
CK J R EV I EW

Uraemic toxins and new methods to control their
accumulation: game changers for the concept
of dialysis adequacy
Griet Glorieux1 and James Tattersall2

1Department of Internal Medicine, Nephrology Division, Ghent University Hospital, Gent, Belgium, and
2Department of Renal Medicine, Leeds Teaching Hospitals, Leeds LS2 7EF, UK

Correspondence to: Griet Glorieux; E-mail: griet.glorieux@ugent.be

Abstract
The current concept of an adequate dialysis based only on the dialysis process itself is rather limited.Wenowhave considerable
knowledge of uraemic toxicity and improved tools for limiting uraemic toxin accumulation. It is time to make use of these.
A broader concept of adequacy that focusses on uraemic toxicity is required. As discussed in the present review, adequacy could
be achieved by many different methods in combination with, or instead of, dialysis. These include preservation of renal
function, dietary intake, reducing uraemic toxin generation rate and intestinal absorption, isolated ultrafiltration and
extracorporeal adsorption of key uraemic toxins. A better measure of the quality of dialysis treatment would quantify the
uraemic state in the patient using levels of a panel of key uraemic toxins. Treatmentwould focus on controlling uraemic toxicity
while reducing harm or inconvenience to the patient. Delivering more dialysis might not be the best way to achieve this.
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Introduction
The current concept of dialysis adequacy focusses on urea and
creatinine clearance (CrCl) by the dialysis system. This is rather
simplistic and encourages providing more treatment by dialysis,
ignoring other potentially fruitful strategies such as additional
sessions of isolated ultrafiltration (UF), preserving renal function,
reducing toxin generation rate, reducing toxin transfer from the
gut, selectively adsorbing key toxins and modifying diet. These
alternative methods could already be applied before dialysis
starts or could be complementary to dialysis. According to the
laws of mass action, biochemical effects of any toxin would be
proportional to its concentration [1], which would depend as
much on generation as on clearance. We now have considerable
knowledge of uraemic toxicity and improved tools for limiting

their accumulation. It is time tomake use of these. A broader con-
cept of adequacy that focusses on uraemic toxicity is required.

Knowledge of uraemic toxicity has grown spectacularly over
the past decades (Figure 1). Although barely discussed until late
in the previous century, interest has increased exponentially
since then. With the founding of the European Uraemic Toxin
Workgroup (EUTox; www.uremic-toxins.org), an encyclopaedic
list of uraemic retention solutes with their concentrations in ur-
aemia became available [2]. A recent update confirmed the pro-
gressive increase in the number of identified retention solutes
[3]. This can be attributed to improvements in analytic techni-
ques and in the recent advances in the area of ‘-omics’,
allowing profiling of the total proteome/metabolome within a
biological sample [4, 5].
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Uraemic toxins are preferentially classified according to the
physicochemical characteristics affecting their clearance dur-
ing dialysis, which is still the main therapeutic option for their
removal. Traditionally, this subdivision focusses on three types
of molecules: the small water-soluble compounds [molecular
weight (MW) < 500 Da], the larger ‘middle molecules’ (MW> 500
Da) and the protein-bound compounds [2]. Additionally, salt
and water overload could be considered as causing uraemic
toxicity. In the future, alternative classifications may be devel-
oped, based on new knowledge concerning, e.g. the generation
of solutes as proposed in a recent review by Meijers et al. [6]
pointing to new targets for decreasing levels of uraemic toxins
(Figure 2). Ideally, nondialysis treatments to reduce uraemic
toxicity could be started at earlier stages of chronic kidney dis-
ease (CKD).

