16 .38
NF1 .09 .01 NF12 .12 .32
NF4 .09 .07 M16 .15 .26
NF13 .10 .10 NF10 .22 .26
NF5 .10 ".05 M17 .12 .22
— — — M5 .11 .21
M5 .11 .21 — — —
M18 .11 ".01 M8 .21 .16
M10 .11 ".07 NF16 .16 .13
M6 .12 .07 NF9 .15 .12
M14 .12 .10 M1 .17 .10
NF12 .12 .32 M14 .12 .10
M17 .13 .22 NF13 .10 .10
NF3 .13 ".08 — — —
M9 .13 .06 NF4 .09 .07
NF2 .14 ".11 M6 .12 .07
M15 .14 ".07 M9 .13 .06
M4 .15 ".04 M13 .23 .02
NF9 .15 .12 NF1 .09 .01
M16 .15 .26 M18 .11 ".01
NF16 .16 .13 NF6 .16 ".03
NF14 .16 .38 M3 .21 ".03
NF6 .16 ".03 M4 .15 ".04
NF7 .17 ".30 M11 .18 ".04
M1 .17 .10 NF5 .10 ".05
NF18 .18 ".10 M10 .11 ".07
M11 .18 ".04 M15 .14 ".07
— — — NF3 .13 ".08
NF8 .20 ".19 NF11 .20 ".08
NF11 .20 ".08 NF17 .24 ".09
M7 .21 ".21 — — —
M8 .21 .16 NF18 .18 ".10
M3 .21 ".03 NF2 .14 ".11
NF10 .22 .26 M2 .31 ".18
M13 .23 .02 NF8 .20 ".19
NF17 .24 ".09 NF15 .27 ".19
NF15 .27 ".19 — — —
M2 .31 ".18 M7 .21 -.21

NF7 .17 -.30
M12 .06 -.37
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for this participant. However, M12 has a value of -0.37
on the second component so that the configuration
belonging to this second participant component corre-
sponds well to the individual configuration of partici-
pant M12. For M7 the two configurations are equally
important so that we have to add them to see what this
participant’s private configuration is like.

Table A2 also shows the second component for the
subjects and it supplies the coefficients with which to
multiply the second joint biplot produced by the three-
mode analysis, analogously to the mean-like matrix dis-
cussed in Section ‘‘Differences in Quality.’’

The patterns in the joint biplots for our semantic
differential data and their evaluation is explained in the
main body of the paper.

SUMMARY

In this Appendix we have tried to explain the back-
ground to the analyses presented in the main body of
the paper, in particular that the construction of the joint
biplots and the rationale behind them. For more details
one is advised to read the relevant chapters of Kroonen-
berg (1983, Section 6.10) and/or Kroonenberg (2008,
Section 11.5.3) and the examples in those books.

84 Pieter-Jan Maes, Edith Van Dyck, Micheline Lesaffre, Marc Leman, & Pieter M. Kroonenberg


