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Micromagnetic modeling of anisotropic damping in magnetic nanoelements
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We report a numerical implementation of the Landau-Lifshitz-Baryakhtar theory that dictates that the
micromagnetic relaxation term obeys the symmetry of the magnetic crystal, i.e., replacing the single intrinsic
damping constant with a tensor of corresponding symmetry. The effect of anisotropic relaxation is studied in
a thin saturated ferromagnetic disk and an ellipse with and without uniaxial magnetocrystalline anisotropy. We
investigate the angular dependence of the linewidth of magnonic resonances with respect to the given structure
of the relaxation tensor. The simulations suggest that the anisotropy of the magnonic linewidth is determined by
two factors: the projection of the relaxation tensor onto the plane of precession and the ellipticity of the latter.
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Landau and Lifshitz1 and later Gilbert2,3 introduced a
phenomenological relaxation term in the equation of motion
of magnetic moments in ferromagnetic media. They suggested
that the magnetic losses can be characterized by a single
intrinsic damping constant of relativistic nature. Both the
Landau-Lifshitz and the Gilbert phenomenological damping
terms are essentially equivalent for low magnetic losses, while
the Gilbert damping term works better for large values of the
damping constant, as was pointed out by Kikuchi.4 These terms
are now widely used for the description of magnetic relaxations
in magnetic thin films5,6 and patterned magnetic media.7 The
microscopic mechanism behind the magnetic losses in metals
has also been suggested, e.g., in Gilmore et al.8

However, recent experimental data urge the development of
new micromagnetic approaches to the description of magnetic
losses, i.e., by introducing higher-order terms within the
Gilbert approach,9 inert relaxation,10 and by generalizing the
magnetization dynamics and relaxation within the framework
of Onsager’s kinetic equations.11 The latter approach shows
that the relaxation part of the equation of precession should
obey the crystallographic symmetry of the media, thereby
replacing the single intrinsic damping constant with a tensor.
The reason behind anisotropic relaxation in magnetic media
is the symmetry of the spin-orbit and s-d interaction,12

which couples the spins to the other subsystems (degrees of
freedom), i.e., the lattice and the free electrons, respectively.
It is worth noting that an angular dependence of magnetic
losses (or effects associated with the same physics) has
already been reported experimentally.13–18 However, analyt-
ical and numerical approaches still have to be developed,
especially for nanoscale structures where the magnetic res-
onances are strongly confined, and so, their spectra are
discrete.

In this paper, we report on a numerical implementation
of Baryakhtar’s theory11 within the mumax2 micromagnetic
framework.19 Furthermore, we systematically investigate the
influence of anisotropic relaxation on the angular dependence
of ferromagnetic resonance (FMR) linewidths in a nanoscale
magnetic disk and an ellipse.

We start from the general Baryakhtar equation (LLBar),

∂M
∂t

= −γLLM × H + λ̂(M)H − λ̂(e)
pq (M)

∂2H
∂xp∂xq

, (1)

where M, γLL, H are the magnetization vector, the positively
defined gyromagnetic ratio, and the effective internal field,
respectively. The first term in the equation defines the torque,
while the second and third describe the local and nonlocal20

relaxations, respectively. λ̂(M) and λ̂(e)(M) are the relaxation
tensors of relativistic and exchange nature, respectively, and
in general are functions of the magnetization vector. These
tensors are in fact operators that describe how crystallographic
and magnetic symmetries of the system contribute to the
relaxation of magnons. It is worth noting that in contrast to
the Landau-Lifshitz formalism, Baryakhtar’s equation does
not conserve the length of the magnetization vector, i.e.,
|M| �= const. This is especially the case for magnetic metals.
So in contrast to the Landau-Lifshitz theory, Baryakhtar’s
equation can correctly describe the magnetic relaxations in
metals.