Current adequacy methods
Current guidelines recommend quantifying dialysis by urea
clearance. The evidence for this was based on the results of the

national cooperative dialysis study (NCDS) [7], the first, and still
one of the very few, randomized controlled trials (RCTs) designed
to investigate the effect on outcome of varying dialysis dose. The
NCDS randomized anuric patients dialysing thrice weekly into
four groups according to target time-average blood urea
nitrogen (BUN) and dialysis session length. The dialysis dose,
quantified as the fractional volume cleared per dialysis (Kt/V),
was prescribed for the individual patient to achieve the target
BUN levels. Patients with higher urea generation rates were
prescribed higher Kt/Vs to achieve their allocated BUN target.
This study found a significantly reduced hospitalization rate
(P < 0.0001) in the patients randomized to achieve low urea
(time-averaged BUN 35 versus 75 mg/dL). Patients randomized
to longer dialysis time (4.5 h) had ∼50% reduced probability of
being admitted compared with those treated by shorter dialysis
(3.25 h), but this difference was not significant (P = 0.06). Subjects
randomized to low BUN had to be given higher dialysis dose or
have lower generation rate to achieve the BUN target. Since
lower urea generation would have been due to lower dietary pro-
tein intake, usually associated with worse survival, the benefit of
low BUN was likely to be due to the increased dose. The study
concluded that achieving lower BUN levels was more effective
at improving outcome than increasing session length. Secondary
analysis of the NCDS, using a urea kinetic model to separate the
effect of clearance and generation, suggested that the association
between urea clearance as Kt/V and outcome was present at low
clearance (Kt/V < 0.9) but was insignificant at clearance levels re-
garded as adequate by modern standards [8].

The Hemodialysis (HEMO) study is the only RCT designed to
investigate the effect of higher dose of dialysis and outcome [9].
It found no benefit in increasing clearance above a Kt/Vof 1.2, con-
firming the results of the NCDS. While there was no difference in
outcome between the groups randomized to high dose versus
standard dose, within each group, there was an association be-
tween poor outcome and failure to achieve the target Kt/V [10].

In peritoneal dialysis (PD), there is also no RCT evidence
to support any specified Kt/V. The adequacy of PD in Mexico
(ADEMEX) study showed no benefit of increasing Kt/V above 1.7
in anuric patients [11].

The decision when to start dialysis is a difficult and an im-
portant one for the patient. Ideally, we would have a measure

Fig. 1. Increasing number of publications on ‘uraemic toxins’ over the past

decades.

Fig. 2. Dialysis and nondialysis related techniques effective for controlling the levels of uraemic toxin.
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of uraemic state so that we could start dialysis at the point when
the advantages of dialysis outweigh the disadvantage. Estima-
tion of glomerular filtration rate using serum creatinine (eGFR)
has proven to be worse than useless as patients starting dialysis
with low eGFR have a better outcome [12]. When eGFR is calcu-
lated from measurements of creatinine and urea clearance
from urine collections, this association disappears [13]. It is pos-
sible that GFR measured by a more direct method would better
predict outcome, but this has not yet been tested and would be
difficult to apply in routine practice. Ideally, the uraemic state
would be quantified by the direct measurements in plasma of
one or more key uraemic toxins.

The initiation dialysis early and late (IDEAL) study prospective-
ly investigated outcome in patients randomized to starting dialy-
sis at a CrCl (estimated from serum creatinine) of 12 mL/min/
1.73 m2, whether or not the patients had symptoms of uraemia.
The control group were patients starting dialysis when symptom-
atic orwhen CrCl dropped below 7. No differencewas found [14]. It
seems that survival is as goodwithout dialysis but with evenmin-
imal levels of renal function compared with dialysis.

The evidence for controlling salt and water overload as a
quantifiable and modifiable measure of the quality of dialysis
seems at least as compelling as Kt/V [15]. Salt and water overload
can bemeasured accurately by bioimpedance spectroscopy (BIS).
Patients dialysing with longer dialysis sessions have improved
outcome, compared with conventional treatment [16]. In a
study comparing extended time and conventional dialysis, the
worse outcome for short treatments was confined to patients
who were salt and water overloaded [17]. This suggests that it is
the better control of salt and water rather than the higher Kt/V,
which is responsible for the improved outcome. Intensive control
of fluid overload has been shown to reverse heart abnormalities.

Numerous studies have shown that residual renal function is
associated with better outcome in dialysis patients. Where clear-
ancemeasurements include the contribution of both dialysis and
renal function, it is the contribution of the renal function, which
has the dominant influence on outcome [18, 19].

