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Chapter 3

Teachers’ views of curriculum programs in Flanders:does it (not) matter which mathematics

curriculum program schools choose®

Abstract

The debate on the differential effects of matheosaturriculum programs is a recurrent topic in the
research literature. Research results remain itagsine, pointing to a lack of evidence to decide on
the relevance of the selection by schools of a em#tics curriculum programs. Studies also point to
difficulties in comparing curriculum programs. Raetlg, in order to examine the influence of

mathematics curriculum programs on student learnthg need to take into account mediating
variables between the mathematics curriculum pragaad the enacted curriculum is stressed. This
paper focuses on one such mediating variable: ¢éegichiews of mathematics curriculum programs.

Views of mathematics curriculum programs of 814&hess and mathematics performance results of
1579 students were analyzed. The results pointhatwith regard to teachers’ views of curriculum

programs, the question ‘Does it really matter whichriculum program schools choose’ has to be

answered positively. Implications of the findinge discussed.

3

Based on:
Van Steenbrugge, H., Valcke, M., & Desoete, A.dinss). Teachers’ views of mathematics textboolesén
Flanders: does it (not) matter which mathematigthteok series schools choosksurnal of curriculum studies
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1. Introduction
One can hardly overemphasize the importance ofenatical literacy in our society (Dowker, 2005;
Swanson, Jerman, & Zheng, 2009). Basic skills inhematics are needed to operate effectively in
today’s world (Grégoire & Desoete, 2009; NCTM, 20@ECD, 2010). As a result, mathematics
generally figures as an important curriculum domaieducation (Buckley, 2010; Keijzer & Terwel,
2003).
A large number of variables and processes affecthenaatics learning outcomes: student
characteristics, class climate, teacher charatitsigeaching approaches, ... to name just a few. In
this context, mathematics curriculum programs gy a role in both the teaching and learning
processes that affects learning outcomes (Bryaat. ,e2008; Nathan, Long, & Alibali, 2002). In the
current study, the term “curriculum program” refesghe printed and published resources designed to
be used by teachers and students before, duringfs@rdmathematics instruction. On the one hand,
they are considered to be sources of explanatindseaercises for students to complete and on the
other hand, they refer to the instructional guittesteachers that highlight the how and the what of
teaching (Schmidt, McKnight, Valverde, Houang, &I&yi 1997; Stein, Remillard, & Smith, 2007).
In addition, we also refer to additional materitdat are mentioned or included in the instructional
guides for teachers or in the exercises for thdestts like additional software, coins, calculator,
This does not include other materials that arenmanttioned or included in the instructional guidks |
videos, internet resources, and other books butwhich teachers may rely when teaching
mathematics.
This research consists of two studies that bothd@n curriculum programs: the first study analyzes
whether teachers’ views of curriculum programs etifiepending on the curriculum program; the

second study analyzes whether students’ performascits differ between curriculum programs.

2. Curriculum programs in Flemish elementary school ad elsewhere

This study focuses on mathematics curriculum progrased in Flanders (the Dutch-speaking part of

Belgium) and as such narrows down to a particaleation with its own peculiarities. However, there
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are similarities with curriculum programs in othregions. To illustrate this, we describe the situmat

in Flanders and highlight the situation in someeoitegions.

In Flanders, the choice of a curriculum programrisautonomous school-decision. Most schools adopt
one commercial curriculum program throughout alidgs. Five curriculum programs dominate the
elementary school market: Eurobasis, Kompas, Zegpkzzo gerekend, Nieuwe tal-rijk, and Pluspunt
(Van Steenbrugge, Valcke, & Desoete, 2010). A tmtadescription of the five mathematics
curriculum programs is provided in Appendix. Thermulum programs consist of 2 main parts: the
explanations and exercises for the students, anddhcational guidelines for the teachers thataéxpl
how to teach the contents, how to organize theotestn such a way that they build on each other,
how to use other didactical materials, etc. Thacbpsnciples underlying each curriculum program
are shared by all: all curriculum programs areiculum-based, cluster lessons in a week, a bloek or
theme addressing the main content domains of matesneducation (numbers and calculations,
measurement, geometry). The specific content ofdteains are in accordance with the three most
frequently used curricula in Flanders (see Appéndbhese curricula specify at each grade level
detailed the content to be mastered by the spegtifidents. The curriculum programs address these
curricula by means of instruction and exercisesalbistudents that focus on mastering the specific
content, and by means of additional exercisesammatto differentiate according to students’ needs.
The curriculum programs typically provide exercides students to work on after the teacher
explained initial examples.

To summarize, it can be stated that they are hargglivalent. Two curriculum programs stand out:
Pluspunt and Nieuwe tal-rijk. Pluspunt incorporaggplicit student-centred lessons, formulates rathe
general directions for teaching and the “coursekireass more than one mathematics content domain.
Nieuwe tal-rijk on the other hand, gives the teachere additional tools and materials, provideara f
more detailed description of each course, provatistional didactical suggestions and mathematical
background knowledge for the teacher and providggestions to implement learning paths, helping
the teacher to maintain control.

In the Netherlands, the same picture emerges &daimders: curriculum programs are curriculum-

based, chosen by the school team, consist alsayafde for teachers and materials for the learners,
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and within one school, the curriculum programs pé @ommercial series are used throughout all
grades (Bruin-Muurling, 2011; O'Donnell, Sargengrige, White, & Gray, 2010; van Zanten, 2011).
In France, the government prescribes the contahfamat and approves the curriculum programs —
which are all commercial- for use in schools. Theice for a curriculum program in elementary
school is decided at the class level by the teaghdras a result, within a single school, mathersati
curriculum programs of several commercial serigslma used throughout all grades (Gratrice, 2011,
O'Donnell et al.,, 2010). In England, all curriculupnograms are commercial (Hodgen, 2011,
O'Donnell et al., 2010). The extent to which thericulum programs are used as a primary basis to
teach mathematics in elementary school is loweoagpared to many other countries (Mullis, Martin,
& Foy, 2008). Curriculum programs are viewed as oihthe many resources that teachers use in their
classrooms (Askew, Hodgen, Hossain, & Bretschetp2@epin, Haggarty, & Keynes, 2001). Instead
of using one single curriculum program as a printzagis for lessons, teachers are encouraged to use
different resources, such as internet resourcedvaokks as lesson starters (Department for Edugation
2011). Still, nearly 80% of the elementary schamchers in England make at least some use of
curriculum programs to teach mathematics (Mulliglet 2008). Curriculum programs also contain a
guide for teachers but teachers mainly build on ‘thathematics framework’ provided by the
Department for Education (Hodgen, Kiichemann, & Bro@2010). In China, the government approves
the curriculum programs and local authorities dedat each single grade which curriculum programs
schools should use, resulting in the use of magrs¢xzommercial curriculum programs throughout all
grades in one school (Ministry of Education in ERna, 2011). The curriculum programs also
contain a guide for teachers.

As illustrated above, there are differences betwesgions considering curriculum programs for
elementary school. Nevertheless, it can be condiutiat mathematics curriculum programs are
predominant in elementary school. Moreover, mathiesaurriculum programs are often the primary
resource for teachers and students in the classtatsaleh, 2010; Grouws, Smith, & Sztajn, 2004;
Kauffman, Johnson, Kardos, Liu, & Peske, 2002; Mudt al., 2008; Pepin et al., 2001; Schug,

Western, & Enochs, 1997).
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3. The current study

Despite the recognized prominent position of mati&s curriculum programs in the teaching and
learning process, there is no agreement on iterdiftial impact on students’ performance results.
Slavin and Lake (2008), for instance, stress thaitet is a lack of evidence to conclude or not ithat
matters which mathematics curriculum programs skshadopt. It is difficult to judge or compare the
efficacy or efficiency of curriculum programs (Daim & Harskamp, 1995; Gravemeijer et al., 1993;
Janssen, Van der Schoot, Hemker, & Verhelst, 1998)in and Lake (2008) and Chval et al. (2009)
expressed the need for further research in thig éispecially involving large numbers of studentd a
teachers, and set in a variety of school settiigsexamine the influence of curriculum programs on
student learning, research recently stresses #n toetake into account factors that mediate betwee
the written and the enacted curriculum (Atkin, 198&ll & Cohen, 1996; Christou, Eliophotou-
Menon, & Philippou, 2004; Lloyd, Remillard, & Heilkleisenman, 2009; Macnab, 2003; Remillard,
1999; Sherin & Drake, 2009; Verschaffel, Greer, & @orte, 2007). Stein et al. (2007) propose a
conceptual model that takes into account severdiatieg variables between the written curriculum
(e.g. the curriculum program), the intended cuitioy and the curriculum as enacted in the
classroom: teacher beliefs and knowledge, teaclmiehtations toward the curriculum, teachers’
professional identity, teacher professional comiiesi organizational and policy contexts, and
classroom structures and norms. Moreover, Remi{2085) highlights the need to focus on teachers’
orientations toward the curriculum as a guidingh@ple for future research. Teachers’ orientations
toward the curriculum are described as a frameitifilaiences how teachers engage with the materials
and use them in teaching (Remillard & Bryans, 200#)ese reflect the teachers’ ideas about
mathematics teaching and learning, teachers’ vigwgirriculum materials in general, and teachers’
views of the particular curriculum they are workingth. Whereas the study pointed out that the
unique combination of these ideas and views ofhexacinfluenced the way they used the curriculum,
the study also revealed that the ideas about maifiesnteaching and learning and views of
curriculum materials in general and of the paracwurriculum they are working with separately also
proved to be a mediating variable (Remillard anglaBs, 2004). Information about these mediating

variables was obtained through semi-structurechiiges with the eight participants (Remillard and
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Bryans, 2004). In the present study, we focus anhers’ views of the particular curriculum they are
working with (i.e. the mathematics curriculum pragrs they are using), and we do so by building on
the experiences of teachers with the curriculungganms (Elsaleh, 2010) related to how they perceive
that these materials impact student mathematiclorpegnce. In addition, and given the lack of
agreement on the differential impact of mathematiosiculum programs on students’ performance
results, we also study whether the performancdtsestithe students taught by the teachers in this
study differ significantly based on the curriculyprogram used in the classroom. The latter will
enable us to analyze if possible differences ichess’ views of curriculum programs are related to
differences in students’ performance results.
As such, this study aims at contributing to thericutum programs discussion by using a large sample
and by asking the question whether it really mattehat mathematics curriculum programs schools
adopt.
The following research questions are put forwardaling our study:

- Do teachers’ views of mathematics curriculum progavary depending on the mathematics

curriculum program being adopted?

- Do students’ performance results vary between madkies curriculum programs?

With regard to these questions, two studies hawn 3=t up. Each study focused on a particular

research question.

4. Methodology

4.1.Respondents
The research project was announced via the mediathe national education journal, the official
electronic newsletter for teachers and principatdriduted by the Department of Education, an
internet site, via the communication channels efltkarner Support Centres, via the communication
channels of the different educational networks #rel teacher unions. When respondents showed
interest, they could contact the researcher forenmioformation. This approach resulted in a large
sample of 918 teachers from 243 schools. Only medgmis using one of the five most frequently used

mathematics curriculum programs were included is $tudy, resulting in a sample of 814 teachers
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from 201 schools. Teaching experience of the teadheluded in the present study ranged from 0 to
46 yeardMean: 16.77) Experience of 80% of these teachers ranged frae30 years; 90% of the
respondents had at least 4 years teaching experi€@ichese teachers, 132 (16%) taught in the first
grade, 133 (16%) in second grade, 130 (16%) il tmade, 125 (15%) in fourth grade, 135 (17%) in
fifth grade, 110 (14%) in sixth grade, 12 (1%) ottbfirst and second grade, 16 (2%) in both third a
fourth grade, and 21 (3%) in both fifth and sixtadg.

For the second study, a sample of 90 elementaryosd¢hachers (11%) was selected at random to
participate in the second study. We ended up v8the@chers (11%) from the original sample of 814
teachers. The teachers from the former sub-sampleéded us the completed tests for mathematics of
the Flemish Student Monitoring System of the stiglém their classroom (n = 1579). Performance
data resulted from the systematic administratiorstahdardized tests incorporated in the Flemish
Student Monitoring System (see ‘Instruments’). Goeisng the 1579 elementary school children, 234
respondents (15%) were first grade students, 46%)2vere second grade students, 253 (16%) were
third grade students, 278 (18%) were fourth graddests, 255 (16%) were fifth grade students, and
154 (10%) were sixth grade students. Teaching expe of the teachers in the second study ranged
from 1 to 37 yearéMean: 16.21) Experience of 80% of these teachers ranged freo34 years; also
90% of the respondents in the second study haghst 4 years teaching experience.

Table 1 presents an overview of the distributiowfriculum programs as adopted by the schools in
our sample.

Table 2. Distribution of mathematics curriculum programs in the sample

Study 1 Study 2
Mathematics curriculum Number of % Number of %
program schools schools
Eurobasis [EB] 40 19.90 3 10.34
Kompas [KP] 4 1.99 2 6.90
Zo gezegd, zo gerekend a7 23.38 7 24.14
Nieuwe tal-rijk 27 13.43 5 17.24
Pluspunt 22 10.95 3 10.34
Combination of EB & KP 50 24.88 9 31.03
Another combination 11 5.47 / /
Total 201 100 29 100
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It is to be noted that Kompas is an updated versfdiurobasis. At the time of this study, no vemsio
was yet available of Kompas for the 4th, 5th arldgiide. Most schools had implemented Eurobasis,
Kompas, or a combination of Eurobasis and Komp@%s 4f the schools in the first study and 48% in
the second study (see table 1). Table 1 also ev¥kat a minority of the schools combined multiple
mathematics curriculum programs: 5% of the schootbe first study and none in the second study.
This is not surprising, since the choice for a ffzemathematics curriculum program in Flanders is

school-based decision.

4.2.Instruments
In order to study teachers’ views of mathematicsriculum programs, we built on teachers’
experiences with these materials. This was donghenbase of a newly developed self-report
guestionnaire. At the content level, teachers’ gi@iymathematics curriculum programs was studied
in relation to the learning goals pursued withirethdominant mathematics content domains in each
mathematics curriculum program: numbers and cdionls, measurement and geometry, and in
accordance with the learning goals pursued in tlmesicula that are predominant in Flemish
elementary school (see ‘2. Curriculum programs lienmfish elementary school and elsewhere’). In
relation to each mathematics domain, items askedd@ge on a 5-point Likert scale if ‘The way the
mathematics curriculum program supports this legymjoal, causes difficulties in student learning’
(1= ‘totally disagree’ and 5= ‘totally agree’). Sjfec versions of the questionnaire were presemnted
first and second grade teachers, third and foudtdegteachers and fifth and sixth grade teachéis. T
helped to align the instrument precisely with téarhing objectives that are central in the domatns
each grade level. Next to information about thehmadatics curriculum programs being adopted by
the teachers in their school, respondents wereasked to indicate the number of years of teaching
experience.
The questionnaires were tried out in the contex pflot study. As can be derived from table 2, the
internal consistency of the different subsectiohshe questionnaire was high, with Cronbachs’

values between and .83 and .94.
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Table 2. Internal consistency of the different sukections in the questionnaire for teachers

Numbers and calculations Measurement Geometry
a n a n a n
First and second grade .83 15 .89 8 .83 5
Third and fourth grade .92 25 .89 11 .87 10
Fifth and sixth grade .94 26 .93 14 .86 9

With regard to the second study, mathematics aehient was assessed by means of curriculum-
based standardized achievement tests for mathemattuded in the Flemish Student Monitoring
System (Dudal 2001). This student monitoring sysiemvidely used in the Flemish elementary
educational landscape and provides every grade, fapan the sixth grade, with three tests. A fiest

is provided at the beginning of a specific gradmther at the middle and a last one at the entleof t
school grade (Dudal, 2001). In the present reseantly the middle grade tests were used. All tests
were administered between February 1 and 15. Téstingstration is strictly protocolled. The
assessment is spread over two consecutive moresgjonis and teachers are provided with a sheet
containing all the information with regard to tesimpletion, classroom setting and clarifications fo
students. Teachers are provided with a sheet cimgaivord by word the sentences they are expected
to pronounce in view of the test administration.

Tests consist of 60 items covering the mathemalticsains numbers and calculations, measurement,
and geometry. The test items are geared to theemattics curriculum of the specific grade. Given
that in the Flemish elementary school mathematigsiculum most goals focus on numbers and
calculations, most test items focused on this domai

For example, the test in the third grade contaibsitdms measuring performance in the domain
numbers and calculations (e.g. Sasha has 120 stMilpe has half of the amount. How many stamps
do they possess together?), 10 items measuringrpenhce in the domain measurement (e.g. our
postman is fat nor skinny, tall nor short. Whatlddee his weight? 25kg — 40kg — 75kg — 110kg — 125
kg?), and 5 items measuring performance in the gegndomain (e.g. A door has the shape of a:
square — triangle — circle — rectangle — hexagon?).

In addition to the 60 test items, from the secoradlg on, students needed to complete a gradeispecif

test assessing students’ knowledge of basic opemtBy means of mental arithmetic, students need
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to solve sums (e.g. 55+25 = ...), subtractions. (87925 = ...), multiplications (e.g. 4x3 = ...)dan
divisions (e.g. 9:3 = ...). Time for solving theseercises was limited. The latter test items wesexlu

to measure students’ mathematical basic knowledge.

4.3.Data analysis
The data in the present research reflect an inhdsierarchical structure, i.e. teachers are neisted
schools (study 1) and students are nested in clagstedy 2). As such, the assumption of
independence of observations - inherent to ordifeagt squares regressions - was violated. Ordinary
least squares regressions rely heavily on the gagamof independence of observations: they assume
that each observation is independent of every athmgfle observation. Or: all the observations have
nothing in common. For instance, in the first stwdy analyzed for 814 teachers from 201 schools
their views of the curriculum program they use. i@ady least squares regressions would consider this
as 814 independent observations: all the obsenstiave nothing in common. In reality, this is not
the case. Teachers teaching in the same schonbtanedependent of each other and do have things in
common: they dialogue, they exchange ideas, thaseghe curriculum programs, they teach students
from equal social classes, they live in the samghf@rhoods, ... Ordinary least squares regressions
do not take into account the fact that teachersiasted in schools. This has an impact on the degre
of error: it results in an increase in the poskibilhat observed significant differences are doe t
coincidence (and not due to the fact that theyteatadifferent mathematics curriculum programs).
In contrast, multilevel modeling does take intoaot that not all observations are independent of
each other (Goldstein & Silver, 1989; Maas & HoR03). It takes into account that teachers are
nested in schools (study 1) and that students ested at classroom level (study 2). This resulta in
reduced degree of error: it results in a decredsthe possibility that the observed significant
differences are due to coincidence. This explaihy we applied multilevel modeling techniques
instead of applying ordinary regression models.
Model 1 in Tables 3, 4, and 5 reveals that schddfered significantly from each other: or that
teachers within the same school are related moreatd other than they do to teachers in other

schools. Model 1 in Table 7 also reveals that elagliffered significantly from each other: or that
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students within the same class are more relateddh other than they do to students in other dasse
The latter provides evidence that observationsnateindependent of each other and that applying
multilevel modeling in both studies was appropriate

Given the three outcome measures in both studeegeachers’ views related to / students’ scaves f
numbers and calculations, teachers’ views relaiddstudents’ scores for measurement, and teachers’
views related to / students’ scores for geometryjticariate multilevel regression models were
applied. The use of several related outcome measeselts in a more complete description of what is
affected by changes in the predictor variables (FH@02; Tabachnick & Fidell, 1996). Multivariate
response data were incorporated in the multilevedehby creating an extra level below the original
level 1 units to define the multivariate structyHox, 2002; Rasbash, Steele, Browne, & Goldstein,
2009). This implies that in the first study, we smiered teachers’ views of mathematics curriculum
programs for the domain numbers and calculatioeachers’ views of mathematics curriculum
programs for the domain measurement, and teachienss of mathematics curriculum programs for
the domain geometry (level 1) nested within teaglflevel 2) who in turn are nested in schools (leve
3). In the second study, we considered studentsbmeance results for the domain numbers and
calculations, students’ performance results fordbemain measurement, and students’ performance
results for the domain geometry (level 1) nestethiwistudents (level 2) who in turn are nested in
classes (level 3). No level 1 variation was spedifsince this level only helped to define the
multivariate structure (Hox, 2002; Rasbash, Stestlgl., 2009; Snijders & Bosker, 2003). Fitting a
multivariate model into a multilevel framework doest require balanced data. As such, it was not
necessary to have the same number of availableunggasnts for all individuals (Hox, 2002; Maas &
Snijders, 2003; Rasbash, Steele, et al., 2009%&sij& Bosker, 2003).

In view of the first study, sum scores for eachhmatatics content domain (numbers and calculations,
measurement, and geometry) were calculated ansdfdoramed into z-scores. A number of multilevel
models have been fitted, using MLwiN 2.16 (Rasb&iarlton, Browne, Healy, & Cameron, 2009).
The best fitting model was designed in a step-bp-stay (Hox 2002). First, the null model was fitted
with random intercepts at the teacher level (M@&JeNext, random intercepts were allowed to vary at

the school level (Model 1). In a third step, thacteer-level variable “teaching experience” exprésse
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in number of years, was included as a fixed effdtdvdel 2). In a fourth step, we included the
categorical variable “curriculum program” with Plusit as the reference category (Model 3).
Pluspunt was chosen as reference since Pluspuiatteig¥rom the other four curriculum programs in
the amount of providing hands-on support; thisvedid for a comparison of Pluspunt with the other
curriculum programs. Since comparisons betweenr atbmbinations of curriculum programs were
equally of interest, in a final step, we also amety pairwise comparisons between all mathematics
curriculum programs.

In view of the second study, sum scores for eacthenaatics content domain were calculated and
transformed into a scale ranging from zero to @orrelations between the covariate “mathematical
basic knowledge” and the score on mathematics dmri@iumbers and calculations” (r = .64 =
1247,p < .001, two-tailed), “measurement” (r = .46;1227,p < .001, two-tailed), and “geometry” (r
=.24,n = 1224 p < .001, two-tailed) were significant after Bonfexrcorrection. First, the null model
was fitted with random intercepts at the studevgli@Model 0). Next, random intercepts were allowed
to vary at the class level (Model 1). In a thirddafourth step, the student-level variables
“mathematical basic knowledge” (Model 2) and “séklodel 3) were included as fixed effects. In
Model 4, we included the categorical class-levelade “grade”. Next, class-level variable “teadhin
experience” was included as a fixed effect (Modellb a final step, “curriculum programs” was
included as a fixed categorical variable (Model Aditionally, model improvement was analyzed
after allowing interaction between curriculum praaps and gradey3(60) = 45.621p = .92), and
curriculum programs and experieng@(12) = 15.985;p = .19), but since this did not result in a
significant model improvement, the results of #nslysis are not reported.