In planar magnetic nanoelements the internal magnetic field
is nonuniform, e.g., due to the magnetodipolar field. So accord-
ing to Eq. (1) the static contribution of the nonlocal damping
might reduce the magnetization vector length. Nevertheless, in
the intermediate range of temperatures such relativistic effect
cannot compete with the exchange force that tries to keep the
magnetization vector length constant. So in contrast to Ref. 13,
variations of the magnetization vector length are vanishing
and cannot significantly contribute to the magnon-magnon
scattering and, thereby, to the FMR linewidth broadening.
On the other hand, the dynamic contribution of the nonlocal
damping becomes significant only when the wavelength of
magnons approaches the exchange length of the material,21 i.e.
for high-order exchange dominated spin waves. For the sake
of simplicity, this paper focuses on the lowest-order magnetic
resonances, i.e. magnetostatic magnons. So both static and
dynamic contributions of the nonlocal damping are vanishing,
i.e., λ̂(e)

pq
∂2H

∂xp∂xq
� λ̂H , and Eq. (1) reduces to

∂M
∂t

= −γLLM × H + λ̂(M)H. (2)

The exact form of the relativistic tensor λ̂(M) is unknown
for an arbitrary magnetic configuration. However, the tensor
can be expanded into combinations of the magnetization vector
components that are invariant with respect to the magnetic
symmetry of the system, i.e., λ̂(M) = λ̂(0) + μ̂pq(0)MpMq +
· · ·, where λ̂(0) and μ̂pq(0) are zero- and second-order
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relativistic relaxation tensors. The coefficients of the ex-
pansion take into account crystallographic symmetry, while
the combinations of M represent symmetry invariants of
the magnetic ground state. The expansion is taken in the
vicinity of the absolutely symmetric state M = 0,22,23 and
p,q denote spatial components that do not mix with corre-
sponding crystallographic indices of μ̂. According to Ref. 22,
the first term in the expansion describes nonconservative
relaxations, where energy dissipation is accompanied with
angular momentum transfer. This mechanism dominates in
ferromagnetic metals as became evident from experiments on
ultrafast demagnetization.24,25 Therefore we omit the higher-
order terms in the Taylor expansion, so that λ̂(M) ≈ λ̂(0) =
−γLLMsα̂, where α̂ is a dimensionless damping tensor and Ms

denotes the length of magnetization vector at zero temperature.
The approximation implies temperatures that are far away from
the Curie point, where second-order effects start to play a role.
So our numerical implementation is valid for the intermediate
range of temperatures, where the majority of experiments are
performed. So, finally Eq. (2) transforms into

∂M
∂t

= −γLLM × H − γLLMsα̂H, (3)

which under assumption of constant magnetization length
and isotropic relaxations, α̂ = αÎ , where Î is the unit tensor,
transforms into the well-known Landau-Lifshitz equation (LL)
∂M
∂t = −γLLM × H − γLLα

Ms
M × M × H (see the Appendix for

more details). Equation (3) is employed in the present
study with an internal field combining the contributions
from the Zeeman, magnetocrystalline, magnetodipolar, and
exchange energies. The latter also includes a contribution
from the phenomenological field that accounts for the ex-
change energy arising from changes of the magnetization
vector length,11,22,26–28 i.e., the exchange energy that is stored
in thermal magnons, and cannot be explicitly accounted for on
the micromagnetic scale. This field pushes the magnetization
vector length back to its equilibrium value at the given
temperature.

The simulations were carried out on a thin magnetic
disk and an ellipse with a thickness of 7 nm. The diameter
of the disk is 110 nm, while the ellipse has minor and
major axes of 44 and 110 nm, respectively. The magnetic
parameters are close to that of cobalt, i.e., a saturation
magnetization of Ms = 1440 × 103 A/m, exchange stiffness
constant of Aex = 2.1 × 10−11 J/m, and uniaxial anisotropy
strength of |Ku| = 5.2 × 105 J/m3 (varied in some of the
simulations). Cobalt has a hexagonal lattice for which the
relaxation tensor is diagonal α̂ = αν̂,11,22 where ν̂ is a diagonal
tensor which characterizes the relative degree of anisotropic
damping. Cobalt is also characterized by a relatively strong
magnetocrystalline anisotropy, making it an ideal candidate
for our case study and for possible experiments. The damping
constant α is fixed to 0.008 for both LLBar and LL, while
the components of the tensor νii are varied to mimic given
crystallographic configurations. In the present study,we only
focus on the saturated case to depict the main features of
the anisotropic damping. For this purpose in all simulations
we saturate the sample in-plane by using a sufficiently large
applied magnetic field of 1 T.