So, it seems that, compared with normal renal function, a min-
imal dialysis providing <10%of theweekly urea clearance andmuch
less than that for all other soluteswill preserve life in the short term
and avoid overt uraemic symptoms. But dialysis patients suffer
froma range of long-termproblems that reduce survival. Increasing
the dose of dialysis, at least quantified by using standard methods,
hardly improves outcome. With modern dialysis, it is easy to pro-
vide these minimal levels of clearance relatively noninvasively.
Haemodialysis (HD) performed over 2 h three times weekly would
deliver an adequate dose of dialysis with respect to small andmid-
dle molecule clearance, as defined in the NCDS study. However,
with such short sessions, UF rates would be unacceptably high un-
less fluid weight gains between dialysis could be limited.

If we understood more about uraemic toxicity, we could
use treatments other than dialysis to avoid or reduce toxicity.
Where dialysis is required, we could fine-tune it to reduce the
toxicity. This could improve the outcome for the patient or
allow a less invasive and individualized treatment, specifically
controlling the level of toxins causing problems for the patient,
while limiting harm or inconvenience to the patient.

How to evaluate uraemic toxicity?
The evaluation of uraemic toxicity starts with identifying and
quantifying the solutes that are present in uraemic biological
fluids in abnormal concentrations. The biological effects of
these potential uraemic toxins can be evaluated at relevant

concentrations in in vitro/ex vivo and/or in vivo experiments. In
addition, clinical association studies can suggest a role of specific
uraemic solutes in disease. The final approach is trying to de-
crease the concentrations in vivo, and only when an improve-
ment of hard outcome of CKD patients is demonstrated, a
causal relation is confirmed [20].

Analytical techniques

Individual uraemic retention solutes are analysedusing colorimet-
ric, fluorescence and high-performance liquid chromatographic
(HPLC)methods. HPLC is also used to study groups of solutes shar-
ing physical characteristics. As soon as ‘-omic’ techniques, analys-
ing total profiles of uraemic retentions solutes, became available,
they were introduced into research on uraemic toxicity [4, 21–26].
In the context of uraemia, proteomics and metabolomics have
been the main ‘-omic’ applications [4, 21, 22, 24–28]. Proteomics
is suited for the study of peptides and proteins (middle molecules)
[29], while metabolomics focusses on small molecules. ‘-Omic’
strategies are complementary and particularly useful as an ap-
proach for identifying pathways that are disturbed in a given path-
ology [30, 31].

Recently, proteomics have been applied in biomarker discov-
ery, and a new proteome classifier assessing CKD and its progno-
sis has been proposed [32]. This study demonstrated that,
although a high urinary protein excretion invariably resulted in
renal failure progression, a low urinary protein excretion did
not preclude death or dialysis. Even in patients without protein-
uria, a lowCKD273 score predicted renal failure progressionwith-
in a follow-up period of 3.6 years [32]. This finding would need to
be validated in independent cohorts before implementing into
clinical practice [33].

Uraemic solutes identified in this way might not only be use-
ful biomarkers but also real culprits in the progression of CKDand
CKD-related cardiovascular disease (CVD).

When the concentrations of uraemic retention solutes ap-
plied in assays to evaluate their biological effects exceed those
encountered in uraemia, conclusions on the solutes’ toxicity
might have relatively little clinical relevance [2]. Therefore, quan-
tification of the confidently identified metabolites of interest
should be performed by targeted methods before testing of the
biological activity of uraemic retention solutes becomes possible
(Table 1). Assessment of the pathophysiologic role of these newly
detected metabolites will enable novel key culprits for the
uraemic syndrome to be pointed out as the first step to pursue
their specific removal.