The parameters of the multilevel models were es@thaising Iterative Generalized Least Squares

estimations (IGLS). All analyses assumed at le&&% confidence interval.
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5. Results

5.1.Study 1: Differences in teachers’ views of matheesaturriculum programs?
Given the use of specific grade-level questionsaitieree sets of results are presented in talde53 t
(grade 1-2, grade 3-4 and grade 5-6).
Table 3 presents the results with regard to thet ind the second grade. According to Model 0,
variance at the teacher level was statisticallyifizant. Allowing random intercepts at the school
level (Model 1), resulted in a significant decreaseeviance indicating that inclusion of the sdhoo
level was appropriate. Adding the teacher-levelade “experience” in Model 2 did not result in a
significant decrease in deviance and as a consequiae variable experience was excluded from
further analyses. Including the variable “curriaulprograms” in Model 3, on the contrary, did result
in a significant decrease in deviance. The fixdeat$ in Model 3 revealed that with regard to the
mathematics domain measurement, teachers using &oompNieuwe tal-rijk as curriculum program
reported significantly less difficulties as compite teachers using the reference curriculum progra
(Pluspunt). Considering the mathematics domain g#gymteachers using Kompas, Zo gezegd, zo
gerekend or Nieuwe tal-rijk as curriculum programparted significantly less difficulties as compared
to teachers using Pluspunt.
Table 4 presents the results with regard to thed tand the fourth grade. According to Model 0O,
variance at the teacher level was statisticallyifizant. Allowing random intercepts at the school
level (Model 1), resulted in a significant decreaseeviance indicating that inclusion of the sdhoo
level was appropriate. Adding the teacher-levelade “experience” in Model 2 did not result in a
significant decrease in deviance and as a consequdmns variable was excluded from further
analyses. Including the variable “curriculum progtdan Model 3, on the contrary, did again result in
a significant decrease in deviance. A closer lobkha fixed effects in Model 3 showed that with
regard to the mathematics domain measurement,desaaking Nieuwe tal-rijk as curriculum program
reported significantly less mathematics difficudtias compared to teachers using the reference
curriculum program (Pluspunt). Considering the rmaathtics domain geometry, teachers using
Eurobasis, Kompas, Zo gezegd, zo gerekend or Nidavdjk as curriculum program reported

significantly less difficulties as compared to teas using Pluspunt.
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Table 3. First and second grade:

fixed effects estates (top) and variance-covariance estimates (boti)

Parameter Model 0 Model 1 Model 2 Model 3
Fixed effects
Intercepyf, -.01 (.06) -.01 (.06) -07  (.12) .07 (.18)
Intercepty -.01 (.06) -.03 (.07) -15  (.12) A45%  (.19)
Intercepg .01 (.06) -01 (.07) -13  (.12) .64*  (.21)
Level 2 (teacher)
Experiencg .00 (.01)
Experiencg .01 (.01)
Experience .01 (.01)
Level 3 (school)
EBy -.04 (.26)
KPy -.05 (.22)
ZGy -05 (.22)
NTy -34 (.26)
EBy -37 (.26)
KPw -.65* (.22)
ZGy -26  (.22)
NTy -.90** (.26)
EBg -39 (.27)
KPg -75%  (.24)
ZGg -76*  (.24)
NTg -.83* (.28)
Random parameters
Level 2
Intercepty/ Intercepy; (02,0) .98**  (.09) .92*  (.10) 91**  (.10) .93**  (.10)
Intercept/ Intercepf (6%0u2) .68*  (.07) .58*  (.08) .58*  (.08) .58*  (.08)
Intercepfy/ Intercepy; (02,1 1.01** (.09) .78*  (.09) 77 (.09) 79%  (.09)
Intercepty/ Intercepg (02,042 A5%  (.07) .36**  (.07) .36*  (.07) .36**  (.07)
Intercepty/ Intercepg (62,140 57 (.07) .29*  (.07) .28*  (.07) .28**  (.06)
Intercepg/ Intercepg (02,,) 1.00** (.09) .65**  (.08) .65*  (.08) .63*  (.08)
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Table 3 continued

Parameter Model 0 Model 1 Model 2 Model 3
Level 3
Intercepty/ Intercepy; (02,0) .06 (.07) .07 (.08) .06 (.07)
Intercept/ Intercepf (G4,0v1) .09 (.07) 10 (.07) 10 (.07)
Intercepfy/ Intercepfy (0341) .22*  (.09) .23*  (.09) .16*  (.08)
Intercept/ Intercepg (G3.0v2) .08 (.07) .08 (.07) .08 (.06)
Intercepfy/ Intercepg (0%1v2) .28**  (.08) .28**  (.08) .26%*  (.07)
Intercepg/Intercepg (02,2) .34*  (.10) .34*  (.10) 34*  (.09)

Model fit

Deviance 1970.64 1932.39 1930.21 1893.34
a 38.25** 2.18 39.05*
df 6 3 12

p <.001 541 <.001
Reference Model 0 Model 1 Model 1

Note. Standard errors are in parentheses. There arevab lerandom parameters because level 1 existéysmedefine the multivariate structurg.= numbers), =
measuremeng = geometry; EB = Eurobasis; KP = Kompas; ZG = Eaeagd, zo gerekend; NT = Nieuwe tal-rijk.

* p<0.05.
** < 0.001.
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Table 4. Third and fourth grade: fixed effects estinates (top) and variance-covariance estimates (botin)

Parameter Model 0 Model 1 Model 2 Model 3
Fixed effects
Intercepyf, .01 (.06) -.02 (.07) -15  (.12) -.01 (.20)
Intercepfy -.01 (.06) -.03 (.07) .03 (.13) .29 (.20)
Intercepg .01 (.06) -01 (.07) -.00 (.13) 54*  (.19)
Level 2 (teacher)
Experiencg .01 (.01)
Experiencg -.00 (.01)
Experience -.00 (.01)
Level 3 (school)
EBy 20 (.23)
KPy -13  (.26)
ZGy -13  (.24)
NTy -.18 (.28)
EBy -22  (.23)
KPuy -15 (.26)
ZGy -41  (.23)
NTy -.85% (.27)
EBg -52*  (.22)
KPg -51* (.25)
ZGg -.68* (.23)
NTg -.82*%  (.27)
Random parameters
Level 2
Intercepty/ Intercept (02.) .96**  (.09) 75*  (.09) 5% (.09) Jg2*(.09)
Intercepty/ Interceply (02,0u1) 67 (.07) .53*  (.08) .54*  (.08) .53*  (.08)
Intercept,/ Intercept (02, 1.00*  (.09) .83 (.10) .82%  (.10) .82*  (.10)
Intercepty/ Intercepg (02,002 .64*  (.07) 57 (.09) 57 (.09) 57**  (.08)
Intercepiy/ Intercepg (02,149 .68*  (.08) 55*  (.09) 55*  (.09) .56**  (.09)

Intercept/ Intercepg (02,,) 1.00** (.09) 90 (.11) 90 (.11) 2% ((11)



Table 4 continued

Parameter Model 0 Model 1 Model 2 Model 3
Level 3
Intercepty/ Intercept; (0%,0) .20% (.09) 9% (.09) 21%  (.09)
Intercept/ Intercepf (G4,0v1) .13 (.08) .12 (.08) A2 (.07)
Intercepiy/ Interceply (02,1) 17 (.09) A8*  (.09) .12 (.08)
Intercept/ Intercepg (G3.0v2) .07 (.07) .06 (.07) .06 (.07)
Intercepy/ Intercepg (02,1v2) .13 (.08) .13 (.08) .08 (.07)
Intercepg/Intercepg (03,,) 11 (.08) 11 (.08) .04 (.07)

Model fit

Deviance 1838.16 1815.82 1810.58 1781.74
12 22.34* 7.05 34.08**
df 6 3 12

p <.05 .16 <.001
Reference Model 0 Model 1 Model 1

Note. Standard errors are in parentheses. There arevab lerandom parameters because level 1 existéysmedefine the multivariate structurg.= numbers), =
measuremeng = geometry; EB = Eurobasis; KP = Kompas; ZG = Eaeagd, zo gerekend; NT = Nieuwe tal-rijk.

* p<0.05.

** p<0.001.
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Table 5. Fifth and sixth grade: fixed effects estimtes (top) and variance-covariance estimates (bottg

Parameter Model 0 Model 1 Model 2 Model 3
Fixed effects
Intercepyf, -.00 (.06) .01 (.07) -05 (.12) 55%  (.19)
Intercepty -.00 (.06) -.02 (.07) -10 (.12) .50*  (.20)
Intercepg -.01 (.06) -.02 (.08) -15  (.12) 50 (.21)
Level 2 (teacher)
Experiencg .00 (.01)
Experiencg .01 (.01)
Experience .01 (.01)
Level 3 (school)
EBy -48*  (.21)
ZGy -.86** (.23)
NTy -.69* (.26)
EBy -44*  (.22)
ZGy -71*  (.24)
NTy -.86* (.27)
EBg -48* (.23)
ZGg -76* (.25)
NTg -.67* (.28)
Random parameters
Level 2
Intercepty Intercept; (02,0 .99**  (.09) .65 (.08) .64 (.08) .62 (.08)
Intercepty/ Interceply (02,0u1) .73*  (.08) .39*  (.07) .38*  (.07) .36** (.06)
Intercepty/ Intercepl; (02, 1.03*  (.09) .59 (.08) .59*  (.08) 56*  (.07)
Intercepty/ Intercepg (02,002 .73*  (.08) .38**  (.07) 37 (.07) .36** (.06)
Intercepiy/ Intercepg (02,149 .78*  (.08) .38*  (.06) .37**  (.06) .36** (.06)

Intercep/ Intercepg (02,2) 1.02*  (.09) 54%  (.07) 53%  (.07) 525 (.07)



Table 5 continued

Parameter Model 0 Model 1 Model 2 Model 3
Level 3
Intercepty/ Intercept; (0%,0) 31*  (.10) .32 (.10) .28*  (.09)
Intercept/ Intercepf (G4,0v1) .30**  (.09) 31%* (.09) .28**  (.08)
Intercepiy/ Interceply (0%,1) .39 (.10) .39%*  (.10) .36*  (.10)
Intercepty/ Intercepg (G3.0v2) .33** (.09) .33 (.09) .30 (.08)
Intercepy/ Intercepg (02,1v2) 377 (.09) 37 (.09) .35%  (.09)
Intercepg/Intercepg (02,2) A8*  (\11) A7 (111) .45%  (.10)
Model fit
Deviance 1726.30 1668.71 1666.74 1648.48
12 57.58** 1.97 20.23*
df 6 3 9
p <.001 .16 <.05
Reference Model 0 Model 1 Model 1

Note. Standard errors are in parentheses. There arevab lerandom parameters because level 1 existéysmedefine the multivariate structurg.= numbers), =
measuremeng = geometry; EB = Eurobasis; KP = Kompas; ZG = Eaeagd, zo gerekend; NT = Nieuwe tal-rijk.

* p<0.05.
** < 0.001.
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Table 5 presents the analysis results with regardhé data of fifth and sixth grade teachers.
According to Model 0, variance at the teacher levab statistically significant. Allowing random
intercepts at the school level (Model 1), againites in a significant decrease in deviance indlicat
that inclusion of the school level was appropri#dding the teacher-level variable “experience” in
Model 2 did not result in a significant decreasad@viance and as a consequence the variable was
excluded from further analyses. Including the uasga“curriculum program” in Model 3 again
resulted in a significant decrease in devianceusing on the fixed effects in Model 3, we observed
that with regard to the mathematics domains numbaedscalculations, measurement, and geometry,
teachers using Eurobasis, Zo gezegd, zo gerekeNieawe tal-rijk as curriculum program reported
significantly less difficulties as compared to teews using the reference curriculum program
(Pluspunt).

Estimates for the fixed effects of the variablericuium program (see model 4 in table 3, tablend a
table 5) only allowed for comparison with the refere category (Pluspunt). Because comparisons
between other combinations of curriculum prograrmesesalso of interest, table 6 presents for grade 1-
2, grade 3-4 and grade 5-6 the results of the E@reomparisons between all curriculum programs.
Considering the first and second grade (see tab&n@ with regard to the content domammbers
and calculations no significant differences in teachers’ views eva@bserved. With regard to the
content domairmeasurementwe did observe significant differences in teasherews. Teachers
using Nieuwe tal-rijk as their curriculum prograrmeported significantly less learning difficulties a
compared to teachers using Zo gezegd, zo gerelndbasis or Pluspunt; teachers using Pluspunt
reported significantly more difficulties in leargiras compared to teachers using Kompas or Nieuwe
tal-rijk. With regard to the content domaieometry teachers using Pluspunt as curriculum program
reported significantly more difficulties in leargiras compared to teachers using Nieuwe tal-rijk, Zo
gezegd, zo gerekend or Kompas.

Building on the input of third and fourth grade dbars (see table 6) and considering the content
domain numbers and calculations, no significanfed#éinces in teachers’ views were observed.

Considering the content domain measurement, teacisarg Nieuwe tal-rijk reported significantly
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Table 6. t-values for differences between mathemas curriculum programs (row minus column)

Numbers Measurement Geometry
EB KP ZG NT PP EB KP ZG__ NT PP EB KP ZG__ NT PP
1st and 2nd grade EB / 0.00 000 120 -0.14 / 141 -048 214* -1.43 / 185 1.71 170 -1.44
(128)  (106) (63)  (63) (127) (105) (63)  (63) (128) (105) (63)  (61)
KP / 0.00 143  -0.20 / 236 124  -3.00% / 010 037  -3.19%
(174) (131) (131) (172)  (130)  (130) (173)  (131) (129)
ZG / 1.38  -0.20 / 2.94%  -1.19 / 030  -3.14*
(109)  (109) (108)  (108) (108)  (106)
NT -1.34 / -3.49%* / -2.95%
/ (66) (66) (64)
PP / / /
3rd and 4th grade EB / 171 1.94 172 087 / 036 113 2.92% -1.00 / 010 099 141  -2.40*
(129) (169) (126)  (120) (128) (169) (126)  (120) (128)  (169) (125)  (120)
KP / 0.00 020 -0.50 / 122 278" -0.60 / 083 126  -1.99
(110) (67)  (61) (109) (66)  (60) (109)  (65)  (60)
ZG / 022  -0.53 / 1.98%  -1.75 / 0.66  -3.00%*
(107)  (101) (107)  (101) (106)  (101)
NT -0.64 / -3.14% / -3.08*
/ (58) (58) (57)
PP / / /
5th and 6th grade EB / / 2.30*  -1.04  -2.24* / / 157  2.00* -2.00* / / 154 087  -2.06*
(191)  (153)  (144) (190)  (152) (142) (189)  (151)  (141)
KP / / / / / / / / / / / /
ZG / 0.77  -3.74%* / 0.65  -2.98% / 036 -3.03%
(114)  (106) (114)  (104) (114)  (104)
NT / -1.34% / -3.24%* / -2.41*
(67) (66) (66)
PP / / /

Note Between brackets: degrees of freedom; EB = EwiepKP = Kompas; ZG = Zo gezegd, zo gerekend; NNietiwe tal-rijk.

* p< 0.05; **p< 0.01; ** p<0.001
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less difficulties in learning as compared to teashising Eurobasis, Zo gezegd, zo gerekend, Kompas,
or Pluspunt. With regard to the content domgeometry teachers using Pluspunt reported
significantly more difficulties in learning as coamed to teachers using Eurobasis, Zo gezegd, zo
gerekend or Nieuwe tal-rijk.

Considering the fifth and sixth grade (see tablarg] in relation to the content domainmbers and
calculations significant differences in teachers’ views weres@rved. Teachers using Pluspunt
reported significantly more difficulties as compérto teachers using Eurobasis, Zo gezegd, zo
gerekend or Nieuwe tal-rijk. Teachers using Zo gdzezo gerekend reported significantly less
learning difficulties as compared to teachers usiigobasis. Considering the content domain
measurementteachers using Nieuwe tal-rijk reported signifitg more difficulties in learning as
compared to teachers using Eurobasis. Teacheng BRispunt reported significantly more difficulties
as compared to teachers using Eurobasis, Nieuwekialr Zo gezegd, zo gerekend. With regard to
the content domaigeometry teachers using Pluspunt as curriculum programrteg significantly
more difficulties as compared to teachers usingBasis, Zo gezegd, zo gerekend or Nieuwe tal-rijk.
To sum up, the results revealed that adoption @Flevel models was appropriate. Despite some
dissimilarities between content domains and grgdes we did not notice significant differences in
teachers’ views of the curriculum programs reldtethe content domainumbers and calculatioria

the first and second grade and in the third andtiograde whereas we did notice significant
differences in teachers’ views of the mathematigsiculum programs for the content domain
numbers and calculations the fifth and sixth grade), the results reveadetendency across the
grades and the content domains. In general, teaam@ng Pluspunt reported significantly more
difficulties as compared to teachers using otheri@uum programs whereas teachers using Nieuwe
tal-rijk reported significantly less difficultiessacompared to teachers using other curriculum
programs. The fact that the teacher-level varidbl@erience” (See Model 2 in Table 3, Table 4,
Table 5) did not result in a significant decreaséeviance reveals that teachers’ views of cumitul
programs did not differ regarding their teachingpemence. More experienced teachers did not
perceive the curriculum program to impact studentgthematics performance differently as

compared to teachers with less experience.
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5.2.Study 2: Differences in mathematics performancaltg?
The results are presented in table 7. Accordinyltalel O, all variances at the student level were
statistically significant. Allowing random interaspat the class level (Model 1) resulted in a
significant decrease in deviance indicating thatlusion of this second level was appropriate.
Additionally, the use of contrasts revealed thatres for the domaimeasuremenivere significant
lower as compared to scores on the domaimbers and calculationg?) = 57.34;p < .001) and as
compared to scores on the domg@ometry(y3;) = 49.417;p < .001). Scores for the domanumbers
and calculationglid not differ significantly from the scores fdret domairgeometry(y?i) = 2.646;p =
.10).
Adding the student-level variables “mathematicatib&nowledge” (Model 2) and “sex” (Model 3)
resulted in significant decreases in deviance.mbdel revealed that boys do significantly bettemth
girls in numbers and calculationand inmeasurementincluding the categorical class-level variable
“grade” (reference category: first grade) in Modeldlso resulted in a significant decrease in ded@an
Moreover, with regard toumbers and calculationsecond and third graders did significantly better
than first grade students; with regard n@asurementsecond, third, fourth, and fifth graders did
significantly better than first grade students; avith regard togeometry second, third, and fifth
graders did significantly better than first gratiedents.
According to Model 5, inclusion of the class-levariable “experience” also resulted in a significan
decrease in deviance; however, the correspondixed fieffects were not significant. Given the
significant improvement of the model as comparethéoprevious model, we continued to include this
term in further analyses. Adding the variable “auum program” into Model 6 (reference: Pluspunt)
did not result in a significant drop in deviancdiaating that overall, the curriculum program diat n

play a significant role in student outcomes.
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Table 7. fixed effects estimates (top) and varianastimates (bottom)

Parameter Model 0 Model 1 Model 2 Model 3 Model 4 oddl 5 Model 6
Fixed effects

Intercepty 7.56** (.04) 7.51%* (.10) 7.33** (.09) 7.23* (1D 6.79* (.21) 6.63** (.25) 6.71%* (.41)

Intercepty 6.19** (.07) 6.21* (.15) 6.57* (.09) 6.35* (.11 5.44* (.22) 5.23** (.26) 4.79* (.39)

Intercepts 7.41*  (.06) 7.33%*  (.13) 7.42*  (.13) 7.40* (.1p 6.70** (.34) 6.47* (.40) 6.91** (.64)

Level 2 (student)
Basic knowledge 1.14* (.04) 1.13* (.04) 1.12*  (.04) 1.16* (.04) 1.10** (.04)
Basic knowledge, 1.03** (.06) .99**  (.06) .99**  (.06) .95* 06) .98**  (.06)
Basic knowledge .64*  (.07) .60** (.08) .61*  (.07) .62**  08) .62**  (.08)
sex_malg 21*  (.07) .20%  (.07) 22*%  (.07) .22* .007)
sex_malg, 37+ (\11) .38*  (\11) A1 ((12) Az ((12)
sex_male; .01 (.14) -02 (.14) .05 (.15) .06 (.15

Level 3 (class)
grade_2y 1.13* (.25) 1.12* (.25) 97 (.97
grade_3 .70*  (.26) .79%  (.28) .60 (.32)
grade_4 .04 (.26) .07  (.27) .03 (.27)
grade_5 -.13 (.26) =11 (.27) -13  (.27)
grade_6& .00 (.00) .00 (.00) .00 (.00)
grade_2y 1.23** (.25) 1.23* .25) 1.04* (.36
grade_3y 1.33* (.27) 1.44* (.28) 1.13* (B
grade_4y .96 (.28) .95%  (.28) .96**  (.26)
grade_5y 56*  (.27) .55%  (.27) .54*  (.25)
grade_6y .00 (.00) .00 (.00) .00 (.00)
grade_2; .84* (.39) .85%  (.39) 55 (42)
grade_3; 1.41* (.41) 1.46* (.43) 1.16* (.30
grade_4; -13  (.42) -.04 (.44) 12 (.43)
grade_%; 1.01* (.41) 93*  (.42) 91*  (.41)
grade_6&; .00 (.00) .00 (.00) .00 (.00)
Experience. .01 (.01) .01 (.01)
Experience, .01 (.01) .02 (.01)
Experiences .01 (.01) .01 (.01)
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Table 7 continued

Parameter Model 0 Model 1 Model 2 Model 3 Model 4 oddl 5 Model 6
Fixed effects
MTS_EBy -21  (.34)
MTS_KPy 15 (.35)
MTS_ZGy -02 (.31)
MTS_NTy .07 (.35)
MTS_EBy, 15 (.32)
MTS_KPy 74%  (.33)
MTS_ZGy 49 (.30)
MTS_NTy .80*  (.33)
MTS_EBg -68 (.52)
MTS_KPg -04 (.54)
MTS_ZGg -20 (.48)
MTS_NTg -28 (.54)
Random Parameters
Level 3 (class)
Intercept/ Intercepy avo) 76%  (.14) .50**  (.10) B53* ((11) .23**  (.06) 24**  (.06) .23**  (.06)
Intercept/ Intercepl (vovn) .05 (.14) .35 (.09) 37 (.09) A7 (.05) ¥7 (.05) .15  (.05)
Interceply/ Intercepl (v1) 1.68** (.30) A2% ((11) .35 (.10) .14*  (.06) 13* (.06) .08 (.05)
Intercept/ Intercepé =ov2) 50**  (.13) 34%  (.11) 31%  (.11) A18*  (.07) .18* (.07) 16*  (.07)
Intercepiy/ Intercepé vz, 51*  (.19) 39%  (.11) 31% (.11) 16*  (.07) .13(.07) 12 (.06)
Intercepg/Intercepg (oevz) 1.08* (.21) 81*  (.19) 80*  (.20) AT (14) 46*  (.14) 43*  (14)
Level 2 (student)
Intercepty/ Intercepy uo) 2.93*  (.10) 2.21* (.08) 1.30** (.05) 1.28* (.06) 1.29* (.06) 1.27* (.06) 1.27* (.06)
Intercepty/ Intercepl (g2uout 1.84* (.12) 1.80** (.10) 1.07** (.07) 1.07* (.07) 1.08* (.07) 1.07* (.08) 1.07* (.08)
Intercepi/ Intercepiy e 6.91% (.25) 5.05* (.19) 3.15% (.13) 3.7 (.14) 3.18* (.14) 3.24* (.15) 3.23* (.15)
Intercept/ Intercepé euouz 1.66* (.11) 1.21*  (.09) 67 (.08) 67 (.08) 68**  (.08) 72% (.09) 72%  (.09)
Intercepiy/ Intercepé (su1u 1.68* (.17) 1.19% (.13) 85*  (.12) 81%  (.13) 82* (.13) 88*  (.14) 88*  (.14)
Intercepd/ Interceps ez, 5.76%* (21)  4.76* (.18) 4.83* (.20) 4.81% (.22) 4.81% (.22) 4.91% (.23) 4.91% (.23)
Model fit
Deviance 19219.42 19219.42 13921.20 12075.53 10087 10943.74 10926.17
e 944.19 5298.22 1845.67 88.53 1043.26 17.57
Df 6 3 3 15 3 12
P <.001 <.001 <.001 <.001 <.001 .13
Reference Model0 Model 1 Model 2 Model 3 Model 4 oddl 5
Note. Standard errors are in parentheses. There areveb lerandom parameters because level 1 existdysiwedefine the multivariate structurg.= numbers;, =

measuremeng = geometry; EB = Eurobasis; ZG = Zo gezegd, zelgard; NT = Nieuwe tal-rijk.

* p<0.05; *p<0.001
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6. Discussion
Mathematics curriculum programs are often the prymr@source for teachers and students in the
classroom (Elsaleh, 2010; Grouws et al., 2004; faa et al., 2002; Nathan et al., 2002; Schug et
al., 1997). Despite their prominent role in thectéag and learning processes, there is no agreement
on whether it really matters which mathematicsicutum programs schools choose (Slavin & Lake,
2008). Moreover, it is seen as a difficult endeaworcompare the efficacy or efficiency of
mathematics curriculum programs (Deinum & Harskaf§95; Gravemeijer et al., 1993; Janssen et
al., 1999).
The current study aimed at contributing to the mathtics curriculum programs discussion by
analyzing whether it really matters what mathensatigrriculum program schools adopt if we analyze
teachers’ views of mathematics curriculum prografeachers’ views of the mathematics curriculum
program they teach with is one factor that infllesh¢eachers’ orientations toward the curriculum,
considered to be an important focus for resear¢hardomain of curriculum studies (Remillard 2005;
Stein et al. 2007). Teachers’ views of mathematicsiculum programs also on its own proved to be a
mediating variable (Remillard and Bryans 2004).
Therefore, this research built on the experiencegeachers with the mathematics curriculum
programs (Elsaleh, 2010) and on how teachers perdbiese mathematics curriculum programs
impact student mathematics performance . The relseaas carried out in Flanders, which has its own
peculiarities. But, because of similarities withthematics curriculum programs in other regions, the
findings are not limited to Flanders and have aengmmeral validity.
In the first study, views of 814 teachers of matagos curriculum programs were measured building
on teachers’ experiences with these materials leméttent they perceive the mathematics curriculum
programs affect the students’ learning process. Tdwilts revealed that there are significant
differences in teachers’ views of mathematics culdm programs. Moreover, we observed clear
patterns in teachers’ views of mathematics cumiiculprograms curriculum programs. Teachers’
views of mathematics curriculum programs were musitive in case the mathematics curriculum
programs addressed one content domain of mathem@ticnbers and calculations, measurement,

geometry) per lesson and provided more supportttier teachers, such as providing additional
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materials for the teacher, a more detailed desonpif the course, additional didactical suggesion
and theoretical background knowledge about mathesmaOn the contrary, teachers’ views of
mathematics curriculum programs were more negativease the mathematics curriculum program
provided less of such support for the teacher adremssed more than one content domain of
mathematics education per lesson. Whereas therdesithe study didn’t allow to control for other
variables, the results suggest that mathematicgolum programs matter.

