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Abstract

Background: Sequencing technologies provide a wealth of details in terms of genes, expression, splice variants,
polymorphisms, and other features. A standard for sequencing analysis pipelines is to put genomic or transcriptomic
features into a context of known functional information, but the relationships between ontology terms are often
ignored. For RNA-Seq, considering genes and their genetic variants at the group level enables a convenient way to
both integrate annotation data and detect small coordinated changes between experimental conditions, a known
caveat of gene level analyses.

Results: We introduce the high throughput data integration tool, htsint, as an extension to the commonly used gene
set enrichment frameworks. The central aim of htsint is to compile annotation information from one or more taxa in
order to calculate functional distances among all genes in a specified gene space. Spectral clustering is then used to
partition the genes, thereby generating functional modules. The gene space can range from a targeted list of genes,
like a specific pathway, all the way to an ensemble of genomes. Given a collection of gene sets and a count matrix of
transcriptomic features (e.g. expression, polymorphisms), the gene sets produced by htsint can be tested for
‘enrichment’ or conditional differences using one of a number of commonly available packages.

Conclusion: The database and bundled tools to generate functional modules were designed with sequencing
pipelines in mind, but the toolkit nature of htsint allows it to also be used in other areas of genomics. The software is
freely available as a Python library through GitHub at https://github.com/ajrichards/htsint.

Keywords: Gene set analysis, Gene ontology, RNA-Seq

Background
The use of archived knowledge when analyzing sequenc-
ing data is both typical and necessary to navigate the
often vast quantities of gene-oriented results produced
with high-throughput sequencing technologies. These
sequencing techniques, when applied to the transcrip-
tome, are referred to as RNA-Sequencing (RNA-Seq) and
their use has taken a key role in transcriptomics [1].
The organization of transcriptomes is naturally modular
[2] and the integration of heterogeneous data improves
our ability to resolve relevant biological processes [3].
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Different forms of experimental data capture different
aspects of a larger, more complex biological system. Sub-
ramanian and colleagues introduced the method of Gene
Set Enrichment Analysis (GSEA), which both emulates
the modular nature of biological systems and provides a
generalizable framework to integrate multiple sources of
data into transcriptomic analysis pipelines [3].
GSEA, or more generally referred to as Gene Set

Analysis (GSA), is a diverse group of statistical meth-
ods that conceptually can be divided into three gen-
eral approaches. Arguably the most popular approaches
are singular enrichment methods, which can be distin-
guished from the other methods because they are gen-
erally based on the hypergeometric distribution, a Chi-
square test, a Fisher’s exact test, or a Binomial probability.
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For discussion see [4]. Generally these methods are used
to test a group of differentially expressed genes for ‘enrich-
ment’ with genes that are annotated with a particular
term, which yields a p-value for each term. Clearly, sin-
gular enrichment methods are useful for understanding
how genes in a group are related. However, there are two
main concerns: (1) one has to devise a summarizing met-
ric and (2) the relationship among terms is not considered.
For example, if we have a group of genes that contain
a mixture of annotations consisting of neuron differen-
tiation (GO:0030182), neuron remodeling (GO:0016322)
and neuron development (GO:0048666) it is possible that
none of the individual terms are significantly enriched,
yet the group of genes are undoubtedly related to the
progression of neurons over time.
The remaining two approaches for GSA require that

there are gene sets, relevant to the goals of the exper-
iment, in hand before analyses are undertaken. Often,
these gene sets take the form of curated biochemical
pathways, like those maintained by KEGG (Kyoto Ency-
clopedia of Genes and Genomes [5] or they may be
based on an ontology, of which the Gene Ontology (GO)
[6] is the standard for most organisms. The distinction
between the other two approaches is made betweenmeth-
ods that compare values among genes in the set against
all other genes in the experiment and those that use the
values to test for differences between two phenotypes [7].
There is a lack of consensus among methodologies and
suggested ‘best practices’ for GSA methods that require
gene sets a priori. A number of reviews discuss the
topic [8–10].
Resources are abundant for carrying out the func-

tional analyses of gene sets and among them the software
DAVID [11] is one of the most frequently used. DAVID is
a web-based platform that is accessible to a broad range of
users and carries out a number of tasks useful for RNA-
seq pipelines including the following: namespace map-
ping, functional annotation, enrichment analyses, and
importantly a variety of ways to navigate the results. In
the past decade, the use of functional annotations has
experienced unprecedented growth, be it statistical, algo-
rithmic or tool specific [12], but a disproportionately small
amount of effort has been placed on the critical step of
gene set generation, perhaps helping to explain why sin-
gular enrichment methods are more frequently used than
a priori based ones, despite the perceived advantages of
GSA.
htsint is a software library that enables the creation

of genes sets independently of the method employed by
the user to test these sets for significance. Because gene
sets are produced using an unsupervised approach and
because it is well-known that high-throughput sequencing
results are difficult to interpret, visualization tools were
included as part of htsint.