Biological evaluation of toxicity of uraemic solutes

Small water-soluble compounds
Ureawas the first uraemic retention solute to be identified and is
amongst all uraemic retention solutes the one with the highest
concentrations in the blood of uraemic patients. It reflects pro-
tein intake in the stable patient and has been used to assess nu-
trition and dialysis efficacy in renal patients. Toxicity of urea has
remained elusive, and it has been thought that the uraemic syn-
drome was related to associated uraemic retention solutes but
not to urea per se. However, more recently indirect toxic effect,
via protein/albumin carbamylation [34] a risk factor for mortality
in CKD [35], aswell as limited direct toxic effects have been attrib-
uted to urea. Urea was found to induce the generation of reactive
oxygen species (ROS) and insulin resistance in vitro and in mice
[36]. In an in vitro study, Vaziri et al. showed that urea induced dis-
ruption of the intestinal epithelial barrier function by decreasing
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the expression of the tight junction proteins [Zona Occludens-1
(ZO-1), Claudin-1 and Occludin] [37]. Trecherel et al. explored regu-
latory proteins of apoptosis and showed an upregulation of Bcl2-
associated death promoter (BAD), a pro-apoptotic protein [38].

Guanidines have been considered as uraemic toxins since the
1970s [39]. Guanidines are neurotoxins [40, 41]. They may also
have cardiovascular toxicity since several guanidines are, based
on leukocyte activation, pro-inflammatory at concentrations
found in uraemia [42, 43]. Water-soluble guanidines are also re-
sponsible for the generation of other uraemic toxins like tumour
necrosis factor-alpha (TNF-α) and interleukin-6 (IL-6), twomiddle
molecules [42, 44]. The guanidines, asymmetric dimethylargi-
nine (ADMA) and symmetric dimethylarginine (SDMA), are
released from proteins that have been post-translationally
methylated and subsequently hydrolysed. ADMA has for a long
time been recognized as an inhibitor of nitric oxide synthase
(NOS) causing endothelial dysfunction and vascular damage
[45], a propensity that affects both the general and the uraemic
population [46–48]. Infusion of ADMA in healthy volunteers,
achieving a concentration as in uraemia, resulted in a decrease
in cardiac output and a rise in vascular resistance [49]. SDMA, a
structural analogue of ADMA, has long been considered inert
[45, 50]. Its biologic activity was at first suggested by Bode-Boger
et al. [51], showing a dose-dependent inhibition of NO synthesis
mainly attributed to limiting the -arginine supply to endothelial
NOS. SDMAplays a role in leukocyte activation byenhancing gen-
eration of ROS, which is attributed to increased calcium influx via
store-operated Ca2+ channels [52] and activation of nuclear factor
(NF) κB resulting in cytokine production [44]. Inhibition of NF-κB
activation by N-acetylcysteine (NAC) and ROS production with
SKF96365 and captopril prevented leukocyte activation [44, 52].
Recently, Speer et al. [53] demonstrated that SDMA accumulates
in high-density lipoprotein (HDL) particles from patients with
CKD. This complex of HDL and SDMA is recognized by endothe-
lial Toll-like receptor-2, leading to enhanced nicotinamide aden-
ine dinucleotide phosphate-oxidase-dependent ROS production

and thereby reducing endothelial NO bioavailability in vitro and
increasing arterial blood pressure in vivo. Hence, SDMA may be
involved directly or indirectly in the pathogenesis of CVD via ac-
cumulation in HDL and seems neither to be inert nor to be a sim-
plemarker of renal function or CVD. However, the sole increase of
SDMA by exogenous infusion in otherwise healthy mice affected
neither renal function nor blood pressure or cardiac function [54].

Middle molecules
Asmentioned earlier, the gradual increase of cytokines in CKD is,
in addition to the reduced renal clearance, partly attributed to an
increased generation in response to uraemic toxins [55, 56]. In
clinical studies in CKD, pro-inflammatory cytokines are used as
a hallmark of micro-inflammation [57]. The pathophysiological
role of cytokines at concentrations as occurring in CKD is often
neglected. It was recently demonstrated that, among several
pro-inflammatory cytokines, TNF-α alone was pro-oxidative but
only at high-range uraemic concentrations. The increase in ROS
production could be blocked by adalimumab, although blocking
had no effect on the oxidative stress in whole blood from HD pa-
tients, suggesting that other uraemic toxins than TNF-α aremore
crucial in this process [58].