In the second study, building on mathematics peréorce of 1579 students, the results revealed that
students’ performance results do not vary signifiljabetween mathematics curriculum programs.
Whereas the absence of a straightforward impagctathematics curriculum programs on performance
results is in line with findings from other studi@avin & Lake, 2008), it also points at the foling.
Teachers’ views of mathematics curriculum programm$ut one variable that mediates between the
mathematics curriculum program and the enactedicolum. In addition, it would be useful to
analyze other mediating variables and the interplefgveen mediating variables such as teachers’
beliefs about mathematics teaching and learniraghiers’ views of curriculum materials in general,
teacher knowledge, teachers’ professional identégicher professional communities, organizational
and policy contexts, and classroom structures amcths (Remillard and Bryans 2004; Stein et al.
2007). The discrepancy between the results of batties also shed light on the need to carry out
observational studies about the way teachers imgriiéémmathematics curriculum programs, since the
differences between mathematics curriculum prograntsachers’ views do not continue to hold with
regard to students’ outcomes. Observational stugdiekl reveal if teachers are compensating teaching
for anticipated difficulties in learning mathematicaused by the mathematics curriculum programs.
The current study addressed the need for morerggsfcusing on variables that mediate between the
mathematics curriculum programs and the enactedcalum, and also the call for setting up large
scale studies in this context (Chval et al., 20Bi@yvin & Lake, 2008). Nevertheless, our study also
reflects a number of limitations. First, though tportunity sampling approach helped to involve a
large set of schools, teachers and students, amgplgg approach did not build on random selection.
This implies that we cannot counter a potential garg bias in our study as to teachers who

developed already a clear and explicit views ofhmatatics curriculum programs. Second, in the
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absence of prior measures for teachers’ views dhemaatics curriculum programs, applicable in
studies with large sample sizes, and guided byarekeliterature (Elsaleh, 2010), we analyzed
teachers’ views of mathematics curriculum progrémbuilding on their actual experiences with the
curriculum program. This study is part of a largesearch project that centers on learning diffieslt

in mathematics. In view of this larger researchjguty teachers were asked to judge — based on their
experiences — the extent to which the mathematioscalum program caused difficulties in learning.
Other studies could shift the focus on the stremgtheach mathematics curriculum programs instead
of focusing on the weaknesses. That is just one iwagudying on a large scale teachers’ views of
mathematics curriculum programs. Third, whereasctmeent study took into account the structure,
the learning path, the teacher plans, the avaitalf additional materials, and described in gaher
lines the exercises, our data was not specific gmda reveal possible differences in the cognitive

load of instruction and exercises. It could beriggéing to include this factor in future research.

7. Conclusion

Up to date, there is no agreement about the diffedeémpact of mathematics curriculum programs on
students’ performance results. This sounds sungrigiven the prominent role of mathematics
curriculum programs in education. It should not @eomplete surprise, though, given that it is
difficult to compare the efficacy or efficiency ofathematics curriculum programs. The current study
focused on one specific related aspect, teach@swisvof curriculum programs, considered to be a
mediating variable in the process between the ewitind the enacted curriculum, and influencing
teachers’ orientations toward the curriculum, cdestd to be a key variable in future curriculum
research. The study revealed that, at least wighrdeto teachers’ views of mathematics curriculum
programs, it matters which mathematics curriculuimgpams choose. The study also suggests that
future research should take into account more rtiadi@ariables and that observational studies could
be carried out to analyze how teachers actuallyaément mathematics curriculum programs. Finally,
from a practical point of view, the current reséarevealed that teachers are more positively adnt
toward mathematics curriculum programs when thedatrovide them with support such as additional

materials, detailed descriptions of each “couraéditional didactical suggestions and theoretical a
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mathematical background knowledge and addressed¢antent domain. As such, inclusion of these
additional resources can inspire curriculum progralavelopers and publishers. Presence or absence
of these elements can be a criterion for teacheessehool team to choose or not to choose a oertai

mathematics curriculum program.
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APPENDIX: Description of each curriculum program*

KP ZG NT PP EB
Curriculum-based

Curriculum of the v 4 v v v
publicly funded, publicly

run education

Curriculum of the v v v v v
publicly funded, privately

run education

Curriculum of the v v v v v

education of the Flemish
community

Student material

Structure

Weekly structure: 32
weeks, 5-6 courses
each week (8- 6"
grade), around 7
courses each week*{1
- 2 grade)

Duration one course:
usually 50 minutes
(39-6" grade);

usually 25 minutes
(1%t2" grade)

Each week addresses
5 domains: numbers,
calculations,
measurement,
geometry, problem
solving

Courses according to
a fixed order:
numbers, calculations,
measurement,
geometry, problem
solving

Each course is
situated within one
domain

Around 13 themes
each year; around 12
courses each theme
(1st grade: more
themes, less courses
each theme)
Duration one course:
usually 50 minutes
(2" -6" grade);
usually 25 minutes
(1% grade)

Each theme addresses
4 domains: numbers,
measurement,
geometry, problem
solving

Courses not according
to a fixed order

Each course is
situated within one
domain

Use of pictographs

- 10 blocks, around 20
courses each block
(39— 6" grade),
around 26 courses
each block (¥ — 2
grade)

Duration one course:

usually 50 minutes

(3= 6" grade); 25 or

50 minutes (

grade); usually 25

minutes (' grade)

- Each block addresses
4 domains: numbers,
calculations,
measurement,
geometry

- Courses not according
to a fixed order

- Each course is
situated within one
domain

- Use of pictographs:
basic — extra —
deepening exercises

13 themes, 13 courses
each theme

Duration each course:
50 minutes

Each theme addresses
4 domains: numbers,
calculations,
measurement,
geometry

Courses according to
a fixed order: teacher-
centered and student-
centered courses

The courses address
more than one domain

- Weekly structure: 32
weeks, around 7
courses each week
(39- 6" grade), 10
courses each week*{1
- 2" grade)

- Duration one course:
usually 50 minutes
(39-6" grade); 25
minutes (£-2" grade)

- Each week addresses
5 domains: numbers,
calculations,
measurement,
geometry, problem
solving

- Courses according to
a fixed order:
numbers, calculations,
measurement,
geometry, problem
solving

- Each course is
situated within one
domain
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Materials

Workbook
Memorization book
CD-rom with extra
exercises

Other: number line,
MAB-materials,
coins, calculator, ...

Workbook -
Other: number line, -
MAB-materials, -
coins, calculator, ... -

Manual

Workbook
Memorization book
‘Math journal’ for
communication with
the parents

Other: number line,
MAB-materials,
coins, calculator, ...

Manual

Workbook
Software packet
Other: number line,
MAB-materials,
coins, calculator, ...

Workbook
Memorization book
Software packet
Other: number line,
MAB-materials,
coins, calculator, ...

Teacher's guides
Basic principles

Learning path

Curriculum-based
Realistic contexts
Horizontal and
vertical connections
Use of different kinds
of materials

Active learning
Differentiation

For all grades

Outline for the whole
year: overview of and

order of the subject of

the courses for each
domain

Outline for the whole
year: overview of the
learning contents for
each domain
Weekly outline:
overview courses

Curriculum-based -
Realistic contexts -
Active learning: -
interaction -
Use of models,
schemes, symbols and
diagrams -
Attention for
mathematical

language -
Horizontal

connections -
Differentiation

For all grades -

Outline for each -
theme: overview of

and order of the

subject of the courses
for each domain -
Outline for each

theme: overview of

the learning contents

for each domain

Curriculum-based
Realistic contexts
Active learning
Linking content with
students’ prior
knowledge

A lot of attention to
repetition and
automation
Students’ working
independently

To acquire study
skills

Reflection
Remediation and
differentiation

For all grades

Outline for the whole
year: number of
courses for each
domain

Outline for the whole
year: overview of and

order of the subject of

the courses for each
domain and each
block

Suggestions to draw
up a learning path for
the whole year
Outline for each

Curriculum-based
Realistic contexts
A critical attitude
Active learning:
problem solving and
meaningful
Students’ working
independently
Attention for
mathematical
language
Differentiation
Interaction

Use of models and
schemes

For all grades

Outline for the whole
year: for each domain
an overview of how
the learning contents
build on each own
Outline for each
theme: overview of
the learning contents
for each domain

A very brief
suggestion to draw up
a learning path for the
whole year: an
overview of the

Curriculum-based
Realistic contexts
Active learning:
participation and
interaction
Cooperation and
reflection
Horizontal and
vertical connections
Attention for
evaluation and
differentiation

For all grades

Outline for the whole
year: overview of and

order of the subject of

the courses for each
domain

Weekly outline:
overview courses
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Teaching plans

Materials

Description of each course:

Weekly:

Overview courses,
domains, materials,
duration courses

subject, goals,
materials
Directions for each
teaching phase
Use of pictographs
Blackboard outline

Learning path
Teaching plans
Homework stencils
Test stencils
Differentiation books
Grading keys

For each theme:

Description of each course:

Overview of learning
contents

Overview courses,
domains, materials,
duration courses

subject, goals,
materials,
organizational
aspects, starting
situation
Directions for each
teaching phase
Use of pictographs
Blackboard outline

Learning path
Teaching plans
Homework stencils
Test stencils
remediation
Grading keys

For each block:

block: overview
courses

Overview courses, -
domains, materials,
duration courses
Comprehensive
discussion of the
materials

For each domain: an -
overview of the

subject of the courses

Description of each course:

subject, goals,
materials, starting
situation

A brief outline of the
course

Additional didactical -
suggestions -
Comprehensive
directions for each
teaching phase: step -
by step, explicit
guidelines

Several teaching
phases provide extra
didactical suggestions
and mathematical
background

knowledge

Blackboard outline

Learning path -
Teaching plans -
Extra exercises -
Exercises in -
preparation for tests -
Test stencils

number of themes for

trimester

For each theme:

A very brief
introduction links the
theme with
mathematics and
gives an overview of
the materials
Overview of learning
contents for each
course and for each
domain

Use of pictographs:
student-centered —
teacher-centered
course

Description of each course:

Goals, material
Rather general
directions for each
teaching phase

Required materials for

the next course

Learning path
Teaching plans
Extra exercises
Test stencils
Additional exercises
for remediation

Weekly:

Description of each course:

Overview courses,
domain, subject,
duration, materials

Subject, goals,
materials
Directions for each
teaching phase
Use of pictographs
Blackboard outline

Learning path
Teaching plans
Homework stencils
Test stencils
Differentiation books
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- An analysis of each
test provides an
overview of the
performance on the
test for the class as a
whole and for each
individual student

- Additional exercises
for differentiation

- Grading keys

Grading keys

Grading keys

*Note KP = Kompas; ZG = Zo gezegd, zo gerekend; NT =ulNetal-rijk; PP = Pluspunt; EB = Eurobasis.
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Chapter 4
Preservice elementary school teachers’ knowledge fséctions: A mirror of

students’ knowledge?
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Chapter 4

Preservice elementary school teachers’ knowledge foactions: A mirror of students’

knowledge?

Abstract

The study of preservice elementary school teacherswledge of fractions is important, since the
subject is known to be difficult to learn and tade. In order to analyze the knowledge required to
teach fractions effectively, we reviewed researdhted to students’ understanding of fractions.sThi
review helped to delineate the difficulties studesmicounter when learning fractions. Building ois th
overview, the current study addressed Flemish pvese elementary school teachers’ common and
specialized content knowledge of fractions. Thelystievealed that preservice elementary school
teachers’ knowledge of fractions largely mirrorstical elements of elementary school students’
knowledge of fractions. Further, the study indicatihat preservice teachers hardly succeed in
explainingthe rationale underlying fraction sub-constructsagerations with fractions. The latter is
considered to be a critical kind of knowledge sfiedor the teaching professiofmplications of the

findings are discussed.

4

Based on:
Van Steenbrugge, H., Valcke, M., Lesage, E., Desokt & Burny, E. Preservice elementary school eag’
knowledge of fractions: A mirror of students’ knadbe? Manuscript submitted for publicationJwurnal of
curriculum studies
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1. Introduction
Mathematics is generally accepted as an importamicalum domain in elementary education (Hecht,
Vagi, & Torgesen, 2009; Keijzer & Terwel, 2003). tHih the mathematics curriculum, fractions are
considered as an essential skill for future mathesiauccess, but yet also as a difficult subject t
learn and to teach (Hecht, Close, & Santisi, 2088wton, 2008; Van Steenbrugge, Valcke, &
Desoete, 2010; Zhou, Peverly, & Xin, 2006).
It is a common misconception that elementary sch@ihematics is fully understood by teachers and
that it is easy to teach (Ball, 1990; Jacobbe, 20,2TM, 1991; Verschaffel, Janssens, & Janssen,
2005). Already more than twenty years ago, Shularahcolleagues argued that teacher knowledge is
complex and multidimensional (Shulman, 1986, 198¥son, Shulman, & Richert, 1987). They drew
attention to the content specific nature of teagliompetencies. Consequently, Shulman (1986, 1987)
concentrated on what he labeled as the missingliganain research on teacher knowledge: the nexus
between content knowledge, pedagogical content laune (the blending of content and pedagogy),
and curricular knowledge. Building on the work dfuBnan (1986, 1987), Ball, Thames, and Phelps
(2008) analyzed the mathematical knowledge needetedch mathematics. They point at two
empirically discernible domains of content knowledgommon content knowled@ad specialized
content knowledge&€ommon content knowledgefers to knowledge that is not unique to teaclaing
is applicable in a variety of settings (i.e. an emstinding of the mathematics in the student
curriculum). Ball et al. (2008) found that commamtent knowledge of mathematics plays a crucial
role in the planning and carrying out of instruntighis kind of knowledge is still considered as a
cornerstone of teaching for proficiency (KilpatricBwafford, & Findell, 2001)Specialized content
knowledgerefers to the mathematical knowledge and skillquaei to teaching: it is a kind of
knowledge ‘not necessarily needed for purposesr dttza teaching’ (Ball, et al., 2008, p. 400). For
instance, people with other professions need talbe to multiply two fractions, but none of them
needs to explain why you multiply both the numeraend denominators.
The question ‘What does effective teaching requiresterms of content knowledge’ can be

investigated in several ways (Ball, et al., 20@8).established approach to investigate what effecti
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teaching requires in terms of content knowledgeyiseviewing students’ understanding to determine
the mathematics difficulties encountered by stusléBll, et al., 2008; Stylianides & Ball, 2004).

Therefore, in the following section, we first rewiditerature considering students’ understanding of
fractions. Afterwards, we shift attention to (pnesee) teachers’ knowledge of fractions and present

the aims of the present study.

2. Elementary school students’ understanding of fractins
Fractions are difficult to learn (Akpinar & Hartlef996; Behr, Harel, Post, & Lesh, 1992; Behr,
Wachsmuth, Post, & Lesh, 1984; Bulgar, 2003; Heehgl., 2003; Kilpatrick, et al., 2001; Lamon,
2007; Newton, 2008; Siegler et al., 2010). Not =aipgly, ample research focused on students’
difficulties with fractions and tried to develop anderstanding of the critical components of well-
developed fraction knowledge (e.g.,Cramer, Postle®Mas, 2002; Keijzer & Terwel, 2003; Lamon,
2007; Mack, 1990; Siegler, Thompson, & Schneidéd,12 Stafylidou & Vosniadou, 2004). Authors
agree that a main source producing difficultietegrning fractions is the interference with student
prior knowledge about natural numbers (Behr, et1892; Grégoire & Meert, 2005; Stafylidou &
Vosniadou, 2004). This ‘whole number bias’ (Ni &d@h 2005) results in errors and misconceptions
since students’ prior conceptual framework of nureb#oes no longer hold. It is, for example,
counterintuitive that the multiplication of two &tons results in a smaller fraction (English &
Halford, 1995). Students have to overcome this Ibesveen natural numbers and fractions and
therefore need to reconstruct their understandingumbers. However, constructing a correct and
clear conceptual framework is far from trouble-frbecause of the multifaceted nature of
interpretations and representations of fractiorer¢Bdy & Hume, 1991; Cramer, et al., 2002; English
& Halford, 1995; Grégoire & Meert, 2005; Kilpatriclet al., 2001). Research more particularly
distinguishes five sub-constructs to be masterestinyents in order to develop a full understanding
fractions (Charalambous & Pitta-Pantazi, 2007; téatlerg, 2010; Kieren, 1993; Kilpatrick, et al.,
2001; Lamon, 1999; Moseley, Okamoto, & Ishida, 200 he ‘part-whole’ sub-construct refers to a

continuous quantity, a set or an object dividea iparts of equal size (Hecht, et al., 2003; Lamon,
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1999). The'ratio’ sub-construct concerns the notion of a comparisiween two quantities and as
such, it is considered to be a comparative indtherahan a number (Hallett, Nunes, & Bryant, 2010;
Lamon, 1999). Théoperator’ sub-construct comprises the application of a foncto a number, an
object or a set. By means of thguotient’ sub-construct, a fraction is regarded as the treduh
division (Charalambous & Pitta-Pantazi, 2007; Kigrel993). In the‘measure’ sub-construct,
fractions are seen as numbers that can be ordkmeg @ number line (Hecht, et al., 2003; Keijzer &
Terwel, 2003; Kieren, 1988). As such, this sub-tmts is associated with two intertwined notions
(Charalambous & Pitta-Pantazi, 2007; Lamon, 200he number-notion refers to the quantitative
aspect of fractions (how large is the fraction) levhihe interval-notion concerns the measure asdigne
to an interval.

Research of students’ conceptual knowledge ofitmastrevealed that students are most successful in
assignments regarding the part-whole sub-constiugieneral, they have developed little knowledge
of the other sub-constructs (Charalambous & Pistat&zi, 2007; Clarke, Roche, & Mitchell, 2007;
Martinie, 2007). Especially knowledge regarding theeasure sub-construct is disappointing
(Charalambous & Pitta-Pantazi, 2007; Clarke, e28l07; Hannula, 2003).

Students with an inadequate procedural knowledgel lef fractions can make errors due to an
incorrect implementation of the different stepsdeskto carry out calculations with fractions (Hecht
1998). Students, for example, apply procedures #nat applicable for specific operations with
fractions, but are incorrect for the requested aipan; e.g., maintaining the common denominator on
a multiplication problem as in 3/7 * 2/7 = 6/7 (H¢c1998; Siegler, et al., 2011). There is a debate
whether related procedural knowledge precedes ptualeknowledge or vice versa or whether it is an
iterative process. While we do not disregard tlibale, the present study accepts that both types of
knowledge are critical in view of mastery of fracts (Kilpatrick, et al., 2001; NMAP, 2008; Rittle-
Johnson, Siegler, & Alibali, 2001).

Several studies mention a gap between studentLeptual and procedural knowledge level of
fractions; particularly students’ conceptual knadge of fractions is reported to be problematic

whereas students’ procedural knowledge of fractigneeported to be better (Aksu, 1997; Bulgar,

97



2003; Post, Cramer, Behr, Lesh, & Harel, 1993; iged2008). Some students do not develop a deep
conceptual understanding resulting in a ratherunséntal understanding of the procedures (Aksu,

1997; Hecht, et al., 2003; Prediger, 2008). Ma @)9&bels this as a pseudoconceptual understanding.

3. (Preservice) teachers’ knowledge of fractions
Studies concerning (preservice) teachers’ knowlaxfgieactions focused primarily on one aspect of
fractions like ratio (Cai & Wang, 2006), multiplan of fractions (Isiksal & Cakiroglu, 2011; Izsak
2008), and division of fractions (Ball, 1990; Bor&bal., 1992; Ma, 1999; Tirosh, 2000). Borko et al
(1992) described the situation of a preservice fridsthool teacher who had taken a lot of
mathematics courses. Although the teacher wastaldévide fractions herself, she was not able to
explain why the invert-and-multiply algorithm worke Another study about preservice teachers'
knowledge of students' conceptions revealed thesegovice teachers were not aware of the main
sources of students’ wrong answers related toidivisf fractions (Tirosh, 2000). At the beginning o
the mathematics course, the preservice teachéught they were able to divide fractions — were als
not able to explain the rationale behind the praced
Another strand of research is set up cross-culamdlcompared U.S. and Asian teachers’ knowledge
of fractions. The rationale comes from the findihgt Asian students outperform other studentsen th
field of mathematics and teacher expertise is cmsi to be a possible explanation for these cross-
cultural differences (Ma, 1999; Stigler & Hiebet§99; Zhou, et al., 2006). Studies point out thato
variety of aspects, Asian teachers do have a betteéerstanding of fractions as compared to U.S.
teachers (Cai & Wang, 2006; Moseley, et al., 20Bfou, et al., 2006). A cross-cultural study
focusing on the division of fractions is the wefiekvn study of Liping Ma (1999). Ma studied 23 U.S.
and 72 Chinese elementary school teachers’ knowlefignathematics in four domains: subtraction
with regrouping, multi-digit multiplication, divien by fractions, and the relationship between
perimeter and area. With regard to the fractiosk,teeachers were asked to indicate how they would
calculate the quotient and to think of a good starynodel to represent the division. Ma stated thet

Chinese teachers’ “way of ‘doing mathematics’ shdwegnificant conceptual understanding” (Ma,
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1999, p. 81) and that “one of the reasons why tt# teachers’ understanding of the meaning of
division of fractions was not built might be thaeir knowledge lacked connections and links” (Ma,
1999, p. 82).

Arguing that studies of preservice teachers’ knogteof fractions have focused primarily on division
of fractions, Newton (2008) analyzed preserviceeheas’ performance on all four operations with
fractions. Data of 85 participants were collectetha beginning and at the end of a course in which
preservice teachers were required to link the nmepof the operations with the specific algorithm.
The outcomes revealed that at the end of the coymsservice teachers’ computational skill,
knowledge of basic concepts, and solving word gnwmisl capacity improved. There was however no
meaningfull change in flexibility and transfer waw at the post test.

Moseley, Okamoto, and Ishida (2007) studied 6 W&d 7 Japanese experienced fourth grade
teachers’ knwoledge of all five sub-constructs rections. The study showed that the U.S. teachers
focused strongly on the part-whole subconstructenewhen this was inapropriate - whereas the
Japanese teachers focused to a larger extent @cconderlying subconstructs.

This overview illustrates that research on (prasejvteachers’ knowledge of fractions targetted
participants common and specialized content knogdednd did so for one or more sub-constructs, or
for operations (mostly one operation) with fracBonHowever, research that addresses both
(preservice) teachers’ knowledge of the four opemnat and the sub-constructs and did so by
addressing their common and specialized contenvlattye is lacking. We elaborate further on this in

the next section.

4. A comprehensive overview of preservice teachers’ kmvledge of fractions is lacking
The research on preservice teachers’ knowledgeaatibns suggests that teacher misconceptions
mirror the misconceptions of elementary school el (Newton, 2008; Silver, 1986; Tirosh, 2000).
These studies however were too narrow in scopédndto the broader range of students’ difficsltie
. In order to develop a more comprehensive picab@ut the parallels between elementary preservice

teachers’ and elementary school students’ knowledfydractions, the current study analyzes
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preservice teachers’ knowledge of the five fracgab-constructs and preservice teachers’ procedural
knowledge of fractions. In addition, since Ballaf(2008) underline the importance of specialized
content knowledge, student teachers’ capacity taéx the rationale underlying a sub-construct or
operation was studied as well. Given that teacdecation is a crucial period to obtain a profound
understanding of fractions (Borko, et al., 1992;, M899; Newton, 2008; Toluk-Ucar, 2009; Zhou, et
al., 2006), we included both first-year and lasaty@reservice teachers to study gains in their
knowledge.Hence the present study centers on preservicedesaatcommon content knowledge as
measured by their conceptual and procedural uradetisty of fractions on the one hand and on
preservice teachers specialized content knowledgeneasured by their skill in explaining the
underlying rationale on the other hand. Two redegtestions are put forward:

- To what extent do preservice teachers master theedural and conceptual knowledge of

fractions (common content knowledge)?
- To what extent are preservice teachers able taexthe underlying rationale of a procedure

or the underlying conceptual meaning (specializztent knowledge)?

5. Methodology

5.1.Participants
Participants were 290 preservice teachers (18d4diird 106 last-year trainees), enrolled in twoheac
education institutes in Flanders (academic yea®ZW10). In Flanders, elementary school teachers
follow a three-year professional bachelor degrdemish elementary school teachers are all-round
teachers, and therefore preservice teachers anedran all school subjects, including mathematics.
The total group consisted of 43 male and 247 fersialdents, which is representative for the Flemish
teacher population. Participants’ average age Wa&31SD= 1.77) years.
Prior to entering teacher education, 197 partidpanttained a general secondary education diploma
preparing for higher education (academic track)p88icipants completed a technical or vocational
track, not necessarily geared to enter higher a@ducaBoth teacher education programs equally focus
on fractions (See Appendix A). A first block is dé®d to repetition of basic fraction knowledge,

while a second block focuses on how to teach fsasti Total teaching time spent to fractions during
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teacher education varies between five and severshohbe focus ‘How to teach fractions’ in the first
teacher education institute is programmed in thst fialf of the second year of teacher education. |
the second teacher education institute it is prograd in the second half of the first year, butrafie
current study was carried out.