Implementation
Conceptually, the aim of htsint is to use compiled
annotation information from one or more genomes in
order to calculate distances among all genes in a specified
gene space. This implies a need for efficient annotation
querying at the level of taxa. To address this along with
name-space mapping, and related organizational tasks, a
database is included as an integral part of the library. A
common task in bioinformatics is to map gene names to
protein space or vice versa and this capacity is facilitated
through the database. In addition to the database compo-
nent there are GeneOntology, blast mapping, and pipeline
components. These three components comprise the core
of the library and additional tools are present in a support
role.
Python is an efficient programming language for bioin-

formatics because it is object-oriented, flexible, syntacti-
cally clean and there is a growing ecosystem of packages
[13]. Recently, the package HTSeq was released to pro-
vide a Python-centric environment for high-throughput
sequencing pipelines [14]. HTSeq has a developed set of
tools for managing reads, assemblies, performing quality
assurance, and generation of count matrices. htsint is
complementary to HTSeq as it aggregates annotation data
specifically for hypothesis testing, while HTSeq and other
environments, like Bioconductor [15], facilitate the rest of
the pipeline. Convenient packages that include SeqGSEA
[16] and GSA [17] exist to carry out the significance
testing portion of the pipeline.

Database
The database considers by default some of the most
commonly studied taxa and for each corresponding
gene and protein, GO information is populated either
at database initialization or afterwards. The content of
the database reflects a list of taxa that are specified
in a configuration file. It is possible to populate the
database with all available taxa; however, this is not nec-
essary in most cases. The module gathers data, from the
National Center for Biotechnology Information (NCBI)
ftp://ftp.ncbi.nlm.nih.gov, Uniprot [18] and the GO. The
database tables are genes, taxa, uniprot, go_terms, and
go_annotations. They are shown as a database schema
in Fig. 1. We used the object relational mapper available
as part of the Python package SQLAlchemy http://www.
sqlalchemy.org to keep the database accessible, extensible,
and flexible.

Gene ontology
The GeneOntology class exists for organizing anno-
tations and building GO graphs. Several helper func-
tions are also available to fetch GO annotations from the
database and these are described with examples, in the
documentation. The Python package NetworkX [19] is

ftp://ftp.ncbi.nlm.nih.gov
http://www.sqlalchemy.org
http://www.sqlalchemy.org


Richards et al. BMC Bioinformatics  (2015) 16:307 Page 3 of 7

Fig. 1 Database entity diagram. Data collected from NCBI, the Gene Ontology, and UniProt are organized for efficient taxa related queries. The
database tables or entities are shown along with their attributes. The relationships among tables are designated with edges that connect specific
attributes

central to the GeneOntology class, because the library
is mature enough to handle all graph manipulations
natively. GeneOntology is a container for a NetworkX
Graph class, which removes much of the burden asso-
ciated with the graph representation and makes it easier
for the general community to develop new algorithms.
Furthermore, the visualization of GO networks (or clus-
ters) is simplified through NetworkX as it interfaces with
Matplotlib [20], the standard Python library for scien-
tific plotting, and it can export to the powerful network
visualization tool Cytoscape [21].

BLAST
The clustering of genes, based on distances estimated
from annotation data, does not directly require homol-
ogy mapping, but in the context of RNA-Seq pipelines,
sequence alignment becomes a necessity. The command
line tool, BLAST+, [22] is used either directly or through
BioPython [23] to produce a mapping of transcripts
against a relevant database like the SwissProt portion of
UniProt [18]. The htsint class BlastMapper inter-
faces these results with the database and pipeline com-
ponents of the library. The class can be used broadly to
summarize the taxa that are associated with an assembled
transcriptome or tomap between the transcripts andmul-
tiple taxa. If multiple taxa are used to create a collection
of gene sets, then identifying orthologous and paralogous
genes is a required step before GSEA methods may be
employed.

Pipeline
The pipeline to create gene sets is the same for DNA-
Seq and RNA-Seq. This process has been generalized so
gene space can refer to a genome, a transcriptome or any
arbitrary gene space defined by the user. The user first

defines a list of genes x, as well as a list of taxa t to use
for functional inference. There are several core classes in
htsint that are used to carry out the basic steps involved
in the pipeline described below, with a more detailed
explanation following.