Protein-bound compounds
Protein binding in CKDhas been considered for some time, e.g. in
the context of competition for drug binding [59]. It recently
gained new interest as new dialysis techniques might have the
potential to improve clearance of protein-bound toxins [60].
Protein-bound uraemic retention solutes have been studied
extensively over the past decades with focus on their role in
the increased susceptibility to infection and cardiovascular
complications.

The biological effects of the prototype protein-bound solute,
indoxyl sulfate (IS), have been studied the most. A recent
systematic review [61] including 27 studies demonstrating patho-
physiological effects of IS and/or p-cresyl sulfate (pCS) described
their interference with several key metabolic processes involved
in the uraemic syndrome. These included inflammation, oxida-
tive stress, endothelial dysfunction, epithelial-to-mesenchymal
transition, cardiac cell proliferation and renal tubular cell senes-
cence. Since then, additional reports supporting the above evi-
dence were published, covering increased crosstalk between
leukocytes and endothelium, glycocalyx degradation and vascular
leakage [62]; apoptosis of osteoblasts [63]; inhibition of drug me-
tabolism [64]; induction of tubular endothelial growth factor re-
ceptor leading to tissue remodelling [65] and inhibition of
breakdown of angiotensin II [66].

Similar effects were also described for other protein-bound
toxins [67]. Indole acetic acid (IAA)was shown to inhibit endothe-
lial progenitor cell production opposing their beneficial effect on
vessel repair and neovascularization [68]. IAA induces endothe-
lial inflammation and oxidative stress and activates an inflam-
matory AhR/p38MAPK/NF-κB pathway [69]. Recently, the ability
of IAA to induce tissue factor production was associated with in-
creased pro-coagulant activity [70, 71]. The induction of tissue
factor occurred via the aryl hydrocarbon receptor pathway [71].

Recentmetabolome studies repeatedly demonstrate increased
levels of hippurates. Boelaert et al. demonstrated an increase, al-
ready from CKD Stage 3 on, of the known hippuric acid (HA) and
2-,3-,4-hydroxyhippuric acid. They also identified increased le-
vels of an unknown aminohydroxyhippuric acid and of the sul-
phate and glucuronide conjugates of hydroxyhippuric acid [4].
HA was first isolated from horse urine, hence its name, and is a
microbial co-metabolite. In general, literature on toxic effects of

Table 1. Key uraemic retention solutes

Uraemic
retention
solutes

MW
(Da)

Normal
concentration,
mean (SD or
range)

Uraemic
concentration,
mean (SD or
range)

Ratio
U/N

Small water-soluble
Urea (g/L) 60 <0.4 2.3 (1.1) 5.7
ADMA (µg/L) 202 <60.6 878.7 (38.4) 14.5
SDMA (µg/L) 202 76.1 (21.0) 646.4 (606.0) 8.5

Middle molecules
β2m (mg/L) 11 818 1.9 (1.6) 43.1 (18) 22.7
IL-6 (ng/L) 24 500 4.0 8.6 (3.7) 2.1
TNF-α (ng/L) 26 000 7.0 57.8 (10.8) 8.2

Protein-bound
pCS (mg/L) 188 1.9 (1.3) 41 (13.3) 21.6
IS (mg/L) 212 0.53 (0.29) 44.5 (15.3) 84.0
IAA (mg/L) 175 0.5 (0.3) 2.4 (2.2) 4.8
HA (mg/L) 179 3.0 (2.0) 87.2 (61.7) 29.1
p-OHHA
(mg/L)

195 NA 18.3 (6.6) –

Extracted from [2, 3].