5.2.Instrument
Based on the review of elementary school studemderstanding of fractions (cfr. supra), a test was
developed and administered to measure preservamhdes’ understanding of fractions. A detailed
description of all test items is provided in AppenB. The first part of the test includes 39 items
addressing respondentsinceptual knowledge of fractionBnese 39 test items were used in previous
studies measuring students’ conceptual knowledgefradtions (Baturo, 2004; Boulet, 1998;
Charalambous & Pitta-Pantazi, 2007; Clarke, et28lQ7; Cramer, Behr, Post, & Lesh, 1997; Davis,
Hunting, & Pearn, 1993; Hannula, 2003; Kieren, 1988mon, 1999; Marshall, 1993; Ni, 2001;
Noelting, 1980; Philippou & Christou, 1994).
The second part of the test consists of 13 testsitaddressing respondenpsbcedural knowledge of
fractions these items were sampled from mathematics tektdo addition, for respectively two and
five items of the first and second part of the tespondents were required to indicate how theylavou
explain the underlying rationale to students. Thi#ses aimed at measuring preservice teachers’
specialized content knowledge of fractions
All test items corresponded to the elementary school mathematiascalum. Items measuring
procedural or conceptual knowledge were scoredottichously: correct/incorrect. Items measuring
specialized content knowledge, were scored a seibmedleading to a 0, 1, or 2 point score. Scoring
for the specialized content knowledge dependedhemature of the justification or clarification. If
respondents could not explain the rationale, ptesea wrong explanation, or simply articulated the
rule, a 0 score was awarded (e.g., 2/5 x 3/5: llddormulate the rule: nominator times nominator;
denominator times denominator’). A partially cotr@gstification/explanation, resulted in a score 1.
The latter included responses that were too alistvaelementary school students, or partially eotr

(e.g., 2/5 x 3/5: ‘1 would start with an example miultiplication of natural numbers: 2 times 3.
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Students know it equals 6. Next | would rewrite tlaural numbers as fractions: 2/1 x3/1; this egual
6/1. Then | would show that in order to multiply awractions, one has to multiply both the
nominators and both the denominators.’). Completelyect explanations/justifications resulted in a
score 2 (e.g., 2/5 x 3/5: ‘I would draw a squardtenblackboard and ask students to divide thersqua
in five equal pieces and let them color three effiie equal parts: this is 3/5 of the original au
Next | would ask to divide the colored part agairfive equal pieces and let them mark in another
color two of the five equal parts. This is 2/5 @5.3The original square is now divided in 25 equal
pieces and the result of the multiplication congsi$ of the 25 pieces. So, actually, we divided the
original square in 25 equal-sized pieces and wé& ®auch pieces. And thus, the result of the
multiplication is 6/25.").

Mean scores for the conceptual and procedural stsbéad for specialized content knowledge were
calculated, resulting in an average score rangiog fO to 2 for the specialized content knowledge
subtest and from 0 to 1 for the conceptual andguioal subtest.

A trial version of the test was screened by twaliea trainers and by two experienced inservice
elementary school teachers. They were asked (lihehthe test items correspond to the elementary
school mathematics curriculum and (2) whether tiey suggestions for improving the wording of the
items. All items were judged to correspond to thericulum; the wording of some items was

improved on the base of concrete suggestions.

5.3.Procedure
All tests were delivered to the participating tesrceducation institutes; completed tests were methr
to the researchers. At the time of test administnatall first year student teachers had alreadsnbe
taught basic fraction knowledge; but none was ¢émito teach fractions. All third year students were
both taught basic fraction knowledge and trainetetxh fractions. Informed consent was obtained
from participating student teachers. Student teachvere informed that test scores would not affect

their evaluation. Confidentiality of personal datas stressed. Respondents could refuse to provide
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personal background details. All student teachengigipated in the study, none refused and no
missing data were found in the data set.

Teacher educators were given a protocol in vietheftest administration containing guidelines with
regard to the maximum time-frame, the introductidrthe test to the student teachers, and the test
administration. A time-frame of 100 minutes was #dt participants handed in the completed test
within this time-frame. At the beginning of thett@asiministration, the teacher educator introduted t
test to the preservice teachers. The test staitbdoackground questions on the first page, requgst
student background data: name, gender, and premndary education diploma. All returned test

forms were scored by one member of the researah tea

5.4 .Research design and analysis approach
The first research question was approached in tagswFirst, the difference between student
teachers’ conceptual and procedural knowledge a€tisns was analyzed. Second, we focused
specifically on student teachers’ conceptual kndgéeof fractions and analyzed scores in relation to
the five sub-constructs.
With regard to the difference between student texchconceptual and procedural knowledge of
fractions, the design reflects a 2*2*2*2 mixed AN@\Wesign. The first factor was the between-
subjects factor of gender. The second factor wasbtween-subjects factor of track in secondary
education (general oriented secondary educatiosusepractical oriented secondary education). The
third factor was the between-subjects factor ofr ydaeacher education (first-year versus thirdryea
teacher trainees). A fourth factor was based onwtkin-subjects factor of type of knowledge
(procedural knowledge versus conceptual knowledfleg dependent variable was the participants’
average score. Whereas the first two factors wectuded in the research design as background
variables, the third and fourth factor were incldids variables of interest.
Considering student teachers’ conceptual knowlasfg&actions, the design employed was also a
2*2*2*2 mixed ANOVA design. Between-subjects factawere the same as in the previous section:

gender, track in secondary education, and yeaeadhter education. A fourth factor was a within-
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subjects factor of conceptual knowledge sub-consiéi which the five levels were defined by the
five sub-constructs: part-whole, ratio, operatamttent, and measure. The dependent variable veas th
participants’ average score. Again the first twotdas were included as background variables; the
third and fourth factor were included as varialdEmterest.

With regard to the second research question, thigm@employed was a 2*2*2 ANOVA design. The
three between-subjects factors were based on gdratek in secondary education, and year of teacher
education. The dependent variable was the partitspaverage score for the specialized content
knowledge subtest. Once more, the first two factase considered as background variables; the third

factor as a variable of interest.

6. Results

6.1.Procedural and conceptual knowledge
The average score for the complete fractions tast.81 §D=.11), .86 §D =.15) for the procedural
knowledge subtest, and .88 = .12) for the conceptual knowledge subtest (sd#erl).

Table 1. Average score (and standard deviation) ame fractions test

Procedural knowledge Conceptual knowledge Total
Male Female Total Male Female Total Male FemaleTotal
AT .89 (.17) .86(.14) .87 (.15) .86 (10) .82 (.10.82 (.11) .87 (.10) .83(.10) .83(.10)
TT .85 (.16) .84 (.17) .84 (.17) .84 (.09) .714).1 .74 (.14) .84 (.110) .74 (\12) .76 (.13)

Total  .88(.17) .85(.15) .86(15)  .85(.10) (78) .80(12)  .86(10) .80(.11) .81 (.11)

Note AT = academic track; TT = technical or vocatiofmatk.

There was a significant main effect of gendefl( 282) = 5.27p < .05, partiain? = .02), track in
secondary educatioffr(1, 282) = 6.88p < .01, partian? = .02), and type of knowledg€&((l, 282) =
15.78,p < .0001, partiah2 = .05). There was no significant main effect efiy of teacher education
(F(1,282) = 1.75p = .187). The gender by type of knowledge interactie(1, 282) = 4.01p < .05,
partialn? = .01), and the gender by type of knowledge lepsdary education interactioR({, 282) =
4.47,p < .05, partialn?2 = .02) were also significant. The significant maiffects show that male
student teachers scored higher than female stutEsthers on the whole fractions test, that student

teachers from an academic track scored higher @mwtiole fractions test than those from a technical
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or vocational track in secondary education, antgbares for procedural knowledge of fractions were
higher than scores for conceptual knowledge otisas (see Table 1). Related effect sizes werelsmal
(cfr. supra). The absence of a significant maieafbf year of teacher education indicates thatlthi
year trainees did not perform significantly diffeteas compared to first-year trainees on the whole
fractions test.

The gender by type of knowledge interaction implieat the difference between male and female
student teachers was significantly smaller for pdaral knowledge as compared to the gender
difference on the whole fractions test score (Sebld 1). Moreover, male student teachers scored
higher than female students teachers on concégtoalledge (=3.41,df = 288,p < .005, one-tailed),
but not on procedural knowledge £.86 ,df = 288,p = .19, one-tailed). The gender by type of
knowledge interaction also indicates that the difee between the scores for procedural and
conceptual knowledge for male students was signifly smaller as compared to the difference for
the entire group of respondents. Moreover, theescéor procedural knowledge were significantly
higher than scores for conceptual knowledge foralerstudent teachers=£6.90,df = 246,p < .0001,
one-tailed), but not for male student teachersl(04,df = 42,p = .15, one-tailed).

The gender by type of knowledge by secondary edhrcamteraction reflects that female student
teachers from an academic track in secondary eduacatored significantly higher for conceptual
knowledge than female student teachers from a ieghaor vocational trackt(= 5.89 ,df = 114,p <
.0001, one-tailed), while this did not hold for pedural knowledget (= 1.23,df = 120.71,p = .11,
one-tailed). Male student teachers from an acadamanik did not score significantly higher than male
student teachers from a technical or vocationaktfaonceptual knowledgé= .83,df = 41,p = .21,

one-tailed; procedural knowledges .97,df = 41,p= .17, one-tailed).

6.2.Conceptual knowledge: sub-constructs

There was a significant main effect of gendgl( 282) = 12.56p < .0005, partiah? = .04), track in

secondary educatiofr(1, 282) = 9.26p < .005, partiah? = .03), and sub-construd¥(3.38, 953.24) =
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56.15,p < .0001, partiah? = .17). There was no significant main effect ey of teacher education
(F(1,282) = 0.501p = .480).

The significant main effects indicate that maledstut teachers scored higher than female student
teachers; that student teachers from an academi& tscored higher on the subtest measuring
conceptual knowledge than those from a technicaboational track (see Table 2).

The absence of a significant main effect of yeateather education indicates that third-year tesne
did not perform significantly different on the sebt measuring conceptual knowledge as compared to

first-year trainees.

Table 2. Average score (and standard deviation) fathe sub-constructs

Secondary education

AT TT Total
Part-whole Male .92 (.10) .92 (.10) .92 (.10)
Female .90 (.11) .80 (.18) .87 (.114)
Total .90 (.112) .82 (.17) .88 (.14)
Ratio Male .97 (.05) .95 (.10) .96 (.07)
Female .94 (.10) 91 (.12) .93 (.10)
Total .94 (.09) .92 (.11) .93 (.10)
Operator Male .79 (.18) .78 (.19) .79 (.18)
Female 77 (.18) .62 (.23) 73 (.21)
Total .78 (.18) .65 (.23) 74 (.21)
Quotient Male .82 (.24) .79 (.21) .81 (.22)
Female .80 (.22) .65 (.26) .76 (.24)
Total .81 (.22) .67 (.25) .76 (.24)
Measure Male 77 (.20) .70 (.20) .74 (.20)
Female .64 (.22) .51 (.24) .60 (.24)
Total .66 (.22) .55 (.24) .62 (.24)
Total Male .87 (.08) .85 (.08) .87 (.08)
Female .82 (.10) .72 (.13) 79 (.12)
Total .82 (.10) 74 (.13) .80 (.12)

Note AT = academic track; TT = technical or vocatiotratk.

Paired t-tests were performed to further analyeestpnificant main effect of sub-construct (seel@ab
3). As can be derived from Table 3, the resulteaéwa hierarchy in the mastery level of the sub-
constructs. The score for the ratio sub-construag significantly higher than the scores for alleoth
sub-constructs. The score for the part-whole sutsttoct was significantly higher than the scores fo
the quotient, operator, and measure sub-constita. score for the quotient sub-construct was
significantly higher than the scores for the opmratnd measure sub-construct. The score for the

operator sub-construct was significantly higherntilbe score for the measure sub-construct, and
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consequently, the score for the measure sub-cathstras significantly lower than the scores for all
other sub-constructs.

Table 3. T-values for differences between sub-comatts (row minus column)

Part-whole Ratio Operator Quotient Measure
Part-whole / -6.58** 12.36** 8.75** 20.45**
Ratio / 16.70** 12.50** 23.00**
Operator / -1.82* 7.79**
Quotient / 8.97*
Measure /

df = 289; *p < .05; * p< .0001

A more detailed inspection of responses at iteralleavealed some remarkable results. First, ifl tota
63.10% of the respondents was not able to give mbeu located betweeiq and% (item 19) and

43.44% could not solve item 18: ‘By how many tinsé®uld we increase 9 to get 15?’. Furthermore,

35.86% did not answer item 29 correctly: ‘Whichtloé following are numbers? Circle the numbers:

A 4,* 17,16, 0.0063—, 47.5,%, $, 1%’; and 35.52% could not locate the number one nomaber line

when the origin and a given numbef:)(ﬂvas given (item 21.2). In addition, also 35.52%swot able

to solve item 24: ‘Peter prepares 14 cakes. Halds/these cakes equally between his 6 friends. How
much cake does each of them get?'.

Since the nature of the responses to items 19 &ndefected patterns, an error analysis was
performed. ltem 19 asks respondents whether tlseee fraction located betwee;nand%. If they

thought so, respondents were asked to write dofwacéion located between the two given fractions.
Only 36.90% K = 107) answered this question correctly. Errorssfifelents were not able to answer

the question, 55 wrote down a fraction that waslocated between the two given numbers, and 53
indicated explicitly that no fraction exists betwe;eandé. As such, 18.28% of all the respondents
came up with a wrong answer because they explithibught that there are no fractions located
between:; and%. Item 29 asks respondents to circle the numbeasgiven row of representations. In

total, 186 (64.14%) did well. Errors: 85 studeneglected the fractions; 5 respondents did only

encircle the natural numbers, 2 respondents didtaedoth numerators and denominators, and 12
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made another type of error. As such, 92 respond8tt2%) made an error that states that a fraction

is not a number.

6.3.Specialized content knowledge
The average score for the specialized content leuyd subtest was 0.430 = 0.20) out of a
maximum of 2. There was a significant main effddrack in secondary educatioR((, 282) = 4.05,
p < .05, partiam? = .01) and a significant interaction effect ohder by year of teacher education
(F(1, 282) = 3.97p < .05, partialm? = .01). Though these differences were significtre effect sizes
indicate that we observed rather small variatioftsere was no significant main effect of gender
(F(1,282) = 0.002p = .960) and no significant main effect of year @f¢her educatior-(1,282) =
0.328,p = .568).
According to the significant main effects, studirachers from an academic track scored signifigantl
higher on the specialized content knowledge sulthest those who followed a technical or vocational

track in secondary education (see Table 4).

Table 4. Average score (and standard deviation) faspecialized content knowledge

First year teacher training Third year teach&intng Total

Male Female Total Male Female Total Male FemaleTotal
AT 44 (\13) .43 (.18) .44 (.17) 43 (.23) .461).2 .46 (.21) 44 (.16) .45(.19) .44 (.19)
TT 46 (\19) .32(.19) .35(.20) .29 (.00) .4(3).2 .38 (.21) 42 (\19) .34 (.21) .35(.20)

Total  .45(.16) .39 (19) .40(19)  .38(20) (4B) .44(22)  .43(17) .41(.20) .42(.20)

Note AT = academic track; TT = technical or vocatiotratk.

The absence of the significant main effect ‘yeart@fcher education’ implies that across all
respondents, teacher education year did not hagh#icant impact on the student teachers’ score fo
specialized content knowledge of fractions. Thedgenby year of teacher education interaction
implies that the difference between first and thyghr male students was significantly different as
compared to the difference between the entire gadujrst and third year students. The gender by

year of teacher education interaction also meaatttie difference between male and female third
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year students was significantly different as coragao the difference between entire group of male

and female students (see Table 4).

7. Discussion and conclusion
A major concern regarding increasing mathemati@sdstrds expected of students should be teachers’
preparation to address these standards (Jacobbg; Ripatrick, et al., 2001; Stigler & Hiebert,
1999; Zhou, et al., 2006). Fractions is known to de important yet difficult subject in the
mathematics curriculum (Newton, 2008; Siegler, bt 2010; Van Steenbrugge, et al., 2010).
Compared to the large amount of research that éscos students’ knowledge of fractions, little is
known, however, about both inservice and presersdaehers’ knowledge of fractions (Moseley, et
al., 2007; Newton, 2008). This is a critical obsdion since particularly in elementary educations i
a common misconception that school mathematicslig éinderstood by the teachers and that it is
easy to teach (Ball, 1990; Jacobbe, 2012; NCTM,1198rschaffel, et al.,, 2005). Therefore, and
given that teacher education is considered to lmruaial period in order to obtain a profound
understanding of fractions (Borko, et al., 1992;, 899; Newton, 2008; Toluk-Ucar, 2009; Zhou, et
al., 2006), this study focused on preservice taatkaowledge of fractions.
A common approach to analyze the required conteotvledge to teach effectively is by means of a
review of students’ understanding to determinedificulties students encounter with mathematics
(Ball, et al., 2008; Stylianides & Ball, 2004). Fnling this methodology, we reviewed studies relate
to students’ understanding of fractions, revealingap between students’ procedural and conceptual
knowledge of fractions (Aksu, 1997; Bulgar, 2008sP et al., 1993; Prediger, 2008). Analysis of
students’ conceptual understanding of fractionssithted that students are most successful in tasks
about the part-whole sub-construct, whereas stadémbwledge of the sub-construct measure is
disappointing (Charalambous & Pitta-Pantazi, 200lgrke, et al., 2007; Hannula, 2003; Matrtinie,
2007).
Research suggests that preservice teachers’ kngavleidfractions mirrors similar misconceptions as

revealed by research of elementary school studéntsiledge of fractiongNewton, 2008; Silver,
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1986; Tirosh, 2000). Previous studies were howdéeernarrow in scope to analyze the difficulties
preservice teachers encounter when learning fract@s revealed in our overview of students’
understanding of fractions. Therefore, we decidedge a more comprehensive test measuring both
preservice teachers’ conceptual and procedural laume of fractions and theicompetence in
explaining theunderlying rationale.

Regarding the first research question, presergaelters’ procedural and conceptual knowledge about
fractions were analyzed. Since test itecmresponded to the elementary school mathematics
curriculum and since the Flemish Government stresses tleaepice teachers, regarding content
knowledge, should master at least the attainmegets of elementary education (Ministry of the
Flemish Community Department of Education and Tingin 2007), it can be concluded that an
average score of .81 is not completely sufficienteach these contents. Moreover, detailed results
revealed that even third-year student teachers madey errors. Across all respondents, scores for
procedural knowledge were significantly higher ttseores for conceptual knowledge. Though the
related effect size indicated that the differen@eswmall, the latter reflects the finding a gameen
elementary school students’ procedural and conaéjkhowledge of fractions (Aksu, 1997; Bulgar,
2003; Post, et al., 1993; Prediger, 2008). In alditsub-scores for the five fraction sub-conssuct
were studied in detail. Large and significant difeces in the mastery of the various sub-constructs
were found. The findings again mirror the resultsrf studies involving elementary school students
who seem to master especially the part-whole swistoact while scores for the measure sub-
construct are disappointing (Charalambous & Pittat®zi, 2007; Clarke, et al., 2007; Hannula, 2003;
Martinie, 2007). Moreover, more than one third lud preservice elementary school teachers did not
encircle the fractions out of a set of charactensmwasked to circle the numbers. This also refkbets
finding that elementary school students often ditl internalize that a fraction represents a single
number (Post, et al., 1993). These results raigstmguns considering preservice teachers’ common
content knowledge of fractions. This is a critifiatling since this kind of knowledge is found t@ypl

a crucial role when teachers plan and carry outuoson in teaching mathematics (Ball, et al., 200

and consequently is considered as a cornerstamadctiing for proficiency (Kilpatrick, et al., 2001)
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With regard to the second research question oftirdy, we addressed preservice teachsdl in
explaining the underlying rationale (i.e. explamiwhy a procedure works or justifying their answer
on a conceptual question). This kind of knowledgecialized content knowledge, refers to the
mathematical knowledge and skill unique to teachiBgll, et al., 2008). The average score for
preservice teachers’ specialized content knowleggge only .42 (maximum = 2.00), which can be
considered as a low score, that — although therm ibench mark available — questions preservice
teachers’ specialized content knowledge level. Tisn important finding since research clearly
points at the differential impact of teachers wiawdra deeper understanding of their subject (Hattie
2009). The present results question the naturemapalct of teacher education. The latter is everemor
important, since we observe that the year of taagtiecation students are in did not had a significa
impact on preservice teachers’ common content kedgd, nor on their specialized content
knowledge of fractions, implying that third yeawud¢nts did not perform better than first year
students. Analysis of the fractions-related cuitiouin teacher education learns that this is hardly
surprising, since only a limited proportion of thaxg time in teacher education is spent on frastion
Given thatfractions are considered an essential foundatiskidllfor future mathematics success and
as a difficult subject to learn and to teach (Heehtl., 2003; Newton, 2008; Van Steenbruggel.et a
2010), questions can be raised about the factfthetions represent only a very small proportion of
the curriculum related time in teacher educatilong the same line, one can doubt whether it is
feasible to prepare preservice teachers to teaely esubject in elementary education. A practical
alternative, as suggested by the National Mathesadvisory Panel (2008), could be to focus on
fewer teachers who are specialized in teaching esdany mathematics. Also, simply increasing the
number of lessons in teacher education that foeudractions would be insufficient; preservice
teachers should be provided with mathematical kadgé useful to teaching well (Kilpatrick, et al.,
2001). Therefore, teacher education programs ctardliarize preservice teachers with common,
sometimes erroneous processes used by studentsH;Ti2000) and include explicit attempts to
encourage their flexibility (a tendency to use raléée methods when appropriate) in working with

fractions (Newton, 2008).
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The implication of our finding that only a limitgatoportion of teaching time in teacher education is
spent on fractions and on how to teach fractioatas not only to mathematics education of
preservice teachers, but to teacher education irerge It suggests that the move from teacher
“training” to teacher “education”, initiated in tH#980s (Verloop, Van Driel, & Meijer, 2001), is yet
not fully implemented. Preservice teachers carigat@ most of the procedures they have been taught,
but they are not ‘empowered’ with a deeper undeditey (Darling-Hammond, 2000).

Concluding, the present study indicates that Flenuseservice teachers’ knowledge of fractions
mirrors students’ inadequate knowledge of fractidieir level of common content knowledge and in
particular their level of specialized content knedde of fractions is below a required level.
Moreover, teacher education seems to have no ingmaits developmenilhese findings might give
impetus to teacher education institutes to reftecton how to familiarize preservice teachers with
teaching fractionsFuture research focusing on approaches to impmeaeher education’s impact on
preservice teachers’ level of common content kndgée and specialized content knowledge of
fractions in particular and of mathematics morealtp, can have a significant impact on improving

the content preparation of preservice teachers.
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APPENDIX. Description of the 52 test items measurig conceptual, procedural, and specialized

content knowledge of fractions

Conceptual knowledge

Sub-construct: part-whole

1. [Three drawings of rectangles divided in paftsvhich some are shaded are given.] Which of
the following corresponds to the fraction 2/3? @ithe correct answer.

7. [A triangle, divided in 2 rectangles and 4 tgkes of which 1 triangle is shaded is given. The
two rectangles are equally sized; the 4 triangtesall exactly half of the size of the rectangles.]
Which part of the triangle is represented by treygrart? Answer by means of a fraction.

8. [A drawing of a rectangle is given.] The rectanigelow represents 2/3 of a figure. Complete
the whole figure.

13. [A picture of 4 marbles is given]. If this regents 2/5 of a set of marbles, draw the whole set
of marbles below.

14.1. [A drawing of 4 triangles and 5 circles igegi.] What part of the total numbef the objects
shown in the picture are the triangles includethis picture?

14.2. [The same drawing of 4 triangles and 5 ciredegiven.] What part of the triangles shown in
the picture above, do two triangles represent?

16. [18 dots are given, of which 12 are black-cetb} Which part of the dots is black-colored?

25. [A drawing of a triangle, divided into3 equatlized parts is given.] Color % of the rectangle
below.

26.1. [A circle divided in some parts is given. Egart is allocated to a corresponding character.]
Which part of the circle is represented by B?

26.2. [The same circle divided in some parts igivEach part is allocated to a corresponding
character.] Which part of the circle is represerigd?

Sub-construct: ratio

2. [a drawing of 3 pizzas allocated to 7 girls, dngizza allocated to 3 boys is given.] Who gets
more pizza: the boys or the girls?

3.1. [A square divided in 6 equally-sized rectanagl€ which 1 is shaded is given on the left. On
the right, 24 diamonds are given.] Use the diagoanthe right to represent an equivalent fraction
to the one presented on the left.
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3.2. [On the left, 4 diamonds are given of whicis &ncircled. On the right, 1 rectangle is divided
into 16 equally-sized squares.] Use the diagrartherright to represent an equivalent fraction to
the one presented on the left.