1. Define the gene space x
2. Define the taxa space t as the unique taxa from x
3. Create a GO scaffold G (Fig. 2a)
4. Annotate all terms in G with terms from t (Fig. 2b)
5. Weight the edges of G using a measure of semantic

similarity
6. Find all pairwise shortest paths in G to create Gc

(Fig. 2c)
7. Map term-term shortest paths in Gc to gene space
8. Use spectral clustering to partition the genes into

clusters

In RNA-Seq pipelines, the gene sets are generally used
for significance testing and it follows that genes must be
in x or have reasonable sequence homology with genes in
x to be considered for testing. It is useful to BLAST all
the genes to be used for testing against t so that there is
a mapping between the produced gene sets and the genes
that will be used for testing. The core of the pipeline is
shown graphically in Fig. 2 to highlight how data from
multiple species are integrated through the production of
gene sets. The entire pipeline, including steps for BLAST
mapping, is demonstrated in the tutorial section of the
documentation.
As shown in Fig. 2, a GO graph is first cre-

ated for all the terms in a given GO aspect (e.g.
biological_process). Then all annotations corre-
sponding to the genes (x) and taxa (t) are appended to
the graph. Next, the GO graph is trimmed and the edges
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Fig. 2 Calculating distances. a Represent a specific aspect of the GO (e.g. biological process) as a directed acyclic graph with solid edges
corresponding to the is_a and part_of relationships and nodes representing specific ontology terms. b Genes for one or more taxa are added to the
network via annotations (dashed edged) and they are used to calculate term-term distances. c The term relationships can be re-drawn as a fully
connected graph where each weighted edge corresponds to a pairwise shortest path from (b). The graph is then represented in gene space as a
distance matrix for subsequent clustering

are weighted by estimating all term-term distances—a
computationally intensive step. The distance is based on
information theory, where differences in the Informa-
tion Content (IC) of semantic entities are employed as a
measure of the semantic distance [24, 25].

IC(t) = − lnP(t),

such that P(t) is the number of annotation instances of
the term divided by total number of annotation instances
from the annotation database. We can then define the
semantic distance between a parent-child pair of GO
terms as

dist(tp, tc) = |IC(tp) − IC(tc)|.
GO co-mentioning is included as an optional way to

augment the GO graph with edges representing shared
gene products [26]. Additional measures of semantic dis-
tance will be included in later releases of htsint [27]. Given
the graph weighted with semantic distances, all pairwise
shortest paths between terms are subsequently computed
using a parallel version of Dijkstra’s algorithm [28]. For
graphs with more than a few thousand ontology terms, it
is recommended to carry out the distance calculations in a
parallel environment. The term specific distance matrix is
then mapped to a gene specific distance matrix to be used
as input in an implementation of the spectral clustering
algorithm, a graph partitioning method [29]. Gene to gene
distances are set to the shortest path among all possible
term-term paths that connect two given genes.
The idea of using spectral clustering in this way is

based on previous work where it was shown that the
method reasonably partitions gene sets into meaning-
ful functional modules even in the presence of unrelated
genes [26]. Additional methodological details and discus-
sion are provided therein where several experiments with
pathways and molecular interaction data provide ratio-
nale. In particular, there is evidence that multiple sources

of annotation information can be combined at the level
of affinity matrices to improve the quality of functional
modules. The integration of arbitrary annotation informa-
tion (chromosomal location, cis-regulatory information,
phenotype data etc.) using the scaffolding of the GO
is the future of htsint. However, it was necessary to
first provide a flexible library with expandable database
capabilities before the integration aspects of the package
were investigated and implemented. The gene sets pro-
duced under this scheme may be referred to as functional
modules.

An example and documentation
Historically, an important vertebrate model for embry-
ology and developmental biology has been Xenopus lae-
vis, but because the genome is pseudotetraploid many
researchers have turned, in recent years, to the related
Xenopus tropicalis in order to work with its more tractable
diploid genome. The genome of X. tropicalis has been
published [30] and the developmental transcriptome was
detailed more recently [31]. These studies are part of a
larger effort that has converged in the form of the Xenopus
genomics resource Xenbase [32].
In the tutorial example of the htsint documen-

tation, we combine all available functional informa-
tion for X. tropicalis and X. laevis at the level of
biological_process. All animal related procedures
and experiments used to produce the expression data in
the tutorial were approved by the Comité Cuvier at the
Muséum National d’Histoire Naturelle (Paris, France). To
minimize the runtime for the documentation example,
we exclude annotations that are inferred electronically,
also designated as inferred electronic annotations (IEA).
Whether or not IEA annotations should be included when
generating gene sets is project and taxa dependent. This is
because they will increase the amount of genes included
in the gene sets, but they will also make use of non-
curated annotations, that may or may not be appropriate
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for a given project. It should be noted, however, that the
reliability of these annotations has improved with recent
algorithmic advances [33].
The documentation includes an important discussion