NA, not available; ADMA, asymmetric dimethylarginine; SDMA, symmetric

dimethylarginine; β2m, beta 2 microglobulin; IL-6, interleukin-6; TNF-α, tumour

necrosis factor-alpha; pCS, para-cresyl sulfate; IS, indoxyl sulfate; IAA, indole

acetic acid; HA, hippuric acid; p-OHHA, para-hydroxyhippuric acid.
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hippurate is fairly old; somewhere along the way, interest in HA
got lost. Satoh et al. demonstrated that subtotally nephrecto-
mized rats given HA in their drinking water showed a decrease
in inulin clearance, pointing to glomerular dysfunction. This
was supported by the significant increase in whole kidney scler-
osis index. In addition, N-acetyl-glucoseaminidase (NAG) excre-
tion rate, an indicator of proximal tubular injury, was higher in
the uraemic toxin-overloaded rats compared with the control
rats [72]. More recently, HA was shown to inhibit the transport
of two important efflux pumps expressed on human tubular
cells [73]. Next to hippurate, hydroxyhippurates were increased
in plasma from CKD patients. p-Hydroxyhippuric acid (p-OHHA)
inhibits Ca2+ ATPases, needed for restoring intracellular Ca2+

homeostasis after cell activation. Increased intracellular Ca2+mod-
ulates various polymorphonuclear leukocyte (PMNL) functions
such as oxidative burst and degranulation as well as apoptosis as
demonstrated by Cohen by the decrease in caspase activity in
PMNL in the presence of p-OHHA [74].

Uraemic toxins and outcome

Several uraemic toxins have been linked to outcome in CKD
patients or patients on dialysis [75].

ADMA concentration was correlated to intima media thick-
ness, an index of vascular damage, in a dialysis population [46].
ADMA levels were found to be associated with high risk of
death and cardiovascular events in predialysis patients [76–78]
and dialysis patients [47]. A clinical study in 142 patientswith dif-
ferent stages of CKD demonstrated a correlation of SDMA with
TNF-α and IL-6 [44], which was markedly more significant than
for ADMA [44]. Similarly, in a cohort of 288 dialysis patients,
serum SDMA was a risk factor for death, in contrast to serum
ADMA [79].

Elevated levels of cytokines and other inflammation markers
have been related to all-cause and cardiovascularmortality inHD
patients [80, 81]. In a populationwith advancedCKD, alreadyhav-
ing increased TNF-α concentrations, but not yet affected by pos-
sible negative effects of dialysis therapy, the concentration of
TNF-α was not associated to adverse outcome [58], as was also
shown for earlier stages of CKD [82]. This is in contrast to soluble
TNF receptor 1 (sTNFR1) and sTNFR2, which are independently
associated to all-cause mortality or an increased risk for cardio-
vascular events in advanced CKD irrespective of the cause of
kidney disease [83], and IL-6, which has repeatedly been shown
to be a strong predictor for outcome in CKD/dialysis [82, 84, 85].

For the protein-bound solutes, IS and pCS, highly significant
associations between concentration and hard end points such
as cardiovascular events, progression of renal failure andmortal-
ity have been demonstrated [86–91]. Serum IAA is an independ-
ent predictor of mortality and cardiovascular events in patients
with CKD [69].

Finally, numerous studies have now linked the control of salt
and water overload to outcome [15, 17, 92]. Intensive removal of
excess fluid improves left ventricular hypertrophy. Most or all
of the benefits of longer or more frequent dialysis sessions may
be due to improved control of salt and water overload.

How to decrease concentrations/prevent
accumulation of uraemic toxins?
Dietary modification

In anuric patients, fluid intake is usually driven by the need to
dilute dietary salt. One litre is required for every 8 g of sodium
chloride ingested [93]. Dietary sodium restriction would help

avoid salt and water overload and/or the need for UF. Similarly,
restrictions in dietary potassium and phosphate are often
recommended.

A very low-protein diet plus ketoacids (VLPD+) has been used
to reduce urea generation and may delay or reduce the need for
dialysis [94]. VLPD+ has also been shown to reduce the generation
rate of IS, a known uraemic toxin [95].

Reducing absorption from the gut
Agents that bind phosphate or exchange phosphate for other so-
lutes are used to limit phosphate accumulation in themajority of
dialysis patients. Similarly, ion-exchange resins for potassium
are occasionally used. Patiromer, an oral but nonadsorbed potas-
sium binder, is effective in clinical trials [96].