3.3. [A rectangle divided in 6 equally-sized sqgaméwhich 4 are shaded is given on the left. On
the right, 24 diamonds are given.] Use the diagoanthe right to represent an equivalent fraction
to the one presented on the left.

9*° [Two equal-sized squares, one divided in 7 epasts, the other divided in 4 equal parts are
given. By means of balloons, Hannah states thatis’farger than 4/4 because it has more pieces’
and Jonas states that ‘4/4 is larger because etepiare larger’.] What do you think? Who is

right? Please justify your answer.

10. [A rectangle divided into 18 parts of equaksi which 10 are shaded is given. Also 5 circles
of which some part is shaded are given.] The ptaporof the area shaded in the following
rectangle is approximately the same with the priopoof the area shaded in which circle? (Circle
ONE answer only.)

17.1. Bram and Olivier are making lemonade. Whessgohade is going to be sweater if the kids
use the following recipes? Bram: 2 spoons of sdigaevery 5 glasses of lemonade; Olivier: 1
spoon of sugar for every 7 glasses of lemonade.

17.2. Bram and Olivier are making lemonade. Wheseohade is going to be sweater if the kids
use the following recipes? Bram: 2 spoons of stigaevery 5 glasses of lemonade; Olivier: 4
spoons of sugar for every 8 glasses of lemonade.

27. Piet and Marie are preparing an orange juicghfeir party. Below you see the two recipes.
Which recipe will taste the most ‘orange’? Recipellcup of concentrated orange juice and 5
cups water. Recipe 2: 4 cups of concentrated oramegeand 8 cups of water.

«  Sub-construct: operator

15.1. Without carrying out any operations, decidether the following statement is correct or
wrong. If we divide a number by 4 and then multifitg result by 3, we are going to get the same
result we would get if we multiplied this number ¥y

15.2. Without carrying out any operations, decideether the following statement is correct or
wrong. If we divide a number by 7 and then multifiig result by 28 we are going to get the same
result we would get if we multiplied this number ¥y

15.3. Without carrying out any operations, decidether the following statement is correct or
wrong. If we divide a number by 4 and then multifite result by 2 we are going to get the same
result we would get if we divided this number b.2/

® An asterix (*) indicates that the item in additiovas used to measure respondents’ specialized retonte
knowledge.

121



18*. Please answer the following question. Thedarow you got your answeBy how many
times should we increase 9 to get 157’

28.1. [A drawing of a machine that outputs ¥4 ofitiput number is given.] If the input number is
equal to 48, the output number will be ...?

28.2. [A drawing of a machine that outputs 2/3taf input number is given.] If the input number
is equal to 12, the output number will be ...?

Sub-construct: quotient

4. Decide whether the following statement is cdrogonvrong: ‘2/3 is equal to the quotient of the
division 2 divided by 3.’

5. Three pizzas were evenly shared among somel§idineach of them gets 3/5 of the pizza, how
many friends are there altogether?

11. [A drawing of 5 girls and 3 pizzas is givenlirée pizza’s are equally divided among five
girls. How much pizza will each of them get?

12. Which of the following correspond to a diviskoth37 + 45 = ; 350 : 30 = ; 234 — 124 = ;

12/124 = ; 45*123 = %

24. Peter prepares 14 cakes. He divides these egledly between his 6 friends. How much cake
does each of them get?

Sub-construct: measure

6.1. [A number line is given, with a range fromo06t] Locate 9/3 on the number line.
6.2. [A number line is given, with a range frono06t] Locate 11/6 on the number line.
19. Is there a fraction that appears between W84 If yes, give an example.

20. Draw below a number line and locate 2/3 on it.

21.1. [A number line with the origin and 5/9 loghian is given.] Locate humber 1 on the number
line.

21.2. [A number line with the origin an(% Pcated on is given.] Locate number 1 on the numbe
line.

23.1. Use two of the following numbers to constradraction as close as possible to 1. [The
numbers 1,3,4,5,6,7 are given.]

23.2. Use two of the following numbers to constradraction as close as possible to 0. [The
numbers 1,3,4,5,6,7 are given.]
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29. Which of the following are numbers? Put a eiratound them. [Next is given: A, 4, *, 1.7, 16,
0.0062, 47.5., $, %]

Procedural knowledge

* Find the answer to the following

40.3/5+4/5= ... 44.8/3 * 4/5 =

41.5/8 -1/4 = ... 45.3/4 +1/3 = ...
42.3/5*3/4 = ... 46.5/6 - 1/4 = ...
43.1/3:4 = ... 47.6/7:2/3 = ...

» Find the answer to the following. lllustrate eaichet how you would explain this to your pupils.
You can use the following pages to write down thestrations.

48*.5/6 — 1/4 = ...
49*, 2/6 + 1/3 = ...
50*. 5:1/2 = ...

51*. 2/5*3/5= ...

52*.3/4:5/8 = ...
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Chapter 5

Teaching fractions for conceptual understanding: Arobservational study in elementary schodl

Abstract

This study analyzed how fractions are taught inftheth grade of elementary education in Flanders,
the Dutch speaking part of Belgium. Analysis cesdlenn features that facilitated students’ concéptua
understanding. The findings suggested that thehilegof fractions in Flanders supported students’
procedural understanding rather than their cone¢ptoderstanding of fractions. The study further
revealed that the orientation toward conceptuaktstdnding differed according to the mathematical
idea that was stressed. Finally, the results redeal consistency in the transition from the task as
presented in the teacher's guide to the task asisdiy the teacher, and an inconsistency in the
transition from the task as set up by the teaahéhne task as enacted through individual guidaryce b

the teacher. Implications are discussed.

6
Based on:
Van Steenbrugge, H., Remillard, J., Verschaffel, Valcke, M., & Desoete, A. Teaching fractions for

conceptual understanding: An observational studsiémentary school. Manuscript submitted for putlan in
The Elementary School Journal
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1. Teaching fractions
In the chapter ‘Rational Number, Rate, and Propotiin theHandbook of Research on Mathematics
Teaching and Learningehr, Harel, Post, and Lesh (1992) concludedttiet were unable to find a
significant body of research that focused expiiaith teaching rational number concepts. By making
this statement, Behr and colleagues highlighteddemerth of findings that could offer guidance for
teaching the domain that includes fractions (Lan0Q7). A notable exception on this point is the
work of Streefland, who developed, implemented, @&vwdluated a curriculum for fractions in
elementary school in The Netherlands that was badtording to a constructivist approach
(Streefland, 1991). In her chapter ‘Rational Nursband Proportional Reasoning’ in ti&=cond
Handbook of Research on Mathematics Teaching aratnirey, Lamon (2007) does report on
research that has taken rational number concefusthie classroom and as such offers empirically
grounded suggestions for teaching. lllustratinggrewving interest and body of research in the fadld
teaching fractions is the practice guide ‘Develgp@ffective fractions instruction for kindergarten
through & grade’ (Siegler et al., 2010), published by hstitute of Educational Scienc@i&S], the
research arm of the U.S. Department of Educatidre five presented recommendations in this
practice guide range from proposals related todthelopment of basic understanding of fractions in
young children to more advanced understandingddradtudents as they progress through elementary
and middle school; one recommendation addresseshelesa own understanding and teaching
fractions. Whereas the recommendations vary irr thaiticulars, they all reflect the importance of
conceptual understanding of fractions (Sieglel.e2810, p. 8). Siegler and colleagues state hewev
that to date, still less research is available ractions than on whole numbers, and that a greater
number of studies related to the effectivenesstefrative ways of teaching fractions is needed.
This study is a response to calls for greater famughe teaching of fractions, and within that, a
response to the call for more attention to the bgweent of conceptual understanding of fractions.
The aim of the study is to take stock of how Flasdthe Dutch speaking part of Belgium, is doing in
response to this call. To do so, we examined hastityns are represented in the most commonly used

curriculum programs in Flanders and at how fracitessons from these curriculum programs are

126



implemented, Our rationale for including analysfshow the written curriculum is implemented is
informed by research on curriculum enactment thadtrates that teachers use curriculum resources i
different ways and that written plans are transftmvhen teachers enact them in the classroom
(Stein, Remillard, & Smith, 2007). By providing &fure of how fractions are currently taught in 20
classrooms, this study informs the research fiblouathe current ways of teaching fractions which
can stimulate discussion and result in a more pecioriented focus on alternative ways of teaching

fractions.

2. Conceptual framework

The conceptual framework applied to analyze howchees teach fractions was based on the
mathematics task framework as adopted in a stualyahalyzed enhanced instruction as a means to
build students’ capacity for mathematical thinkingd reasoning (Stein, Grover, & Henningsen,
1996). Taking the mathematical task as the unéraflysis, Stein et al. (1996) demonstrated changes
in cognitive demand of mathematical tasks as thleyiraplanted during instruction. They frequently
found differences in the demand of the tasks ag dippeared in instructional materials, as they were
set up by the teacher, and as they were impleméaytstlidents in the classroom. This framework was
later adapted by Stein et al. (2007) to elaboragertle that teachers play in these curriculartshif
Their review of the literature identified three pha in the curriculum implementation chain:
curriculum as written, as intended by the teached, as enacted in the classroom. Figure 1 combines

these two frameworks and shows through shadingtbosiponents that were the focus of this study.

2.1.Mathematical tasks
Examination of the teaching of fractions was frantsdthe concept of mathematical tasks. This
concept builds on what Doyle (1983) described asl@mic tasks. Doyle underlined the centrality of
academic tasks in creating learning opportunitigssfudents (Silver & Herbst, 2007). In this study,
we used the Stein et al.’s (1996) definition of atlmematical task as a classroom activity that aoms

focus students’ attention on a specific mathemhtilsa. The conception of Stein and colleagues of
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mathematical tasks is similar to Doyle’s notiorachdemic tasks in that it determines the contextt th
students learn, how students learn this contemt,bgnmeans of which resources that students learn
this content. It is different from Doyle’s notio academic task regarding the duration: an actigity
not classified as another mathematical task, uhé&l underlying mathematical idea changes In the
current study, instructional time of the analyzedsbns was typically divided in one or two
mathematical tasks and as such, the mathematila tan be considered as broad units of analysis,

which was in accordance with the plea for broadsuaf analysis to describe the complex nature of

teaching (Hiebert et al., 2003; Hiebert & Grouwd)?2; Stigler & Hiebert, 1999).

_____
,,,,

l’ A
’ P \\
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\
\
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/ Mathematical Mathematical
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Learning
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\\\\\

Q Factors influencing implementation ]/

Explanations for transformations

- Teacher beliefs and knowledge

- Teachers’ orientations toward
curriculum

- Organizational and policy contexts

Figure 3. Conceptual framework based on Stein, Graar, and Henningsen, 1996; Stein, Remillard, and

Smith, 2007

A central theme in research related to academicstasthe extent to which tasks can change their
character as they pass through the curriculum chsidepicted in the conceptual framework (Stein et
al., 1996, p. 460). For example, Stein et al. (1986nd that teachers often lowered the naturasis

because of their focus on correctness of the answdoecause the teachers did too much for the

students.
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This study focused on three aspects of the conakfstamework. Given that curriculum programs are
considered to be a main source of the mathematsék as presented by the teacher (Stein et al.,
2007), a first focus of the study related to thsk as represented in the teacher’s guitiee task as
represented in the teacher’s guide refers to the iwavhich the task set up during instruction is
described in the teacher’s guide to inform theleaon how to ‘optimally’ set up and implement the
specific mathematical idea. Second, we analyzedtdk as set up by the teachejiven the
importance of the enacted curriculum to shape stistd&earning experiences (Carpenter & Fennema,
1988; Stein et al., 2007; Wittrock, 1986). The taskset up refers to the task as introduced by the
teacher. The kinds of assistance provided by thehtr to students that are having difficulties, is
considered to be a factor that influences how taskimplemented by the students in the classroom
(Stein et al., 1996). This was also part of therenirstudy’s focus. We defined this as thsk as
enacted through individual guidance provided by tisecher to students that are having difficulties
The mathematical task as represented in the téaaidgde, as set up by the teacher, and as enacted
through individual guidance provided by the teacterstudents that are having difficulties were
examined on task features that are consideredcibitdte students’ conceptual understanding. We

describe this below.

2.2.Task features that relate to students’ conceptudérstanding

Teaching that primarily facilitates students’ skdfficiency is often described as rapidly paced,
teacher-directed instruction in which the teach&ay$ a central role in the organization and
presentation of a mathematical problem to studématsis followed by a substantial amount of error
free practice of a similar set of problems complely students individually (Hiebert & Grouws,
2007; Stein et al., 1996). Students’ work, them, loa described as memorization of facts and apgplyin
procedures without understanding of when and whapfdy these procedures (Stein et al., 1996).

A key feature of teaching for conceptual understampdan be described atudents struggling with
important mathematics'By struggling with important mathematics we mdae opposite of simply

being presented with information to be memorizedbeing asked only to practice what has been
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demonstrated” (Hiebert & Grouws, 2007, pp. 387-388Jong this line, research points at
maintenance of a high level of cognitive demandrgufesson enactment as an important factor in
students’ learning gains (Boaler & Staples, 200&irS& Lane, 1996; Stigler & Hiebert, 2004).
Furthermore, students struggling with importantheatatics also implies that students must be given
opportunities to make themselves sense of mathesndtherefore, students should be encouraged to
discuss ideas with each other and must be givemimgfal and worthwhile tasks; such tasks use
contextualized problems, contain multiple solutistrategies, encourage the use of different
representations, and ask students to communicatejumtify their solution methods (Hiebert &
Wearne, 1993; Stein et al., 1996). This is alsokihd of teaching mathematics that is plead for in
several countries with the adoption of new starsléBetrgqvist & Bergqvist, 2011; Lloyd, Remillard,

& Herbel-Eisenman, 2009; NCTM, 2000; Verschaff€l02).

Underlining the importance of teaching for conceptunderstanding, several studies have revealed
that lessons that focus on students’ conceptuatmstahding also promote students’ skills (Hiebert &
Grouws, 2007). However, a major difference lieshia finding that students who developed skill by
means of conceptual understanding more fluenthfieghgihat skill: they were better able to adjust
their skill to changing circumstances (Bjork, 1984ebert & Grouws, 2007).

Given the importance of teaching for conceptualensiinding, in the current study, the mathematical
tasks were analyzed on the following task featuths: extent to which the task makes use of
contextualized problems, the extent to which ttek stimulates collaboration between students, the
extent to which the task lends itself to be solbgdneans of multiple solution strategies, the exten
which the task can be depicted by several reprasens, and the extent to which the task encourages
to predict and/or justify the solution methods. thezs of selected tasks in the teacher’'s guideeréta

the extent to which the teacher’s guide encourdigedeacher to incorporate these features. During
task set up, task features refer to the extenticiwthe task as announced by the teacher incdgsora
or encourages these different features. Task festduring the assistance provided by the teacher
refers to the extent to which the teacher incorgsrar encourages these features while helping

students with difficulties.
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3. Research questions
The overall aim of the study is to analyze how bess teach fractions. Guided by the conceptual
framework, the following research questions werefpwvard:

- To what extent does the teaching of fractions anBers (task as presented in the teacher
guide, task as set up by the teacher, and taskaaseel through individual guidance provided
by the teacher to students who experience diffesjitreflect features that foster students’
conceptual understanding of fractions? Is therelaionship with the particular curriculum
program used or the specific mathematical ideagogtiressed?

- To what extent do the instructional features chagmstruction moves from tasks as written
in the curriculum, to how they are set up in th@sstoom, to how they are enacted through

individual guidance provided by the teacher?

4. Methodology
In order to pursue these questions, we analyzedd®b recorded lessons on fractions of 20 teachers.
Teachers were using one of the three most predoafynased curriculum programs in Flanders.
Using the task features listed above, we analyzedéasks as they appeared in the curriculum guides,
as they were set up by the teacher during thenessa how they were represented to students during

individualized assistance by the teacher.

4.1.Data sources
Transcriptions of videotaped classroom lessons ddrrthe basis of the data used for analysis.
Classroom observations took place during Sprindd28id were video recorded by trained observers.
Each observation covered one complete mathematessih.
The observers were students in educational sciesroesled in the course ‘mathematics education’.
During two consecutive sessions, students werengivi@rmation of the background and aim of the
study, and of the practical aspects of the study, he necessity to record one complete lessdncan

stay focused on the teacher, how to complete ttoenied consent, and how to introduce themselves
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to the school principals and the teachers). Stedeate also presented fragments of a recordednesso
that was discussed afterwards. Students were dgskeleotape two lessons of fractions in fourth
grade of elementary education. Between the firgt sacond observation, and after the second
observation, students met each other in groupsrpfdupervised by the first author to share finsling

obstacles and other experiences with each other.

4.2.Sampling procedure
In total, based on an at random selection, 20 Blemthools participated in the study. Of every etho
one fourth grade teacher participated in the stéddya selection criterion, schools had to use dne o
the most frequently used curriculum programs imétas: Kompas (KP), Nieuwe Tal-rijk (NT), and
Zo gezegd, zo gerekend! (ZG)(Abbreviations are used going forward). This heslin a total
number of 29 lessons considered for analysis. Thkjeses an overview of the number of lessons,
schools and teachers that were considered for sisagnd the total number of lessons, schools and
teachers that finally were included in the analySrem our initial pool of 29 lessons, we selec?dd
lessons. Selection secured an equal amount ofnigssioeach curriculum progranmm € 8), and a
maximum overlap related to the mathematical ideagmed across the three curriculum programs. As
such, 24 observed lessons were included in thgsisal

Table 3. Overview of data pool

Considered for analysis Included in the analysis
Lessons Schools Teachers Lessons Schools Teacher
Kompas 10 8 8 8 8 8
Nieuwe Tal-rijk 9 6 6 8 6 6
Z0 gezegd, zo gerekend! 10 6 6 8 6 6
Total 29 20 20 24 20 20

Note KP = Kompas; NT = Nieuwe Tal-rijk; ZG = Zo gezeg@d gerekend!

Fourteen lessons included only one mathematickldesup by the teacher; 5 lessons included two

mathematical tasks set up by the teacher, and embtlessons, included three mathematical tasks set
up by the teacher. For lessons with two or thre¢hemaatical tasks set up by the teacher, the

mathematical task that occupied the largest pesigendf time was selected.
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Four lessons of KP, three lessons of NT and onsofe®f ZG mainly focused on fractions and
decimals. Four lessons of KP, two lessons of NTtamdessons of ZG mainly centered on comparing
and ordering fractions; and three lessons of NTfaedessons of ZG primarily focused on equivalent
fractions. As such, 24 lessons were included irathaysis. Related to every observed lesson, ft ea
selected task as set up by the teacher, we selgmadsk as represented in the teacher’s guide tha
addressed the same mathematical idea. In additien,selected two tasks as enacted through
individual guidance provided by the teacher thabalddressed the same mathematical idea as in the
task as set up by the teacher. As such, for eastredd lesson, the underlying mathematical idea was
the same for the task as represented in the teagclde, as set up by the teacher, and as enacted
through individual guidance provided by the teachidiis resulted in a total number of 88 task to be

analyzed.

4.3.Coding
QSR NVivo 9 was used to code the selected matheahatisks. All video recorded lessons were
transcribed in detail to cover the conversatiortaséen the teacher and students. Coding was based on
these transcriptions, and the corresponding videgnient was looked at again only when the
transcription did not provide sufficient informatioto make a decision. In a first phase, the
mathematical tasks as presented in the teachee,gagdset up by the teacher, and as enacted through
individual guidance provided by the teacher wellecded. In a second phase, we coded the selected
tasks. The coding scheme was based on the cont&pmawork presented earlier and was tested and
revised until we ended up with the actual codingeste. We used one unique coding scheme for
coding the mathematical tasks as presented inehehér guide, as set up by the teacher, and as
enacted through individual guidance provided bytdaeher, which is in correspondence with Stein et
al. (2007) who state that the research field wdddefit from establishing common structures for
examining both the written curriculum and the eedaturriculum.
As a first step, the coding scheme required tordesthe mathematical idea that was stressed in the

mathematical task. Three kinds of mathematical ddesere stressed throughout all analyzed
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mathematical tasks: the relationship between frastiand decimals, the ordering and comparing of
fractions, and equivalent fractions. The first kisfdtasks included parts of lessons in which frai
were converted into decimals and decimals intatifvas by means of Cuisenaire rods or an external
number line, positioning fractions and decimals amumber line, and comparing fractions and
decimals by means of area models. The second Kinthsks included lessons that focused on
comparing and ordering fractions, either by meafsaonumber line or by means of other
representations. The last category of tasks indul@éssons that centered on finding equivalent
fractions for a given fraction and on finding theshreduced form of a given fraction.

After description of the mathematical idea that wtiessed in the task, the coding scheme requored t
make six decisions related to features of the nmadlieal task. Decisions had to be made regarding
the inclusion of real-life objects, the collabovati venture of the task (did students need to
cooperate?), the number of solution stratdgi¢se number and kind of representations, whether
representations were linked to each other or noti #he requirement for students to produce
mathematical explanations or justifications. Alagments were coded by first author. To ensure
coding validity, a second researcher was trainatlasked to code 3 randomly selected lessons. To
measure inter-rater reliability, Krippendorff's hjpwas calculated for each decision to be madeein t
coding scheme and ranged from .80 to 1.00 and wasieh above the customary bordeoaf .80
(Krippendorff, 2009). This means that at least &ffthe codings were perfectly reliable whereas 20%

at most were due to chance.

5. Results

We start this section with a description of andeflection on one sample lesson. This will, as we

explain in the first reflection, set out the sturetand the specific approach of the analysis.
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5.1.A lesson on equivalent fractions
Below, we describe a lesson in which a teachershbkr students to understand the meaning of
equivalent fractions and to find equivalent fraostioAt the moment of the lesson, students are ii@mil
with the part-whole notion of fractions.
Starting the lesson, the teacher asks her studlengke their textbook, a stencil, fractions bomd a
crayons. The students are asked to put the frachor in front of them and the rest of their matisri
aside of the desk.
An illustration of fractions box is shown in Figue The fractions box consists of a template which
gives place to 9 units. The teacher consistentgrseo each unit on the template as one cakeb®ke

further consists of units and pieces of 1/2, 1/3, 1/5, 1/6, 1/8, 1/9, and 1/10.

Figure 4. A student uses the fractions box to finéquivalent fractions for 1/2

This is how the conversation between the teacheittaan students continues after the students opened
their fractions boxes:
T: I would like everyone to fill one cake with talves. [The students fill one whole on their
template with two pieces of 1/2].
T: Everyone now takes one half away. No we havelain the cake. How big is that hole?
S: It is the fraction 1/2. [The teacher now wril¢2 on the blackboard].
T: Now | would like you to fill that whole with o#r pieces that are all equally-sized. Once
you've found one solution, you can search for od@utions because there is more than one

solution. [The students fill the half with equallized pieces].
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T: Okay, everyone now has to look at the blackbo#tat did we found? [Teacher wrote
‘1/2 =’ on the blackboard] T: | wrote ‘1/2 equalsh the blackboard because, as we
mentioned earlier, the piece we filled in equals 1/
S: 1/2 equals two pieces of 1/4.
T: How do we write this in one fraction?
S: 2/4 [The teacher writes this down on the blaekdpl/2 = 2/4]
T: Who found something else?
S: 1/2 equals 3/6 [Below 1/2 = 2/4, the teachetesrihis down on the blackboard: 1/2 = 3/6]
T: Who found something else?
S: 1/2 equals 5/10 [Below 1/2 = 3/6, the teachédtewrthis down on the blackboard: 1/2 =
5/10]
[The teacher points at the blackboard] T: Whatwarsay of those fractions?
S: All those fractions represent the same size.
T: Yes, it doesn’t matter if | eat 1/2 or 3/6 ofB/of the cake: it all represents the same size of
the cake. All those fractions represent the saae #ie same piece. We call them equivalent
fractions. [Teacher writes the title ‘Equivaleradtions’ on the blackboard].

The lesson continues with a similar exercise inclwigtudents search for equivalent fractions for 1/3

by means of their fractions box. Afterwards, thestn continues as follows:
T: Unfortunately, we are not always able to usefaagtions box to find equivalent fractions.
Imagine for a moment that we don’t have our fractlmoxes and look at the equivalent
fractions that are written on the blackboard. Ham we find then equivalent fractions? [The
students are given some time to think about it].
S: We have to multiply both numbers with a same lpem
T: Try to say it in a more scholarly way.
S: We have to multiply both the numerator and tieotninator with a same number.
[Teacher checks if this holds for all equivalergictions on the blackboard]. T: Actually, it is

quite easy to find equivalent fractions!
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T: Please take all your stencil (see Figure 3).

T: You can see several fraction strips on the dtebbook at the first picture and tell me in
how many pieces we the first fraction strip is dedl.

S:9.