on parameter estimation and details the entire process
that begins with selecting taxa/genes and ends with gene
set visualization. The documentation is written using
a tool designed for reproducible research, lpEdit [34].
The literate programming style of documentation embeds
functional code within the prose of the tutorial. In the
tutorial example, a de novo assembly of X. tropicalis pro-
vides context and serves as a working example of htsint.
The produced gene sets are tested for significance using
GSA [17] and the most significant gene set is visual-
ized. The gene set (shown in Fig. 3) is dominated by
glycosylation and other post-translational modifications
providing a point of entry for further investigation into
genes associated with transcript differential expression.

Results and discussion
Constructing gene sets from user-specified annotation
data is comparable to using the literature to generate
hypotheses for testing. For a given organism, partitions

provide a functional map of the genome based on accu-
mulated biological knowledge. In general, the gene sets
derived from this process provide a faithful description of
the annotated (curated or inferred) portion of the tran-
scriptome, but there will remain a percentage of the genes
that are not included in significance testing. Although
adding well-annotated taxa helps alleviate this problem,
this comes at the cost of potentially introducing mislead-
ing annotation data. Visualizing gene sets as a network
complete with taxa-specific annotation data is a way to
evaluate the quality of a gene set based on gene and term
functional relationships.
Much of the discussion has been about gene set gen-

eration; however, it is important to reiterate that gene
set methods themselves offer important advantages over
gene-level based analyses. Differential expression can
occur as a coordinated change among a group of biologi-
cally relevant genes and when these differences are small,
then the efficiency of gene-level statistics may be impeded
due to a lack of statistical power and a need to correct for
multiple comparisons.
A major goal of htsint is to provide users with the

ability to explicitly specify taxa (and evidence codes)

Fig. 3 Gene set visualization. htsintwas used to visualize a gene set that is produced in the tutorial section of the documentation. Gene Ontology
terms are shown as square nodes with the rank according to the number of connections indicated by the label. Additionally, the full name for each
term is provided in the legend. Terms are connected by edges representing their semantic distance, which is scaled and shown only for a percentile
cutoff (default is 25th) for visualization purposes. Genes are represented as circular nodes with NCBI gene symbols overlaid as labels. The gene nodes
are connected through annotations and the species from which the gene belongs to is indicated by the color and specified in the legend
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based on experimental context—that is based on what the
domain expert feels is best.We feel that a form of phyloge-
netic distance is the most biologically meaningful way to
select species, but from a practical perspective the anno-
tation coverage will play a more important role in the
selection process. Annotation coverage can be calculated
using the database and a phylogenetic distance calculator
will be soon included as part of the library.

Conclusion
Now that sequencing technologies are being applied more
frequently to non-model organisms, there is a demand for
customizable tools that aid functional analyses. Partition-
ing genes based on information from a list of designated
taxa gives the user control over which information is used
to generate the gene sets to be used for hypothesis test-
ing. GSA methods are a natural way to test the generated
gene sets for statistical significance, and the large num-
ber of GSA variants that exist allow generated gene sets to
be used in the context of numerous experimental scenar-
ios. Most importantly, this pipeline for gene set creation
keeps the analysis intuitive, without requiring detailed
algorithmic or mathematical knowledge, as the produced
gene sets can be visualized based on connecting annota-
tions and semantic distance. Viewing a pathway, genome
or a transcriptome as a set of functionally coherent build-
ing blocks is a powerful way to investigate biological
phenomena.

Availability and requirements
Project name: htsint
Project home page: https://github.com/ajrichards/htsint
Operating system(s): Platform independent
Programming language: Python
Other requirements: PostgreSQL, NumPy, NetworkX,
SQLAlchemy, Psycopg2, Biopython
License:MIT
Any restrictions to use by non-academics: None
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htsint: High-Throughput data INTegration library, GSA: Gene Set Analysis,
RNA-Seq: RNA sequencing, GSEA: Gene Set Enrichment Analysis, GO: Gene
Ontology, IEA: Inferred from Electronic Annotation, IC: Information Content,
DAVID: Database for Annotation, Visualization and Integrated Discovery,
HTSeq: Python package for High-Throughput Sequencing, SeqGSEA:
Sequencing Gene Set Enrichment Analysis (R package), KEGG: Kyoto
Encyclopedia of Genes and Genomes, NCBI: National Center for Biotechnology
Information.
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