Oral active charcoal, a nonspecific binder of organic toxins,
is routinely used to treat poisoning. It has also beenused success-
fully to control uraemia in patients who have refused dialysis
[97] and to improve the abnormalities in gut barrier function in
uraemia [98].

Recently, medicines have become available to limit absorp-
tion of specific classes of compound from the gut. These include
orlistat for limiting fat absorption and lipoglyptin for limiting
carbohydrate absorption. It is possible that, in the future, the lim-
iting absorption of other toxins, more relevant to uraemia, will
become available.

Reducing generation in the gut

A substantial part of the uraemic solutes is generated in the in-
testine as revealed by several studies, comparing the metabo-
lome of germ-free mice versus mice with normal microbiota
[99] and from HD patients with or without intact colon [100].
More recently, Holler et al. demonstrated the effect of prophylac-
tic antibiotics on urinary IS in stem cell transplant recipients
[101]. In spite of its importance, the intestinalmicrobiota is rarely
taken into account in the context of uraemic toxicity and/or in
the development/optimization of therapies. However, based on
very few targeted studies, significant differences in the microbial
composition in patients treated with HD [102] and PD [103] when
comparedwith healthy controls have been reported. A recent un-
targeted study confirmed that uraemia alters the composition of
the gut microbiome [104]. However, the effect of the altered mi-
crobial species composition on the metabolic activities linked
to levels of protein-bound uraemic toxins in CKD is not known
and needs further investigation, revealing whether the intestinal
microbiota could be a possible future target even at earlier stages
of CKD preventing generation rather than improving removal.

Preservation of kidney function

Even a severely damaged kidney may be capable of producing
sufficient urine volume to prevent salt and water overload and
avoid the need for UF. The urine volume may be increased, if re-
quired, by high-dose loop diuretics.

Residual renal function helps to control phosphate, beta2-
microglobulin (β2m) [105] and potassium [106]. In HD patients,
the removal of protein-bound toxins may be entirely dependent
on residual renal function. Survival is significantly associated
with residual renal function in dialysis patients [19]. Multiple in-
terventions can help preserve residual renal function. These in-
clude controlling blood sugar and blood pressure, avoiding
nephrotoxic drugs and avoiding dehydration.

Influencing renal tubular handling of uraemic toxins may be
another alternative and novel therapeutic approach to reduce
their serum concentrations [107]. Transport of uraemic toxins
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across the tubular cell membrane is facilitated by specific influx
and efflux transporters. Changes in expression and/or function
of influx transporters could decrease local toxicity to renal tubu-
lar cells [108, 109] and might also affect circulating concentra-
tions if combined with effective efflux transport. Several
uraemic toxins like indole-3-lactate, kynurenine and phenylsul-
fate are substrate to these transporters [99]. Drugs interfering
with the function of these transporters, e.g. probenecid, inhibit
the influx of uraemic toxins like IS, increasing viability of prox-
imal tubular cells [110]. However, inhibition of these influx trans-
porters will eventually contribute to further accumulation of
uraemic toxins. In addition, expression of the organic anion
transporters (OAT) 1, OAT3 and OAT polypeptide 4C1 (SCLO4C1)
is shown to be decreased in CKD [111, 112]. Interestingly, Toyo-
hara et al. demonstrated that the transcription of SLCO4C1
can be upregulated by statins, which leads to a higher expression
on the cell membrane resulting in a decreased uraemic toxin
concentration [112]. Mutsaers et al. recently reported that uraemic
toxins inhibit substrate-specific uptake by both multidrug-
resistance-associated protein (MRP4) and breast cancer-resistance
protein (BCRP), two important renal efflux pumps [73]. This might
again contribute to intracellular accumulation and toxicity. So, in-
flux and efflux transporters might be an interesting target for try-
ing to preserve tubular function, which is indispensable for the
clearance of specifically protein-bound uraemic toxins.

Dialysis

Using knowledge of the principles of diffusion, clearance of any
solute by any artificial dialysis system can be predicted [113,
114]. Existing dialysis systems, or their feasible enhancements,
could be optimized to achieve target clearance for any uraemic
toxin or group of toxin.