T: OK, next to the fraction strip, you see the fiat 6/9. | want you all to color 6/9 of the
fraction strip. [Students color 6 of the 9 piecéshe first fraction strip; the teacher writes the

fraction 6/9 on the blackboard].

Figure 5. Student uses fraction strips to find equialent fractions for 6/9

T: Now, take another color, and | would like youctlor in the second fraction strip a piece
that is equally-sized as the one you colored irfridgtion strip above. [Students color 4 of the
6 pieces in the second fraction strip].

T: You can see several fraction strips on the #tebook at the first picture and tell me in
how many pieces we the first fraction strip is dedl.

S: 9.

T: OK, next to the fraction strip, you see the fiat 6/9. | want you all to color 6/9 of the
fraction strip. [Students color 6 of the 9 piecéshe first fraction strip; the teacher writes the
fraction 6/9 on the blackboard].
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T: Now, take another color, and | would like youctor in the second fraction strip a piece
that is equally-sized as the one you colored irfithetion strip above. [Students color 4 of the
6 pieces in the second fraction strip].
T: Now, take yet another color and color in thedHraction strip a piece that is equally-sized
as the one you colored in the two fraction stripsve. [Students color 2 of the 3 pieces in the
third fraction strip].
T: What do we know of all our colored pieces?
S: They are equal in size.
T: OK, we still know that in the first fraction gir we colored 6/9. Now | want you to tell me
what piece we colored in the second fraction strip.
T: The second fraction strip consists of how maieg@s?
S: 6 [The teacher writes the denominator 6 on taekboard]
T: How many pieces did we colored?
S: 4 [The teacher writes the nominator 4 on thekidaard]
T: And what did we color in the third fraction §tpi
S: 2/3 [The teacher writes the fraction 2/3 onlifaekboard].
T: Right. And what can we say about those thregtifras?
S: They are equivalent fractions.
T: Right. They have the same value. Look for a munag the fractions 6/9 and 2/3; fraction
2/3 is the same as 2/9 but in a reduced form. Wghimieduce fractions; that can make it
easier for us.
T: How can we go from the fraction 6/9 to 2/3
S: By dividing both the numerator and the denonainby 3.
T: Yes, again, we see that it is important to divimbth the numerator and the denominator by
a same number.

The lesson continues with a similar exercise. Afitashing that exercise, students are asked tahmut

stencil and the fractions box aside and to takie thetbook. All the fractions boxes are then coiésl.
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Students now have to complete exercises in whieh thust find equivalent fractions. Students work
individually and in case they have problems, thage their finger and the teacher then comes o hel
them. Below are two conversations between the &xaaid students who are having difficulties.
Conversation 1: a student isn’t able to find anejant fraction for 1/2
[The teacher points at the board].
T: In order to find an equivalent fraction, we haweemultiply both the numerator and the
denominator with a same number. Let’s multiply theith 2; what do we get?
S: 1/4.
T: No, you multiplied only the denominator withytju must also multiply the numerator with
2.
S: 2/4.
T: Okay. And now an equivalent fraction for 2/5...
Conversation 2: A student isn’t able to reduceftaetions 2/4 and 3/6.
T: Okay, you [the neighbor of the student] alstelsto what | am saying.
[The teacher points at the blackboard]. If we wanteduce a fraction, we must always divide
both the numerator and the denominator with a saimeber. Let’s divide them by 2. What do
we get?
S:1/2.
T: Okay.
S:But3/6...?
T: Yes: we always start with trying to divide thday 2. If that doesn’t work, you try to divide
them by 3, or by 4...
At the end of the lesson, students put their teotbaside of their desks and the textbooks are

collected.
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5.2.Lesson Analysis
After observing the lesson as outlined in the vigeseveral aspects triggered our attention. There
seemed to be two major sections in the lessonrsf dection, that we described as instructionag tim
comprised the learning of new content (in this caspiivalent fractions). Strongly guided by the
teacher, during this mainly whole-class momentjatis learned to use multiple representations and
strategies to find equivalent fractions. Notablgthorepresentations were not linked to each other:
students learned to find equivalent fractions byanseof their fractions boxes and afterwards, they
learned to do so by means of fraction strips, bwiais not explicitly made clear that, for exampl&,
and 2/4 are equivalent fractions and that studemght come to this solution by means of their
fractions box and by means of the use of fractidpss After they learned to find equivalent fracts
by means of the fractions box and by means ofitmadtrips, students inductively retrieved the rale
find equivalent fractions. During this instructidrghase, the teacher links, though very briefly th
exercises with real-life situations (“Think of altha cake, and try to fill in the other half of ticake
with equally-sized pieces”).
During the second section of the lesson that weridei as practice time, students practiced the
learned content on their own and were — if theyoantered problems — helped individually by the
teacher. When the teacher helped students withemsbin finding equivalent fractions, the teacher
immediately pointed at applying the rule to findue@lent fractions without referring to helpful
representations and other solution strategies,tmaeal-life objects. Moreover, at the start of the
practice time, all the fractions boxes were coddcind removed from the desks, not allowing stdent
to use these in case they might want to.
As such, the structure of the sample lesson didreftect a way of teaching that is considered to
support students’ conceptual understanding: teatinected instruction followed by a substantial
amount of practice of a similar set of problems plated by students on their own (Hiebert &
Grouws, 2007; Stein et al., 1996). We also notiaesharp decline in features that might facilitate
students’ conceptual understanding as we move frostructional time to practice time. This

observation suggests a differentiation in instauctiStudents who remembered from instructional time

140



the conceptual meaning of finding equivalent fiawsi might not experience problems in finding
equivalent fractions during practice time, and rhighow what they were doing. Students with
difficulties during practice time might get the impgsion, when the teacher helped them by
immediately refreshing the rule and only referriadhat rule in order to find equivalent fractiotizat
mathematics is about learning and applying rulderahan understanding what they are doing.

We are interested if the picture provided by a dartgsson is can be considered as a general pattern
when teachers in Flanders teach — and students femations. This is the focus of our subsequent
analyses. We first zoomed in on the structureld24bbserved lessons and afterwards on the fesature

of all 84 analyzed mathematical tasks.

5.3.Structure of the lessons: facilitating skill eféaicy rather than conceptual understanding

All the lessons started with a short introductibattmostly included the subject of the lesson and i
which students were asked to take their matertaletliooks, pencils, ...) and sometimes previous
content was briefly refreshed. The introduction when followed by a whole-class instruction
moment that was strongly guided by the teacherefitar referred to as ‘instructional time’).
Typically, instructional time addressed teachingnefv content, or teaching of previously learned
content. After instruction, students usually presti the learned content on their own and were — if
they encountered problems — helped individuallytihy teacher (hereafter referred to as ‘practice
time’). Thus, the overall picture is that pairwise group learning during instructional and practice
time was marginal. Lessons were closed by collgdixtbooks; during two observations, closing of
the lesson also comprised a summary of the learoeignt.

Introduction ranged from 20 seconds to 11 minuted eovered on average 4% of the lesson.
Instructional time covered all the tasks as sebwyyhe teacher, ranged from 8 to 40 minutes and
covered on average 49% of the total lesson durattmded mathematical tasks as set up by the
teacher ranged from 6 to 40 minutes, with an awetaggth of 20 minutes. On average the coded
mathematical task as set up by the teacher co\85%d of the total instructional time. Practice time

ranged from 3 to 40 minutes and covered on avetdfe of the lesson. Closing ranged from 0 to 5
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minutes and covered on average 2% of the lessoa.pBrcent of total lesson duration was coded as
not related to mathematics. This included momemt&/hich a colleague of the teacher entered the
class and had a conversation with the teacher amdemts in which the teacher left the classroom.

In two of the 24 observed lessons, there were nmends in which the teacher helped students
struggling with mathematics; only students who kniée answer of the problems were given the
opportunity to answer in these two whole-classdaess Whereas this finding does not allow to state
that students weren’t struggling with mathematicdpes suggest that mathematics was conceived as
something you know or not, and in case you ardié to come up with a straightforward answer, you
shouldn’t struggle to find one. This is importambce students’ struggling with mathematics is
considered as an important feature that facilitateslents’ conceptual understanding (Hiebert &
Grouws, 2007).

The description of the lessons as presented abawereu the structure of the sample lesson as
described in the vignette and reflected a structine did not facilitate students’ conceptual
understanding: teacher-directed instruction witemtral role for the teacher, followed by a sub&ian
amount of practice of a similar set of problems pteted by students individually (Hiebert &
Grouws, 2007; Stein et al., 1996).

Below, we analyzed to which extent the featuretheftasks as represented in the teacher guidet as s
up by the teacher, and as enacted through indivigumance by the teacher to students who
experience difficulties, facilitated students’ ceptual understanding of fractions. We reflected on

these findings in the second reflection (see below)

5.4.Task as represented in the teacher’s guide
Table 2 gives an overview of the features of alt@ded tasks as presented in the teacher’s guide. W
first looked for a general pattern based on allc@ded tasks (see column ‘Total’ in Table 2). This
overall picture revealed mixed findings relatedth® presence of features that might facilitate
students’ conceptual understanding. The majoritytled tasks addressed students’ conceptual

understanding by stressing the use of multiple tewlustrategies and multiple representations.
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However, the majority of tasks also stressed featuhat did not address students’ conceptual
understanding: remaining in the abstract world athrematics, the absence of a strong collaboration
between students, and the absence of the needtify jilhe solution method. Almost half of the 24

tasks suggested to link the multiple representatioreach other.

Table 4. Presence of features (in percentages) akks as represented in the teacher's guide

Curriculum program Mathematical idea
KP NT ZG F&D C&O E.F. Total
(n=8) (n=8) (n=8) (n=8) (n=8) (n=8) (n=24)

Context

Abstract world of math 100 100 / 88 75 38 67

Real-life objects / / 100 12 25 62 33
Collaborative venture

Alone / / / / / / /

Duo or small groups / / 12 / 12 / 4

Teacher to students 100 100 88 100 88 100 96
Solution strategies

Single 50 25 / 75 / / 25

Multiple 50 75 100 25 100 100 75
Representations

Single 50 25 12 75 12 / 29

Multiple 50 75 88 25 88 100 71
Representations - links

Not linked 50 100 22 100 25 38 54

Linked 50 / 88 / 75 62 46
Justification

Not required 100 88 50 75 100 62 79

Required / 12 50 25 / 38 21

Note KP = Kompas; NT = Nieuwe Tal-rijk; ZG = Zo gezega gerekend!; ‘F & D’ = Fractions and decimals;

‘C & O’ = Comparing and ordering fractions; ‘E. E’Equal fractions.

Given that curriculum programs are considered mmia source for mathematical tasks to be used by
the teacher (Stein et al., 2007), we also madengadson of task features based on the curriculum
programs (see the columns ‘KP’, ‘NT’, ‘ZG’ in Tab®. Tasks represented in the teacher’s guide of
ZG encouraged most the development of conceptuwddrstanding of fractions: all tasks referred to

real-life objects whereas none of the tasks of K& BT did, some tasks encouraged teachers to let
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students work together in pairs or in small growpgreas none of the tasks of KP and NT did, and all
of the tasks included multiple strategies. Tasks Z83 also included more often multiple
representations and linked representations morenoft each other as compared to tasks as
represented in NT and KP, and tasks of ZG alsoimedjumore often justification of the solution
strategies. Tasks of NT added more to studentaqmnal understanding of fractions than tasks of
KP did: they included more often multiple stratesgéand multiple representations, and required more
often justification of the solution strategies. Kasof NT did not include links between the
representations whereas KP did in 50% of the tasks.

When we made a comparison based on the underlyaigematical idea of the coded task (see the
columns ‘F & D’, ‘C & O’, and ‘E. F." in Table 2)he following picture emerges. Mathematical tasks
that related to fractions and decimals contrastéd tasks that related to comparing and ordering
fractions and equivalent fractions in a way thad diot support the development of students’
conceptual understanding of fractions. All or mothe tasks that related to fractions and decimals
did not refer to real-life objects, did not requstong collaboration between the students, focused
attention on one solution strategy, presented epessentation, did not link representations to each
other and did not require justification of the smlo method. There were no remarkable differences
related to comparing and ordering fractions andivedgent fractions: three features that related to
equivalent fractions ( inclusion of real-life obigc multiple representations and requirement of
justification) and two features that related to paning and ordering fractions (collaboration betwee
students, presentation of links between the reptasen) were scored more in favor of supporting th
development of students’ conceptual understandirftaotions; on one feature (inclusion of multiple
solution strategies) they both scored the same.n@e turn to features of tasks as set up by the

teacher.

5.5.Task as set up by the teacher
Table 3 gives an overview of the features of alt@ded tasks as set up by the teacher. Again,rete fi

looked for a general pattern based on all 24 cadsks (see column ‘Total’ in Table 3). The overall
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picture revealed a same pattern as observed irsdh®ple lesson (see ‘A vignette: a lesson on
equivalent fractions’). The majority of the taskddeessed students’ conceptual understanding by
stressing the use of multiple solution strategies rultiple representations. However, the majarity
tasks also stressed features that did not addiedsngs’ conceptual understanding: all the taskewe
set up in a way in which the teacher guides, directd instructs the students, and as such, did not
reflect strong collaboration between students. Masits did link the representations to each othdr a
did not require students to justify their solutidtalf of the tasks remained in the abstract wofld o
mathematics.

A comparison based on the three curriculum progr@®s the columns ‘KP’, ‘NT’, ‘ZG’ in Table 3)
again, revealed that KP added least to the devedoprof students’ conceptual understanding of
fractions whereas there were no straightforwartedihces between teachers teaching with ZG and
NT. Tasks as set up by teachers working with KRuoted seldom real-life objects, seldom linked
representations to each other, and required in ofdste tasks no justification for solution stratesg
Half of the tasks as set up by teachers working WiP focused on only one solution strategy and a
single representation. Some features of tasks pdiyuteachers teaching with ZG supported more
students’ conceptual understanding of fractiondefrimg to real-life objects, requirement of
justification) as compared to NT, sometimes it wa versa (inclusion of multiple representations
and linking the representations to each other),smmdetimes task set up by teachers teaching with ZG
or NT they were coded equally (attention to mudtipblution strategies)

When we made a comparison based on the underlyatgematical idea of the coded task (see the
columns ‘F & D’, ‘C & O’, and ‘E. F.” in Table 3} similar picture as in the previous section (Task
represented in the teacher’s guide) emerged. Mattieahtasks that related to fractions and decimals
contrasted with tasks that related to comparingaddring fractions and equivalent fractions inayw
that did not support the development of studerdateptual understanding of fractions. In most ef th
tasks that related to fractions and decimals, tisae no link to real-life objects, only one solutio
strategy was stressed, no multiple representati@ns included, tasks were not linked, and tasks did

not require students to justify their solution nmthAgain, there were no straightforward difference
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related to comparing and ordering fractions andvedgnt fractions: two features of tasks that esdiat

to comparing fractions (inclusion of multiple sadut strategies and linking representations to each

other) and one feature of tasks that related tavabpnt fractions (inclusion of real-life objectakre

scored more in favor of supporting the developmehtstudents’ conceptual understanding of

fractions, for two features ( inclusion of multiplepresentations, requirement of justificationksas

that related to comparing and ordering fractiors eguivalent fractions both scored the same.

Table 5. Presence of features (in percentages) afks as set up by the teacher

Curriculum program Subject
KP NT ZG F&D C&O E. F. Total
(n=8) (n=8) (n=28) (n=8) (=8) (n=8) (n=24)

Context

Abstract world of math 62 75 12 88 38 25 50

Real-life objects 38 25 88 12 62 75 50
Collaborative venture

Alone / / / / / / /

Duo or small groups / / / / / / /

Teacher to students 100 100 100 100 100 100 0 10
Solution strategies

Single 50 25 25 88 / 12 33

Multiple 50 75 75 23 100 88 67
Representations

Single 50 / 12 62 / / 21

Multiple 50 100 88 38 100 100 79
Representations - links

Not linked 88 50 88 88 50 88 75

Linked 12 50 12 12 50 12 25
Justification

Not required 62 62 50 75 50 50 58

Required 38 38 50 25 50 50 42

5.6.Task as enacted through individual guidance pravittg the teacher to students with

difficulties

Table 4 gives an overview of the features of alcd@ed tasks as enacted through individual guidance

provided by the teacher to students with diffiadtiAgain, we first looked for a general patteradoh

on all 40 coded tasks (see column ‘Total’ in Table
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The overall picture revealed a same pattern agdxbén the sample lesson (see ‘A vignette: a lesso
on equivalent fractions’). The results revealed thanajority of tasks required students to work on
their own, remained in the abstract world of mathges, focused on a single solution strategy and a
single representation, did not link representattonsach other, and did not require students tifyus
their answer.

A comparison based on the three curriculum progr@®s the columns ‘KP’, ‘NT’, ‘ZG’ in Table 4)
revealed an absence of straightforward differen€asks as enacted through individual guidance by
teachers working with KP, NT, or ZG reflected toezjually high extent features that did not fadidita
students’ conceptual understanding of fractionsstrtasks from either KP, NT, or ZG did not refer to
real-life objects, required students to work orirtbevn, focused attention on one solution strategy
one representation, did not link representationsaich other, and did not require students to justif
their solution method.

When we made a comparison based on the underlyatgematical idea of the coded task (see the
columns ‘F & D’, ‘C & O’, and ‘E. F.’ in Table 4)a similar picture as in the previous sections (KTas
as represented in the teacher’'s guide’ and ‘Taskedaup by the teacher’) emerged. Once again,
mathematical tasks that relate to fractions andhtlds contrasted with tasks that relate to comgarin
and ordering fractions and equivalent fractiona imay that support to a lesser extent the developme
of students’ conceptual understanding of fractiohsshould be stated however, that also for
mathematical tasks that relate to comparing androrg fractions and equivalent fractions, presence
of features that might facilitate students’ conoapunderstanding was low. In most or all of theksa
that related to fractions and decimals, there wabnk to real-life objects, one solution stratesyyd
one representation was stressed, representatiomes nee linked to each other, and justification of
solution method was not required. Again, there werstraightforward differences for tasks related t
comparing fractions and equivalent fractions. Whsréasks that relate to comparing and ordering
fractions did include real-life objects to a slighhigher degree, in general, tasks that relate to
comparing fractions and equivalent fractions didrecsimilar for inclusion of multiple strategies,

multiple representations, linking the representeitn each other, and requirement of justification.
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Table 6. Presence of features (in percentages) afsks as enacted through individual guidance by the

teacher
Curriculum program Subject
KP NT ZG F&D C&O E. F. Total
(n=11) (n=12) (n=17) (n=12) (n=11) (n=17) (n=40)

Context
Abstract world of math 82 100 82 100 73 88 87
Real-life objects 18 / 18 / 27 12 13

Collaborative venture
Alone 91 100 53 75 82 76 78
Duo or small groups / / 6 8 / / 2
Teacher to students 9 / 41 17 18 24 20

Sollution strategies
Single 82 75 59 92 64 59 70
Multiple 18 25 41 8 36 41 30

Representations
Single 82 83 88 92 88 82 85
Multiple 18 17 12 8 18 18 15

Representations - links

Not linked 91 83 100 100 91 88 92
Linked 9 17 / / 9 12 8

Justification
Not required 91 100 94 100 91 94 95
Required 9 / 6 / 9 6 5

Note KP = Kompas; NT = Nieuwe Tal-rijk; ZG = Zo gezegd gerekend!; ‘F & D’ = Fractions and decimals;

‘C & O’ = Comparing and ordering fractions; ‘E. E’Equal fractions.

5.7.Second reflection
This second reflection, a reflection based on bfiepved lessons, confirmed the findings of a first
reflection based on a sample lesson. The strucfullee lessons that we observed, mirrored the tesso
structure that scholars describe as focusing otlests’ skill efficiency (Hiebert & Grouws, 2007;
Stein et al., 1996). Instruction was set up in & wavhich the teacher guides, directs and inssrtiog
students. This was then followed by a substantraat of practice of a similar set of problems that
students completed on their own. An analysis offéla¢ures of the 84 tasks that were included in the

study also confirmed the outcomes of the firsta@fon: some features of the tasks as set up by the
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teacher supported students’ conceptual understgndinfractions (focus on multiple solution
strategies and multiple representations), othezmdming in the abstract world of mathematics,
absence of strong collaboration between studeatdinking representations to each other, mostly no
requiring justification of the solution method) dmbt. This finding suggests that only part of the
features that are considered to facilitate studerisceptual understanding are present in lessons
related to teaching fractions.

A major distinguishing aspect regarding the tasituees of mathematical tasks, was the mathematical
idea that was stressed in the task: tasks thdedeta fractions and decimals were consistentlyedod
as less supporting students’ conceptual understgrai compared to tasks that related to comparing
and ordering fractions, and equivalent fractionse Wbhserved this throughout the observations for
tasks as presented in the teacher’s guide, tas&stag by the teacher, and tasks as enacted throug
guidance provided by the teacher to students wifltaties. This finding suggests a differentiatio

of instruction based on the mathematical ideaithéte focus of the task.

Furthermore, the results revealed differencessh taatures related to the three curriculum program
(KP, NT, ZG) and the mathematical ideas that wémrssed in the mathematical tasks (fractions and
decimals, comparing and ordering fractions, egemafractions). Although there was to some extent
an overlap between the curriculum programs andntbéhematical ideas that were stressed (see
‘Sampling procedure’), we did notice trends thatwant to report on. KP contrasted with ZG and NT
in a way that did not favor students’ conceptuadarstanding for tasks as presented in the teacher’s
guide and tasks as set up by the teacher, butlifiésence melted away when instruction moved to
task as enacted by through individual guidance ideals by the teacher. This finding points at two
points of attention. First, it confirmed the suggas that curriculum programs are a main source of
the mathematical tasks as set up by the teachein(@tal., 2007). Second, it revealed that thilsrit

hold when the teacher helps struggling studentsichghlly.

The analysis of tasks as presented in the teachaitke, as set up by the teacher, and as enacted
through individual guidance by the teacher reve#ed the features of tasks as set up by the teache

resembled the features of tasks as presented tedbber’s guide. This was not the case regartiieg t
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features of tasks set up by the teacher and taskeacted through individual guidance by the teache
To study this more deeply, we analyzed the spett#iasition of a task moving from presented in the
teacher guide to set up by the teacher to enalstedgh individual guidance provided by the teacher.
We did so by focusing on features related to t&’sacontext, solution strategies an representstion

This is the focus in the next section.

5.8.Change of features as instruction moves from tasksepresented in the teacher’s guide to
how they are set up in the classroom, to how theeyeamacted through individual guidance
provided by the teacher

In order to analyze the extent to which task femtuthange as instruction unfolds from tasks as
represented in the teacher’s guide to how theysateup by the teacher, to how they are enacted
through the individual assistance provided by #azher to students who experienced difficulties, tw
matrices were generated. A first matrix capturedsigiency in transition from tasks as presented in
the teacher’s guide to the tasks as set up byetieher. The row headings listed the codes assigned
the tasks as represented in the teacher’'s guidetrenadolumn headings listed the codes for the
corresponding tasks as set up by the teacher. @t@nd matrix captured consistency in transition
from tasks as set up by the teacher to the taskeated through individual guidance provided gy th
teacher. The row headings listed the codes assigndide tasks as set up by the teacher and the
column headings listed the codes for the correspgriasks as enacted through individual guidance
by the teacher. Each cell contained the correspgnpércentage and frequency. Percentages on the
diagonals of the matrices represented consisteatyelen a) the tasks as presented in the teacher’s
guide and corresponding tasks as set up by thbde@matrix 1) and b) tasks as set up by the teache
and corresponding tasks as enacted through indiviguidance by the teacher (matrix 2). Off-
diagonal cells represented inconsistencies.
Matrix 1 revealed a high level of consistency betwéhe tasks as presented in the teacher’s guile an
the corresponding tasks as set up by the teackeremtages on the diagonal ranged from 69% to

100%. For example, 83% of all the tasks as predeimdhe teacher's guide that were coded as
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stressing multiple solution strategies were algoupeby the teacher in a way that made appeal to

multiple solution strategies.

Table 7. Matrix 1: transition from tasks as presenéd in the teacher’s guide to the tasks as set up liye

teacher

Task as set up during instruction

Solution strategies Representations Context

Task as represented in Single Multiple Single Multiple Abstract Real-life
teacher guide objects

Solution strategies
Single 83% (5) 17%(1)
(n=6)
Multiple 17%(3) 83% (15)
(h=18)
Representations
Single 71% (5) 29(2)
(h=T7)
Multiple 0 100% (17)
h=17)
Context
Abstract 69% (11) 31%(5)
(h=16)

Real-life objects 13%(1) 87% (7)
(h=28)

Matrix 2 revealed a different pattern as compacethé pattern observed in matrix 1. Percentages on
the diagonal were high for task features that ditl support students’ conceptual understanding of
fractions: remaining in the abstract world of matlaéics, focus on one solution strategy and one
representation. For example, 90% of all the talsaswere set up by the teacher in a way that fatuse
on a single representation, were also enacteddghrimdividual guidance by the teacher in a way that
focused on a single representation. This revealsnaistency between tasks as set up by the teacher
and the corresponding tasks as enacted throughidodi guidance by the teacher regarding features
that did not support students’ conceptual undedstgnof fractions. Percentages on the off-diagonal
cells were high for features that might facilitatedents’ conceptual understanding of fractions. Fo
example, 83% of all the tasks that were set upheyteacher in a way that focused on multiple

representations, were however enacted through ithdil guidance by the teacher in a way that
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focused on a single representation. This revealsamsistency between tasks as set up by thedeach
and the corresponding tasks as enacted throughidodi guidance by the teacher regarding features
that support students’ conceptual understandirfpofions.

These findings, related to the teaching of fradjaronfirmed that lower demanding tasks are more
likely to retain their character whereas higher deding tasks are more likely not to retain their

character (Hiebert et al., 2003; Stein et al., 1996

Table 8. Matrix 2: transition from tasks as set upby the teacher to the tasks as enacted through inddual

guidance provided by the teacher

Task as enacted through individual guidance provide by the teacher

Solution strategies Representations Context

Task as set up during Single Multiple Single Multiple Abstract Real-life
instruction objects

Solution strategies
Single 86% (12) 14%(2)
(n=14)
Multiple 62%(16) 38% (10)
(n=26)

Representations
Single 90% (9) 10%(1)
(h=10)

Multiple 839%(25) 17% (5)
(n=30)

Context
Abstract 100% (18) 0
(h=18)
Real-life objects T7%(17) 23% (5)
(h=22)

6. Discussion

6.1.Implications for practice
Despite the worldwide adoption of standards thagsstthe importance of teaching mathematics for
conceptual understanding (Bergqvist & Bergqvist,120 Lloyd et al.,, 2009; NCTM, 2000;
Verschaffel, 2004), the present study’s findingggasted that teachers in Flanders teach fractioas i
way that does support students’ procedural undetstg rather than their conceptual understanding

of fractions. The structure of the lessons stillrrored the structure of lessons from typical
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mathematics classrooms before the adoption oftdredards (Porter, 1989; Stodolsky, 1988) and the
majority of mathematical tasks possessed both fesithat might facilitate (focus on multiple sodurti
strategies and multiple representations) and feattinat might not facilitate students’ conceptual
knowledge of fractions (remaining in the abstraocbrid of mathematics, absence of strong
collaboration between students, not linking repmeéons to each other, absence of requirement of
justification of the solution method). Furthermongs noticed a sharp decline in features that relete
students’ conceptual understanding as instructi@ves to individual guidance provided by the
teacher. In this respect, our findings corrobopaiter research that maintenance of demanding featur
is difficult (Hiebert et al., 2003; Stein et al996) also in the teaching of fractions. It alsadtrates
that the problem of maintenance of demanding featuemains a persistent problem. This finding
underlines the quest of Stein et al. (1996) foff stavelopment efforts that aim to help teachers to
implement tasks in a way that fosters studentsteptual understanding of mathematics in general
and fractions in particular. In addition, since firedings also revealed that mathematical tasks tha
related to fractions and decimals were consisteatiged as less supporting students’ conceptual
understanding as compared to tasks that relatedrtgparing and ordering fractions and equivalent
fractions, curriculum developers, teachers, anfl development efforts might, within their focus on
teaching fractions for conceptual understandinggetaespecially the link between fractions and
decimals.

6.2.Implications for research
The coding scheme and the conceptual frameworkdaohwhe coding scheme was based, proved to
be useful to cope with the complex nature of teaagz:hMoreover, the definition of mathematical tasks
as broad units of analysis also helped to gairgimisin the teaching of fractions. The distinction
between tasks as presented in the teacher’'s guiskes as set up during instruction, and tasks as
enacted through individual guidance by the teaetes also useful since it helped to describe the
process of instruction as it unfolds in the class.
The findings of the current study have implicatidos studies that aim to respond to the quest for

more studies related to alternative ways of teagliiactions (Lamon, 2007; Siegler et al., 2010).
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Related studies might target the current prevaititigcture of the lessons in which students during
practice applied the rules as presented by thehéeaduring instruction. Given the many links of
fractions with everyday life, students could instéearn fractions while doing activities that regui
them to conjecture, justify, interpret, work togathlink representations to each other, etc.

Since the results clearly pointed that the oriégmtatoward conceptual understanding differed based
on whether the mathematical task was related tctifras and decimals, comparing and ordering
fractions, and equivalent fractions, studies that & target alternative ways of teaching fractions
might also pay considerable attention to teachivad &ims to help students to understand the links
between fractions and decimals.

Whereas Stein et al. (2007) asked for studies dddtessed the whole curriculum chain (written,
intended, enacted curriculum, and student learnittgy current study addressed the written and
enacted curriculum since the written, and especitde enacted curriculum is found to impact
students’ learning (Carpenter & Fennema, 1988;nSteial., 2007; Wittrock, 1986). The assistance
provided by the teacher to students who are stnggbs considered to be a mediating variable
between the task as set up by the teacher andisheat implemented by the students (Stein et al.,
1996) and was also addressed in this study. Howexeedid not control for other mediating variables
between the different phases of the curriculumrclaai depicted in the conceptual framework. Other
studies might include these mediating variables,intended curriculum and students’ performance in

the analysis.
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"In line with the in 1997 adopted attainment tasgéhte three curriculum programs (KP, NT, ZG) empbad
approach to mathematics teaching and learning ket previously uncommon (focusing on mathematical
thinking and reasoning, inclusion of problem sodviactivities, making use of realistic contexts, tiee of
calculators, collaboration, communication, and tlevelopment of a critical attitude related to nuicadr
information). All curriculum programs cluster lessan a week, a block or a theme addressing the omaitent

domains of mathematics education (numbers andlasitmos, measurement, geometry).

" For 18 of the 24 selected tasks as set up byeheher, two tasks as enacted through individualamdie
provided by the teacher to students experiencifficulties were selected. For five lessons, we daubt select
two tasks as enacted through individual guidanowiged by the teacher, because instruction tookntagor
time of the lesson and practice was too short ltovafor selecting two tasks. In one lesson, we el three
tasks as enacted through individual guidance peavlay the teacher in order to cover to whole rasfgasks as

enacted through individual guidance provided bytdaeher to students experiencing difficulties.

I Single representation refer to either single syimiepresentations or single nonsymbolic represiemtst
Single symbol representations refer to represemtstthat are entirely composed of numerals, mattieaha
symbols, mathematical notation. Single nonsymbuatjgresentations refer to representations that jrucate

both a symbol and a nonsymbol (e.g., manipulapiaure).
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Chapter 6

General discussion and conclusion

1. Problem statement
In the introduction of this dissertation we desedlgaps related to the research field of fractitves.
stated that fractions are considered a criticalp@€rick, Swafford, & Findell, 2001; Kloosterman,
2010; NCTM, 2007; Siegler et al., 2010; Van de WaR010), but difficult subject for students to
learn (Akpinar & Hartley, 1996; Behr, WachsmuthsB& Lesh, 1984; Bulgar, 2003; Hecht, Close,
& Santisi, 2003; Lamon, 2007; Newton, 2008; Siegal., 2010). Worldwide, students experience
difficulties when learning fractions. The range sifidies over the past years revealed that this
problem is persistent. This also appears to becdme in Flanders, as two sample surveys,
administered respectively in 2002 and 2009, redetidat on both measurement occasions, only 64%
of the last-year Flemish elementary school studeraistered the attainment targets — minimum goals
that all students should master at the end of eleang school, approved by the Flemish Government
— related to fractions and decimals. This findiimgaddition to the outcomes of the study that we
reported on in Chapter 2, constitutes the basithfocus on fractions in the present dissertation
We further pointed at the need for more studiesudony on preservice and inservice teachers’
knowledge of fractions (Moseley, Okamoto, & Ishidf07; Newton, 2008). Given that teacher
education is considered to be crucial for teactedevelop a deep understanding of fractions (Borko
et al., 1992; Ma, 1999; Newton, 2008; Toluk-UcadP®; Zhou, Peverly, & Xin, 2006), and that a
major concern related to increasing the mathemattasdards expected of students should be
teachers’ preparation to address these standadsbide, 2012; Kilpatrick et al., 2001; Sieglerlet a
2010; Stigler & Hiebert, 1999; Zhou et al., 2008)e analyzed Flemish preservice teachers’
knowledge of fractions in Chapter 4 of this disatoh.
Finally, we discussed a growing body of researdated to fractions that explicitly focuses on the
teaching of fractions (Lamon, 2007; Siegler et2010). The importance of studying actual teaching

160



is also stressed in research related to teachsesbficurriculum materials, placing the teacheaas
central actor in the process of transforming théter curriculum (Lloyd, Remillard, & Herbel-
Eisenman, 2009; Stein, Remillard, & Smith, 200®ld®ed research describes a curriculum chain that
comprises a written, an intended, an enacted cluric and mediating factors between these phases
(Stein et al., 2007). In Chapter 3 we focus on sueh mediating variable, namely teachers’ views of

curriculum programs. In Chapter 5, we zoom in ow b@achers in Flanders teach fractions.

2. Research objectives

The initial aim of the dissertation was to set apearch on mathematical difficulties. Based on the
outcomes of Chapter 2, where we explored matheatditficulties as reported by the teachers, we
decided to focus on fractions and to analyze teatkiews of curriculum programs more in-depth. In
this respect, the general aim of the dissertatitimat-resulted from our decision to focus on fratsi
— was to analyze preservice teachers’ knowleddeaofions and to analyze how fractions are taught
in Flanders. In Chapter 1, four research objectwmese introduced related to the aims of the
dissertation. These research objectives were aslelian the empirical studies reported in Chapter 2
to 5.

RO 1. Analysis of the prevalence of mathematidéicdties in elementary education as

reflected in teacher ratings

RO 2. Analysis of teachers’ views of curriculuragrams

RO 3. Analysis of preservice teachers’ knowleddeaotions

RO 4. Analysis of the teaching of fractions
In Chapter 2 we reported on an exploratory studyipeo gain insight in mathematical difficulties a
reported by the teacher. The main focus of thiglystwas related to difficulties inherent to
mathematics and enabled us to present a graddispeverview of difficult subjects in the
mathematics curriculum (RO 1). In addition, we digoused on difficulties that stemmed from the
curriculum programs. We elaborated on this in Chiai® where we studied teachers’ views of
curriculum programs (RO 2). In Chapter 4 we studitzmish preservice teachers’ common content
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and specialized content knowledge of fractions OFinally, in Chapter 5 we analyzed to which
extent elementary school teachers in Flanders tea@hing fractions for conceptual understanding

(RO 4) by means of an observational study.

2.1.RO 1. Analysis of the prevalence of mathematicdficdities in primary education as
reflected in teacher ratings
This exploratory study aimed to provide insight mmathematical difficulties (a) inherent to
mathematics and as such, difficult for studentiedon and (b) related to the curriculum program, as
reported by the teachers on a 5-point Likert scBkgta were collected by means of three grade-
specific questionnaires. We developed these questices based on the three predominant curricula
in Flemish elementary education. In total, 918 eas of 243 schools completed the questionnaires.

We used quantitative research techniques to antigzeata.

Main findings
The findings revealed that some subjects were tegdry the teachers to be difficult in every grade
which the subject was listed in the curriculum, enfractions (1 to 6" grade), divisions ¢ito 6"
grade), numerical proportions{3o 6" grade), scale (5to 6" grade) and almost every problem
solving item (1 to 6" grade). Items that were considered to be diffitutit least half of the grades in
which the subject was listed in the curriculum westimation (% — 6" grade), long divisions {5and
6™ grade), length (9 to 4" grade), content {1 2", 3¢, 5" 6" grade), area (4and %' grade), time (1
to 5" grade), and the metric systenfi @rade).
Furthermore, it was established that the proportifficult subjects was the highest in the second
grade, followed by the first, fifth, fourth, thirdand sixth grade. The proportion difficult subjects
ranged from 23% to 49%, which let us to concludsg,tin general, mathematics is a difficult area to
learn for elementary school students.
Thirdly, as we asked the teachers to report onaggied curriculum program, we were able to
present an overview of the frequently used cumiculprograms in Flanders. Five curriculum
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program$ were used by 89% of the respondents: ‘Eurobagig%), ‘Zo gezegd, zo gerekend!’
(25%), ‘Kompas’ (15%), ‘Nieuwe Tal-rijk’ (12%), ariéluspunt’ (10%).
Finally, with regard to the reported difficultieglated to the curriculum program, the findings

suggested differences between the curriculum pnagirdhis is more deeply analyzed in Chapter 3.

Strengths, limitations, implications
A major strength of the study is the strong ina@usiof teachers’ perspective which is —
notwithstanding the prevailing extended view onchest professionalism — exceptional rather than
standard (Bryant et al., 2008). However, within sfi®ong focus on the teachers’ perspective, we did
not analyze important aspects such as teacherstigga and students’ outcomes (Correa, Perry,
Sims, Miller, & Fang, 2008; Pajares, 1992; Philli@®07; Staub & Stern, 2002). Future research
could therefore apply a more integrated approachcambine teacher knowledge, teacher practices,
and student outcomes in one single study.
As reported, we used quantitative techniques ttyaedhe data. Given the large sample size, this wa
helpful to provide a general picture. A qualitatresearch approach, however, could complement this
study by going more deeply into it. Instead of rhemllecting teacher ratings of difficulties for
students, teachers in can also be asked to makestplicit and to illustrate what exactly causes th
difficulties.
This study was exploratory in nature and its imgtiiens related primarily to the upset of the
dissertation. A first implication was related tcetBubject of this dissertation. As fractions were
consistently reported by the teachers as beingudlifffor their students, and as students’ perforoea
results reveal the same pattern (Ministry of thentish Community Department of Education and
Training, 2004, 2010), we decided to focus furiherfractions in Chapter 3 and Chapter 4. Secondly,

we also decided to go more deeply into the diffieslrelated to the curriculum program; this iselon

" Kompas is an updated version of Eurobasis. Antbenent this study was set up, no version was yaitable
of Kompas for 4th, 5th and 6th grade.
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in Chapter 3 where we used the related teachemgeatas an indicator of their views toward

curriculum programs.

2.2.R0O 2. Analysis of teachers’ views of curriculum grrams
Based on the outcomes in Chapter 2, we decideahdtyze the teacher ratings of their curriculum
programs more deeply in Chapter 3. In this studyused teacher ratings as a measure for their views
toward curriculum programs. A subsample of Chagtevas included in this study & 814): only
teachers working with one of the five most freqlyensed curriculum programs were included in the
study.
Research stresses the importance of variables timedizetween the written, the intended, and the
enacted curriculum (Atkin, 1998; Christou, EliopfwiMenon, & Philippou, 2004; Macnab, 2003;
Stein et al., 2007). Teachers’ orientations towewdriculum are regarded as such a mediating
variable. These orientations influence how teaclmrgage with the materials and use them in
teaching (Remillard & Bryans, 2004). Teachers’ mta¢ions toward curriculum reflect teachers’ ideas
about mathematics teaching and learning, teachesis of curriculum materials in general, and
teachers’ views of the particular curriculum theg working with. Whereas research pointed out that
the unigue combination of these ideas and viewsteathers (i.e., their orientations toward
curriculum) influences the way they use the cuitioy the study also revealed that the ideas about
mathematics teaching and learning and views ofauum materials in general and of the particular
curriculum they are working with on their own alsimved to be a mediating variable (Remillard &
Bryans, 2004). In addition to the study of teach@ews (h = 814), we also studied in a subsample of
the teachersn(= 89) whether or not the performance results oir theidents 1f = 1579) differed
significantly based on the curriculum programs usethe classroom. This enabled us to analyze
whether differences in teachers’ views of curriculprograms are related to differences in students’

performance results or not.
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Main findings

The results revealed significant differences ircheas’ views of curriculum programs, based on the
curriculum program used in class. We observed ghedterns in teachers’ views of curriculum

programs. Teachers’ views of curriculum programsewmore positive in case the curriculum

programs address one content domain of mathem@tiombers and calculations, measurement,
geometry) per lesson and provide more support lier teachers, such as providing additional
materials, a more detailed description of the amuaslditional didactical suggestions, and theaaktic

background knowledge about mathematics. Whereaseaxe not able to control for other variables,
the results suggested that curriculum programsematith regard to teachers’ views of curriculum

programs.

The study further revealed that students’ perfomearesults did not vary significantly based on the
curriculum program used in class. This underlines fact that teachers’ views of curriculum

programs is but one mediating variable and thaaddition, it would be useful to include other

mediating variables in the analysis, such as teatheliefs about mathematics teaching and learning
teachers’ views of curriculum materials in genetalachers’ knowledge, teachers’ professional
identity, teacher professional communities, orgatndnal and policy contexts, and classroom

structures and norms (Remillard & Bryans, 2004irs¢¢ al., 2007).

Strengths, limitations, implications

To our knowledge no previous studies combined aalyais of teachers’ views of curriculum
programs and related these to students’ performaesglts on such a large scale. Whereas this
approach enabled us to look for differences inheeg views that are most likely not based on
coincidence, the large-scale study also limitedgitaén size to study teachers’ views. Further, ¢gfou
the sampling approach helped to involve a largeo$etspondents, it was not based on random
selection (the project was announced through diffemedia and if teachers showed interest, they
were contacted by the researcher). As such, we madrable to counter a potential sampling bias in
the study, including teachers who already develapear and explicit views of curriculum programs.
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Thirdly, given that this study was part of a largesearch project that centered on mathematical
difficulties, we analyzed teachers’ views of cumiion programs by building on their experiences
with the curriculum programs and by focusing onrégg difficulties related to the curriculum
programs. Future studies might shift the focus lmn dtrengths of curriculum programs instead of
focusing on the weaknesses.

The observation of a discrepancy between teachiEna’s and students’ performance results stressed
the need for observational studies about the waghtrs actually implement curriculum programs.
Observational studies could reveal if teacherscarepensating for anticipated difficulties related t
curriculum programs. In line with this implicatiowe included an observational study related to the

teaching of fractions in Chapter 5.

2.3.RO 3. Analysis of preservice teachers’ knowledg&aitions
Building on the work of Shulman and colleagues (S8lam, 1986a, 1987; Wilson, Shulman, &
Richert, 1987), Ball, Hill and colleagues (Ball,darhes, & Phelps, 2008; Hill & Ball, 2009; Hill, Ball
& Schilling, 2008) analyzed the mathematical knalgle needed to teach mathematics. Their findings
pointed at two domains of content knowledgemmon content knowledged specialized content
knowledgeCommon content knowledgefers to knowledge that is not unique to teachireachers
need to be able to multiply two fractions, but alsoother professions this kind of knowledge is
needed. This kind of knowledge plays a crucial ml¢he planning and carrying out of instruction
(Ball et al., 2008) and is still considered to beoanerstone of teaching for proficiency (Kilpakriet
al., 2001).Specialized content knowledgefers to the mathematical knowledge and skilquaito
teaching (Ball et al., 2008). For instance, teasimeust be able to explain why you multiply both the
numerators and denominators when multiplying foadj whereas for others it is sufficient to be able
to perform the multiplication without being able ¢aplain the rationale behind the rule. In their
study, Ball et al. (2008) were surprised aboutithgortant presence of teachers’ specialized content

knowledge. In this study, we analyzed preserviaehers’ content knowledge of fractions.
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One approach to investigate what effective teachaguires in terms of content knowledge, is
reviewing studies related to students’ understapdin determine the mathematics difficulties
encountered by students (Ball et al., 2008; Stidies & Ball, 2004). Thereforan this study we
began by reviewing literature related to studekisiwledge of fractions. The review revealed a gap
between students’ procedural and conceptual kn@eled fractiondAksu, 1997; Bulgar, 2003; Post,
Cramer, Behr, Lesh, & Harel, 1993; Prediger, 20683ulting in a rather instrumental understanding
of the procedures (Aksu, 1997; Hecht et al., 20PBdiger, 2008). Regarding the conceptual
understanding of fractions, research pointed ultifaceted nature of fractions (Baroody & Hume,
1991; Cramer, Post, & delMas, 2002; English & Halfd 995; Grégoire & Meert, 2005; Kilpatrick et
al., 2001) and distinguished five sub-constructbeéanastered by students in order to develop a full
understanding of fractions (Charalambous & Pittat®z, 2007; Hackenberg, 2010; Kieren, 1993;
Kilpatrick et al., 2001; Lamon, 1999; Moseley et 2D07). Related sudies revealed that students wer
most successful in assignments regarding the gasteansub-construct, and that in general, they had
too less knowledge of the other sub-constructse@alty knowledge regarding the measure sub-
construct seemed to be lacking (Charalambous &-{Pisintazi, 2007; Clarke, Roche, & Mitchell,
2007; Hannula, 2003; Martinie, 2007).

In the present study, we centered on 184 first-yaat 106 last-year preservice teachers’ common
content knowledge as measured by their conceptuapeocedural knowledge of fractions on the one
hand and on preservice teachers specialized coktenwledge as measured by their skill in

explaining the underlying rationale on the othandha

Main findings
Preservice teachers’ average score for the fractiest was .8{maximum = 1.0Q)As the test items
were retrieved either from previous tests to measstudents’ knowledge of fractions or from
exercises in mathematics textbooks for students;ameluded that this is not sufficient to teactsthe
contents. This is an important finding given thia¢ Elemish Government stresses that preservice
teachers should master at least the attainmergttaofj elementary education (Ministry of the Flémis
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Community Department of Education and Training, 20T his is also an interesting finding given
that research found that this kind of knowledge. (tommon content knowledge) is importantthe
planning and carrying out of instructigiBall et al., 2008). The findings further revealdtht
preservice teachers’ knowledge of fractions mimldezgely students’ knowledge of fractions.

The average score of preservice teachers’ spemilatinntent knowledge was only .42 (maximum =
2.00). This can be considered to be a low scoat ghestions preservice teachers’ specialized nbnte
knowledge level. This is an interesting finding &#ase research points at the differential impact of
teachers who have this kind of deeper understanofinbe subject (Hattie, 2009). Furthermore, we
did not observe significant differences regardingffyear and last-year preservice teachers’ common
content and specialized content knowled§ealysis of the fractions-related curriculum in ¢kar
education learned that this is hardly surprisiregause only a limited proportion of teaching time i

teacher education was spent on fractions.

Strengths, limitations, implications

Research suggests that preservice teachers’ kngevigidfractions mirrors similar misconceptions as
revealed by research of elementary school stud&ntsivledge of fractions (Newton, 2008; Silver,
1986; Tirosh, 2000). However, previous studies. (€@ & Wang, 2006; Isiksal & Cakiroglu, 2011,
Izsak, 2008; Moseley et al., 2007; Newton, 2008)ewteo narrow in scope to analyze the difficulties
that were revealed in our overview of students’arsthnding of fractions. Therefore, in the current
study, we addressed both preservice teachers’ qguoale and conceptual knowledge (i.e. their
common content knowledge). Conceptual knowledge pcim@d knowledge of the five sub-
constructs: part-whole, ratio, division, operaemgd number. As research also stressed the impertanc
of teachers’ specialized content knowledge (Balblet 2008), we also included this aspect in the
current study. Furthermore, inclusion of both fysar and last-year preservice teachers made it

possible to analyze to some extent the role oheraeducation in this respect.
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The study applied a cross-sectional design, whiak wseful regarding the data collection. A major
drawback is that we were not able to control fdfedénces between both groups of respondents
(first-year and third-year preservice teacherslprgitudinal study could tackle this limitation.

As to the implications of the study, the findingatipreservice teachers’ common and specialized
content knowledge were limited and that presertéaehers’ common content knowledge mirrored
students’ knowledge of fractions suggested thateéd, attempts to augment (preservice) teachers’
knowledge might be a fruitful way to increase thatmematics standards expected of students
(Jacobbe, 2012; Kilpatrick et al., 2001; Stigler Hiebert, 1999; Zhou et al., 2006). A second
implication relates to the fact that fractions, wmoto be an important yet difficult subject for déunts
(Akpinar & Hartley, 1996; Behr et al., 1984; Bulg2003; Hecht et al., 2003; Kilpatrick et al., 2001
Kloosterman, 2010; Lamon, 2007; NCTM, 2007; Newtdd08; Siegler et al., 2010; Van de Walle,
2010), represented only a very small proportiorihef curriculum in teacher education. Given that
fractions are only one of the many subjects, omedoaubt whether it is feasible to prepare preservic
teachers to teach every subject in elementary &idaca\ practical alternative, as suggested by the
National Mathematics Advisory Panel (2008), mighe to focus on fewer teachers who are
specialized in teaching elementary mathematics.thfarcoption is to extend teacher education, but,
simply increasing the number of lessons in teaadhrcation that focus on fractions would be
insufficient; preservice teachers should be pravidéh mathematical knowledge useful to teaching
well (Kilpatrick et al., 2001). Teacher educaticograms could then pay considerable attentiondo th
aspects that constitute teachers’ mathematical lauge for teaching (Ball et al., 2008; Hill & Ball,
2009; Hill, Ball, et al., 2008). Finally, the outoes of the study relate to teacher education iergkn

It suggests that the move from teacher “training”téacher “education”, initiated in the 1980s
(Verloop, Van Driel, & Meijer, 2001), has not yetdn implemented. Preservice teachers seemed to
be able to replicate most of the procedures thgg baen taught, but they are not ‘empowered’ with a

deeper understanding (Darling-Hammond, 2000).