Low-molecular-weight toxins are easily cleared by HD. Levels
of toxins similar to that found in patientswith normal renal func-
tion could be achieved by daily 8-h sessions of high-efficiency
dialysis.

Higher-molecular-weight toxins can also be removed effect-
ively by dialysis, as long as they are not bound to protein and
the molecules are small enough to pass through the dialyser
membrane’s pores.Membranes that have a pore radius just smal-
ler than that of albumin are available. Due to the lower rate of
diffusion of these larger toxins, efficient clearance rates require
larger membrane surface area and are helped by convection or
fluid flow across the membrane. Haemodiafiltration, in which
up to 100 mL/min of plasma water is filtered across the mem-
brane, could reduce the levels of larger solutes to close to normal
levels with daily 8-h treatments.

For protein-bound toxins, only the unbound fraction can be
removed byHDor filtration. Clearance of bound toxin requires re-
moval and replacement of the plasma-binding protein (usually
albumin), using a membrane that is porous to albumin [115].
The plasma protein can be stripped of the bound toxin by contact
with a competitive binding agent, before re-infusion of the plas-
ma proteins into the patient. Systems capable of removing bound
toxin are currently available but expensive. Current dialyser
membranes bind certain toxins (e.g. β2m). Dialysers could be
modified to include a matrix that would adsorb specific uraemic
toxins. Since the matrix would be in direct contact with plasma
proteins, these could adsorb bound toxin. A carbon-basedmatrix
has been shown to reduce the levels of protein-bound toxins IS
and pCS in vitro [116, 117].

Excess salt and water overload can be removed by UF. Rapid
UF causes ischaemia by increasing blood viscosity and reducing

blood pressure [118]. Equipment to remove fluid by UF without
dialysis is much simpler, cheaper and portable compared with
dialysis. Isolated UF can be powered by the patient’s arterial
blood pressure and needs no water or chemical supplies. Salt
and water overload could be more easily avoided by more fre-
quent or continuous UF. Harmful effects of rapid UF can be
avoided by longer or continuous UF. Longer or more frequent
treatments may be more acceptable to the patient using a port-
able or even implantable UF device [119].

Potential new adequacy concepts
Kt/V is useful to calibrate the dialysis process, to verify that a dia-
lysis has been delivered as prescribed and as a measure of dialy-
sis dose, but the achievement of a universally specified Kt/V
value should not be an objective in itself. Kt/V does not predict le-
vels of any uraemic toxin [120]. It does not even predict levels of
urea. We need ways to quantify the uraemic state, so we can
abandon Kt/V as a measure of dialysis adequacy.

Since toxicity should be proportional to concentration of the
toxin, the quality of dialysis would be assessed on the concentra-
tions of toxins in the patient. Adequately low levels could be
achieved by limiting its generation, preserving or enhancing
renal clearance as well as or instead of dialysis. Excess salt and
water would be considered as a key ‘toxin’, and an adequate dia-
lysis would limit this without excessive UF rate.

Concentrations of toxins may be predicted using knowledge
of the toxin’s generation rate and clearance. Manufacturers of
dialysers would provide sufficient data to allow clearance of key
toxins to be predicted.

To some extent, this concept of adequacy has already been
implemented for PD, where renal clearance and ability to control
fluid overload are known to be crucial and small solute clearance
by dialysis relatively unimportant.

Conclusion
The current concept of an adequate dialysis based only on the
dialysis process itself is rather limited. It would be better to in-
clude factors within the patient such as dietary intake, gener-
ation and renal function. Adequacy could be achieved by many
different methods in combination with, or instead of, dialysis.
These include preservation of renal function, isolated UF, extra-
corporeal adsorption of key toxins, modifying diet, reducing in-
testinal absorption and toxin generation rate.

A better measure of the quality of end-stage renal disease
treatment would quantify the uraemic state in the patient
using levels of a panel of key toxins. Treatment would focus on
controlling uraemic toxicity while reducing harm or inconveni-
ence to the patient. Delivering more dialysis might not be the
best way to achieve this.
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