169



2.4.RO 4. Analysis of the teaching of fractions
This study built on Chapter 2 in its focus on fraes, and on Chapter 3 in its focus on the enacted
curriculum. By analyzing how fractions were taught-landers, this study addressed the call for a
greater focus on the teaching of fractions (Lan&9Q7), and within that, a response to the call for
more attention to the development of conceptuaktstednding of fractions (Siegler et al., 2010). We
built on curriculum research that identifies thadiger as a central actor in the process of tramgfigr
curriculum ideals (Lloyd et al., 2009; Stein et, &007). This implies acceptance of a difference
between the curriculum as represented in instratimaterials and the curriculum as enacted during
lessons. Therefore, we analyzed both the teacherte and the enacted curriculum. We did so by
analyzing mathematical tasks, broad units of asotesn activity that aim to focus students’ attemtio
on a specific mathematical idea. In total, 88 miatdiical tasks were analyzed: 24 mathematical tasks
as represented in the teacher’s guide, 24 mathesh#disks as set up by the teacher, and 40 tasks as

enacted through individual guidance by the teacher.

Main findings
The findings of the study suggested that teacheadnders teach fractions in a way that supports
students’ procedural understanding rather tham ttweiceptual understanding of fractions. This was
evident in the structure of the lessons and irffea&ures of the analyzed tasks.
The structure of the lessons can be characterizeteacher-directed instruction followed by a
substantial amount of practice of a similar sghr@blems completed by students on their own, and as
such, did not reflect a way of teaching that is sidered to support students’ conceptual
understanding (Hiebert & Grouws, 2007; Stein, Grpw& Henningsen, 1996). The majority of
mathematical tasks possessed both features thltafad (focus on multiple solution strategies and
multiple representations) and features that did faoilitate students’ conceptual understanding of
fractions (remaining in the abstract world of matla¢ics, absence of strong collaboration between
students, not linking representations to each gothbsence of requirement of justification of the
solution method).
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Moreover, whereas the results revealed a consistendask features as the task moved from
presented in the teacher’s guide to set up bydaeher, the results also revealed a sharp dedine i
task features that related to students’ conceptodérstanding as instruction moved from tasks s se
up by the teacher to enactment through individugdlance provided by the teacher. In this respect,
our findings corroborate prior research that maiatee of demanding features is difficult (Hiebért e
al., 2003; Stein et al., 1996) also in the teachihdractions. It also illustrates that the problef
maintenance of demanding features remains a pErsjgtoblem.

Finally, the study revealed that the orientatiowand conceptual understanding differed to some
extent according to the curriculum program usedhayteacher, but mainly to the mathematical idea
that was stressed. Mathematical tasks relatecttidns and decimals were consistently coded as les
supporting students’ conceptual understanding aspaced to tasks that related to comparing and

ordering fractions and equivalent fractions.

Strengths, limitations, implications
Following the recommendations of Hiebert and cgjiess regarding the analysis of teaching (Hiebert
& Grouws, 2007; Stigler, Gallimore, & Hiebert, 200&e opted for the analysis of video data instead
of for survey questionnaires or non-registeredsttasm observations. This enabled us to go back to
the data whenever needed. Further, it facilitagathing an acceptable level of inter-rater relighil
and as such, the use of video data had advantagesms of validity and reliability. Guided by
previous research, we analyzed mathematical t&tkin(et al., 1996; Stein et al., 2007; Stein, Bmit
Henningsen, & Silver, 2000). These were broad uoft@a classroom activity that aim to focus
students’ attention on a specific mathematical .ideadoing so, we met the quest of Hiebert and
colleagues (Hiebert et al., 2003; Hiebert & Grou@Q7; Stigler & Hiebert, 1999), who argue that
broad units of analysis are preferred, given thrapiex nature of teaching.
Furthermore, we applied one unique coding schemantdyze both the written and the enacted

curriculum, and as such, addressed several agpettts curriculum chain. This is in correspondence
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with Stein et al. (2007) who stated that the rededield would benefit from establishing common
structures for examining both the written and thaoted curriculum.

Some limitations regarding the study need to beaskedged as well. Although this study addressed
both the written and the enacted curriculum, we rditl examine the entire curriculum chain, from
written curriculum over intended curriculum and etea curriculum to student learning, as
recommended by Stein et al. (2007). Moreover, iditamh to the video data, interviews and
stimulated recall interviews with the teachers, dhd inclusion of information about students’
background might have strengthened the study.

In our response to the call for more attentiontte tdevelopment of conceptual understanding of
fractions (Siegler et al., 2010), we analyzed tamdy focusing on features that were considered to
facilitate students’ conceptual understanding othmmatics in general (Hiebert & Grouws, 2007,
Stein et al., 1996). We did not, however,analyzeléssons from a fractions-specific didactical poin
of view. It might be useful to include this in futuresearch.

As to the implications of the study, the findingtheachers in Flanders taught fractions in a way t
did support students’ procedural understandingerathan their conceptual understanding indicates
that despite a worldwide adoption of standards shrass the importance of teaching mathematics for
conceptual understanding (Bergqvist & Bergqvist, 120 Lloyd et al., 2009; NCTM, 2000;
Verschaffel, 2004), at least with regard to thechirag of fractions, there seems to be a wide gap
between theory and practice. Related staff devebmpnefforts, as recommended by Stein et al.
(1996), might be a means to close this gap.

The observation of a decline in features that migbilitate students’ conceptual understandinghas t
instruction moved from task as set up by the teatbethe task as enacted through individual
guidance by the teacher, suggested a differemiatianstruction. Some students forgot or did not
understood the conceptual meaning of the tasktaspsduring instruction. Since teachers generally
focussed on immediately refreshing the rule ang oefierring to that rule during individual guidance

these students might, experience fractions asitepamd applying rules rather than understanding
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what they are doing. Consequently, there appedne # differentiation in instruction as compared to
students who did understood the conceptual meahirigg task set up.

Finally, the finding that the orientation towardnceptual understanding differed according to the
mathematical idea that was stressed, suggestsetbedirch into alternative approaches for teaching
fractions as recommended by Siegler et al. (201i@hitarget explicitly the relationship between

fractions and decimals.

3. General discussion
We started the dissertation with the statement filagtions are an essential but difficult subjext t
learn (e.g. Behr, Harel, Post, & Lesh, 1992; Lan®0Q7; Newton, 2008; Siegler et al., 2010). This,
in addition to the outcomes of the exploratory gtueborted in Chapter 2, formed the fundament to
focus on fractions in this dissertation. In additi@lso based on the outcomes of Chapter 2, we
analyzed teacher ratings of the curriculum programse deeply in Chapter 3. We used these ratings
as an indicator of teachers’ views of curriculunaggams. Regarding the research on fractions, we
pointed at the relevance of research focusing esguvice teachers’ knowledge of fractions (Borko et
al., 1992; Jacobbe, 2012; Ma, 1999; Moseley e@Dy; Newton, 2008; Siegler et al., 2010; Stigler
& Hiebert, 1999; Toluk-Ucar, 2009; Zhou et al., BpOWe also underlined the importance and
relevance of research addressing the teachingadtfidns explicitly (Lamon, 2007; Lloyd et al., 2009
Siegler et al., 2010; Stein et al., 2007). Therfare addressed Flemish preservice elementary lschoo
teachers’ common and specialized content knowleddeactions (Chapter 4) and their approach in
teaching fractions in Flanders (Chapter 5).
The exploratory study in Chapter 2 enabled us ¢twige a grade-specific overview of subjects in the
mathematics curriculum that teachers perceive #ikui for the students to learn. The teachers
further also rated the extent to which the curtioulprograms caused difficulties in learning the
subjects. The results suggested differences théd b related to the curriculum programs.
In Chapter 3, we elaborated more on teacher ratihd#ficulties in student learning produced by th
curriculum programs. This was used as an indicliprteachers’ views of curriculum programs,

173



which can be considered as a mediating variablaen€ing how the curriculum changes as it moves
from written, over intended, to enacted curriculamd to student learning (Remillard & Bryans,
2004; Stein et al., 2007). The results revealetep#t in teachers’ views of curriculum programs. In
general, teachers’ views were more positive in ¢asecurriculum programs addressed one content
domain of mathematics per lesson and provided mopport (additional materials, a more detailed
description of the lesson, additional didacticagjgastions, mathematical background knowledge).
Differences in teachers’ views of curriculum praggewere not related to differences in students’
performance results, which stresses the need todewther mediating variables and to carry out
observational studies about the way teachers imgri¢curriculum programs.

In Chapter 4, we analyzed preservice teachers’ aamand specialized content knowledge. Both
forms of knowledge are considered to be an imporespect of knowledge needed to teach
mathematics (Ball et al., 2008; Hill & Ball, 2008%ill, Ball, et al., 2008). Common content
knowledge refers to a kind of knowledge not unitugeaching. Specialized content knowledge refers
to knowledge and skill unique to teaching. The ifigd revealed that preservice teachers’ common
content knowledge of fractions was not sufficiend dargely mirrored students’ knowledge of
fractions. The findings also revealed that preservieachers’ specialized content knowledge of
fractions was below an acceptable level. Furtheemoor for common content knowledge, nor for
specialized content knowledge, we observed sigmifiaifferences between first-year and last-year
preservice teachers. An observation of the mathesnatirriculum learned that over the three years,
only a very limited proportion of teaching time wasent on fractions. The results questioned the rol
of teacher education.

In Chapter 5, we analyzed how teachers taughtidrein elementary school. We found that, more
than ten years after Flanders adopted standardsaithematics that stress the importance of
conceptual understanding (Ministry of the Flemisbnhunity Department of Education and
Training, 1999; Verschaffel, 2004), teachers wesehing fractions in a way that supported students’
procedural understanding rather than their cone¢ptuderstanding. The results further suggested a
differentiation in instruction for students who didt understand or could not remember the learned
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content during instruction and needed help fromtdaeher during practice. Finally, the study also
revealed a differentiation in orientation towardhceptual understanding, based on the mathematical

idea that was stressed in the task.

4. General limitations and directions for future reseach
As also referred to in the acknowledgement, ansliag by the famous Canadian poet Leonard Cohen
“There is a crack in everything, that's how théhtigiets in.” (Cohen, 1992). Applying this metaphor
to the current dissertation sheds lights on théditions (the cracks) and on the directions fourfet
research (the light that gets in). As such, thalte®f this dissertation must be considered inlitjte
of a number of limitations to be addressed in fit@search. Some limitations were already addressed
in relation to the main findings as discussed abbivéhis part of the dissertation, we will disciise

overarching limitations regarding the study varsbdnd the research design.

4.1.Study variables
In this dissertation, two major groups of variablesre addressed. On the one hand we focused on
variables related to the use of curriculum programnsthe other hand we addressed variables related
to teacher knowledge. For both groups of variableshave to acknowledge some limitations, which
we outline below.
In this doctoral dissertation, we addressed sewvefrahe temporal phases of curriculum use as
depicted in Figure 1. In Chapter 5, we analyzed tdseher’'s guide of the curriculum programs
regarding the conceptual nature of the mathemaas#ik (i.e. the written curriculum) on the onechan
and the mathematical tasks as set up during whass-dnstruction by the teacher and enacted
through individual teacher guidance (i.e. the esdaturriculum). Further, we addressed teachers’
views of curriculum programs (Chapter 3), a medatiariable with regard to the transformations in
the phases of curriculum use. Correspondingly, twdisd whether differences in teachers’ views are

related with students’ performance results.
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Figure 6. Temporal phases of curriculum use (Steigt al., 2007, p. 322)

In this respect, we addressed several parts ofteéhgporal phases of curriculum use. More
particularly, the present dissertation shed light amnsistencies and inconsistencies between the
written and enacted curriculum, and revealed diffees in teachers’ views of curriculum programs
based on the curriculum program used in class. Mekyave failed to address all of the temporal
phases of curriculum use, as recommended by Steih €£007). The intended curriculum was not
included in the studies and only one mediatingalde with regard to the transformations in the
phases of curriculum use was addressed. Also tlpadmof the enacted curriculum on student
learning was not studied. Therefore, future re$earight elaborate on this more deeply by analyzing
the written, intended, enacted curriculum, and ity variables, and its impact on student learning
for one given set of participants.

Another focus of the dissertation comprised teaiharowledge for teaching mathematics. In this
respect, we built on the work of Ball, Hill, andlleagues (Ball et al., 2008; Hill & Ball, 2009; Hil
Ball, et al., 2008), who in turn built on Shulmaréstention to the content specific nature of
knowledge for teaching (Shulman, 1986a, 1987; Wilsbal., 1987). Arguing that there is a need for
a greater precision about what is meant with cdrkeawledge and pedagogical content knowledge,

Ball, Hill, and colleagues are developing a practiased theory of content knowledge for teaching
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mathematics. By using the term ‘mathematical kndgte for teaching’, they focus on the
mathematical knowledge needed to carry out the wbtkaching mathematics. Figure 2 presents the
different domains in mathematical knowledge forctéag. Ball, Hill, and colleagues more
particularly point at two major domains: subject ti@a knowledge and pedagogical content
knowledge. They further divide subject matter kremlge in common content knowledge
(mathematical knowledge needed by individuals iwedie professions), specialized content
knowledge (mathematical knowledge not needed itingst other than teaching), and knowledge at
the mathematical horizon (knowledge of how math@ahbtopics are related over time). They further
divide pedagogical content knowledge in contentvkedge intertwined with knowledge of how
students learn a specific content (e.g. “Teacherst mnticipate what students are likely to thinkl an
what they will find confusing”; Ball et al., 200&. 401), content knowledge intertwined with
knowing about teaching (e.g. “Teachers evaluateintkguctional advantages and disadvantages of
representations used to teach a specific idea dentify what different methods and procedures
afford instructionally”; Ball et al., 2008, p. 401and knowledge of content and curriculum (e.qg.

familiarity with the curriculum, knowledge of alteative curricula; Shulman, 1986b).

Subject Matter Knowledge Pedagogical Content Knowledge
Knowledge
of Content
Common and
Content Students
Knowledge Specialized Knowledge
of Content
Content and
Horizon Knowledge Curriculum
Content Knowledge
Knowledge of Content
and
Teaching

Figure 7. Domains of Mathematical Knowledge for Teehing (Ball et al., 2008, p. 403)

Whereas the conceptualization of mathematical kedge for teaching (Ball et al., 2008; Hill & Ball,
2009; Hill, Ball, et al., 2008) helped us to gagrasp on the multidimensional character of knowdedg
for teaching, some warrants need to be taken intmumt. First, the research on mathematical

knowledge for teaching is work in progress and @aithany doubt revealed that knowledge for
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teaching mathematics is multidimensional. Furthesearch is, however, needed to confirm the
current findings (Ball et al., 2008). Further, wavh to acknowledge that some situations might be
managed using different kinds of knowledge (Balbkt 2008). Whereas we hypothesized that we
addressed teachers’ knowledge of content and ssi@i@edagogical content knowledge) to provide a
grade-specific overview of difficult subjects ofetimathematics curriculum (Chapter 2), it might be
possible that some teachers leaned solely on ¢batent knowledge of mathematics to decide upon
the intrinsic difficulties of mathematical conterloreover, research findings suggest that even
knowledge of content and students is multidimerai¢ill, Blunk, et al., 2008).

Another remark relates to both research on teacheesof curriculum programs and research on
knowledge needed to teach mathematics. As refleamteldapplied in this dissertation, both fields of
research largely developed in parallel, whereathénpractice of teaching, both are related to each
other and impact the quality of instruction (Chamabous & Hill, 2012). Whereas both research fields
acknowledged the added value of each other, rdsélaat addressed both curriculum programs and
teacher knowledge and its impact on quality ofringtton was virtually nonexistent (Charalambous &
Hill, 2012). A special issue of Journal of Currignd studies, published recently (August?23012),
addressed this shortcoming, and set up initialsstejgombining both fields of research. The finding
of these studies suggested that teacher knowleudewariculum programs have a unique and a joint
contribution to the quality for teaching, and thaher factors like teachers orientations toward
mathematics and mathematics teaching mediated tmtrilsution of teacher knowledge and
curriculum programs on the quality of instructigd@h@ralambous & Hill, 2012; Charalambous, Hill,
& Mitchell, 2012; Hill & Charalambous, 2012a, 2012bewis & Blunk, 2012; Sleep & Eskelson,
2012). As such, these findings underline the complature of teaching (e.g. Hiebert & Grouws,
2007; Stein et al., 2007) and add to the suggestfoBtein et al. (2007) to address all phases of
curriculum use, to do so including teacher know&edgso in the current dissertation, this mightéav
been useful.

Finally, in our aim to provide a general picture tefichers’ views of curriculum programs, of
preservice teachers’ knowledge of fractions, andtezfching fractions in Flanders, contextual
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variables were not explicitly addressed in the istadIn this respect, research (Cobb, McClain,
Lamberg, & Dean, 2003) pointed at the potentialanipof professional communities on supporting
teachers to teach with curriculum programs thatresidthe kind of mathematics as entailed by the
mathematical standards currently applied in manyntiees (Bergqvist & Bergqgvist, 2011; Lloyd et
al., 2009; NCTM, 2000; Verschaffel, 2004). Furthére literature also point at the impact of the
school context on beginning teachers’ motives fiplyng innovative instructional strategies in das
(Ruys, 2012). Consequently, it is thus advisablenttude variables related to the school context in

longitudinal studies that span both preserviceiageérvice teachers.

4.2 .Research design
We already referred to the fact that a longitudstatly of preservice teachers’ knowledge of frangio
has advantages as compared to the cross-sectiesighdve applied in Chapter 4. We can elaborate
further on that by arguing that it might have beeeful to follow up the development of these
preservice teachers’ knowledge during their firsting after entering the teaching profession. This
analysis of the development of their mathematicaivedge for teaching in combination to their use
of curriculum programs and its impact on instrugtibas the potential to add significantly to the
research as plead for by Hill and Charalambous i@&mbous & Hill, 2012; Hill & Charalambous,
2012a).
Second, whereas the sample sizes in Chaptersa®d34 were reasonably large, the sample size in
Chapter 5 comprised 24 lessons on fractions talgl®0 teachers. The number of observed lessons
enabled us to construct a picture of how fourttdgréeachers in elementary school were teaching
fractions, but inclusion of the whole range of ye@rade 1 — grade 6) in future research mightitresu
in a richer picture of teaching fractions throughelementary school.
Finally, the present dissertation was especiallgigteed from a quantitative research paradigm.
Whereas this helped us to provide a general piattiteachers’ views of curriculum programs, of

preservice teachers’ knowledge of fractions, antkathing fractions in Flanders, this inevitablgoal
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resulted in a loss of information. Future researchld apply a mixed-method design, and combine

guantitative with qualitative studies.

5. Implications of the findings

5.1.Implications for empirical research
Building on the main research findings, the follogiimplications for empirical research can be
formulated.
On the basis of the outcomes of the study repantéthapter 2, we decided to focus on fractions in
the following chapters of the present dissertatidowever, Chapter 2 revealed that other subjects
(i.e. divisions, time, estimation, content, andglim) were consistently rated by teachers as being
difficult for their students as well. Therefore tdte research might also target these subjects and
apply both research lines addressed in the cudesertation (i.e. mathematical knowledge for
teaching and teachers’ use of curriculum materialt)e study of these subjects.
Further, the study reported in Chapter 3 revealédrdnces in teachers’ views depending on the
curriculum program used in class. These differensese however not related to differences in
students’ performance. These results stress theoriemre for future research to include a
combination of variables that might mediate betwienphases of curriculum use. In this respect, in
a case study of 8 teachers using the same cumicpfogram, Remillard and Bryans (2004) already
pointed at the added value of combining severaliatied variables. The findings of Chapter 3
suggest that it might be a fruitful way for futuesearch also to include a combination of mediating
variables and to analyze their impact by studyirifeidnt groups of teachers and curriculum
materials.
In accordance to claims that stress the importalet of teacher education in the development of
teachers’ knowledge of fractiorfBorko et al., 1992; Ma, 1999; Newton, 2008; Tolu&ar, 2009;
Zhou et al., 2006)the study in Chapter 4 addressed first-year asttylear preservice teachers’
content knowledge of fractions. The study revedtet preservice teachers’ common content and
specialized content knowledge of fractions wastéohi and thus, underlined the finding that it is a
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common misconception that school mathematics g fulderstood by the teachers and that it is easy
to teach (Ball, 1990; Jacobbe, 2012; NCTM, 1991rskeaffel, Janssens, & Janssen, 2005). As such,
future research might address preservice teaclienglopment of mathematical knowledge for
teaching fractions as well as other mathematicfests(See Chapter 2) more deeply.

The finding in Chapter 5 that more than 10 yeatsrathe adoption of standards stressing the
importance of teaching mathematics for conceptndetstanding (Verschaffel, 2004), the teaching of
fractions in Flanders still mainly focuses on studeprocedural understanding, stress the need to
carry out more research to better understand hevediriculum unfolds from the written text to the
enactment in class. The study in Chapter 5 fuiiggests that studies related to the effectiveokess
alternative ways of teaching fractions as recomredriuy Siegler et al. (2010), might select carefully
which aspect of fractions they want to study, sitiee results illustrated that the orientation tadvar
conceptual understanding differed based on the enadtical idea that was stressed. Finally, the
findings corroborate prior research that mainteparfademanding features is difficult (Hiebert et al

2003; Stein et al., 1996) also in the teachingadtfons.

5.2.Implications for practice and policy
The findings in Chapter 3 revealed that teacheesvs of curriculum programs were more positive in
case the programs were provided with teacher stipgoch as additional materials, detailed
descriptions of each ‘course’, additional didadtisaggestions and theoretical and mathematical
background knowledge, and in case the lessons ss#tteone content domain. This finding might
inform school teams in their choice for a specifigrriculum program. This might also inspire
curriculum program designers and publishers.
It is often heard that the knowledge level of tinérants in teacher education is decreasing. Surveys
related to teacher education preparing future aiang school teachers showed that, prior to ergerin
teacher education, about half of the candidatésvield an academic track in secondary education and
the other half followed a technical track, not resegily geared to enter higher education (Minisfry
the Flemish Community Department of Education arairiing, 2009). The surveys also revealed that
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the success rate is higher for the candidates wilmived an academic track in secondary education.
These findings are in line with the outcomes of shedy in Chapter 4, where track in secondary
education differentiates between preservice teathkaowledge level of fractions. The finding that
preservice teachers’ common content knowledge a€tifsns was limited also suggest that the
knowledge level of entrants, but also of last-ya@aservice teachers, is insufficient. This ineJigab
has its impact on the proportion of teaching timetéacher education that is spent teaching
fractions. Teacher education programs in our semhnt half of their teaching time of fractions on
refreshment of knowledge that elementary schodllesits are expected to master at the end of
elementary school. This limits the attention thet be paid on didactics regarding how to teachethes
contents. Also, over the three years of teachecathn, and not taking into account the internships
schools, both teacher education programs involagtieé study spent respectively only 5 and 7 hours
of their teaching time on fractions (of which, agntioned above, half of the time focused on
refreshing common content knowledge). One can vendtiis is sufficient to learn to teach fractions
in all grades of elementary school. These findimigght give impetus to teacher education institutes
to reflect on the teaching time devoted to fractiand on how to familiarize preservice teacherh wit
teaching fractions.

Finally, the findings in Chapter 5 shed light oe tjuest of Stein et al. (1996) for staff developmen
efforts that aim to help teachers to implement gagk a way that fosters students’ conceptual
understanding of mathematics (and fractions iniqaér). Since the findings also revealed that the
orientation toward conceptual understanding diffelased on the mathematical idea that was
stressed, these staff development efforts mighetaspecific aspects of fractiods such, also these
findings might initiate teachers and by extension teacher education to reflect on the prevailing
focus on rule learning, which seems to be triggered depending on the mathematical idea that is

stressed and on the phase in instruction.
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6. Final conclusion
Guided by the outcomes of Chapter 2, this dissertdbcused on preservice teachers’ knowledge of
fractions and on the actual teaching of fraction§landers. As an extension of Chapter 2, teachers’
views of curriculum programs were studied as wEfle main findings, based on the four reported
studies, indicate that:
- Fractions is but one subject of the mathematicdaulum that merits further investigation.
- Curriculum programs might influence teaching indilg
- Common content knowledge of fractions of beginnamgl last-year preservice teachers is
limited.
- Specialized content knowledge of fractions of begig and last-year preservice teachers is
limited.
- The teaching of fractions in Flanders encouragedesits’ procedural understanding, rather
than their conceptual understanding.

- The focus on conceptual understanding of fractabfisrs according to the mathematical idea

that is stressed and according tohese in instruction.
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