The magnonic spectra are extracted by means of the
FFT from 40-ns-long time traces of the net magnetization,
simulated by exposing the relaxed magnetic states to a spatially
uniform “sinc” excitation29 with an amplitude of 0.01 T and
cutoff frequency of 80 GHz. The bandwidth of the simulations
is maintained at 100 GHz (Nyquist frequency) to avoid
FFT aliasing. The magnetization dynamics always vanish
within the time frame of the simulation. So we would not
expect any artificial broadening of the magnonic resonances.
Nevertheless, a windowing function is also applied before the
FFT to prevent spectral leakage.

The dominant peaks in the spectra (attributed to the
magnonic resonances of different spatial characters) are fitted
to Lorentzian curves in order to extract their amplitudes,
frequencies ω, and full width at half maximum �ω. The
latter two parameters are used to estimate the relative net
relaxation rates given by the Landau-Lifshitz-Baryakhtar
and Landau-Lifshitz models as �LLBar = �ωLLBar/ωLLBar and
�LL = �ωLL/ωLL, respectively. Finally, the ratio between the
two is calculated as η = �LLBar/�LL to estimate the difference
between the two micromagnetic models.

The spatial profiles of the magnonic modes are calculated
using the method from Ref. 30. The typical spectra and spatial
profiles of the modes are shown in Fig. 1. For the disk, we excite
two dominant modes, one of “edge” (lowest magnonic mode)
and one of “bulk” (higher-order magnonic mode) character for
any direction of saturation (within [0,π/2]). In contrast, for
an ellipse only the edge mode remains within the frequency
bandwidth of the simulations for all saturation directions.
When the ellipse is magnetized along the minor axis the
bulk mode is shifted above 80 GHz due to the enhanced
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FIG. 1. (Color online) Spectra of the magnonic resonances and
the corresponding spatial mode profiles are shown for a disk (top
panel) and an ellipse (bottom panel). The solid and dashed lines
correspond to isotropic and uniaxial materials, respectively.
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contribution of exchange energy. The uniaxial anisotropy acts
as expected from trivial physical considerations,31 i.e., is
hardening (softening) the magnonic resonances for the parallel
(perpendicular) configurations.

In this work we consider nonconservative magnetization
dynamics, i.e., the total angular momentum of the system
is not conserved. However, the anisotropy axis represents a
symmetry direction of the magnetic single crystal. Therefore
projection of the total angular momentum on this axis should
be conserved and there should be no relaxation of the magnetic
moment along this axis. So the corresponding component of
the relaxation tensor should be zero. However, real magnetic
samples are typically polycrystalline and contain lattice de-
fects, leading to scattering of magnons along the (effective)
direction of crystallographic symmetry. So hereafter, we
assume that the anisotropy of the damping is given by an order
of magnitude reduction of the component along the symmetry
axis.

Baryakhtar showed that components of the relaxation tensor
can be expressed in terms of powers of magnetocrystalline
anisotropy constants.22 However, where the anisotropy con-
stant is varied, the corresponding components of the damping
tensor are kept constant to draw a straight comparison between
LL and LLBar models. A more rigorous treatment, where
relations between the components of the relaxation tensor
and magnetocrystalline anistoropy constants are taken into
account, is expected to change our results quantitatively, but
not qualitatively.

The angular dependence of η calculated for the edge mode
is shown in Fig. 2 for an isotropic Co disk (left panel) and
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FIG. 2. (Color online) The angular dependence of the ratio
between the relative relaxation rates of LLBar and LL is shown for
different structures of the diagonal tensor ν̂. The ratio is extracted for
the edge mode in an isotropic Co nanoelement (|Ku| = 0 J m−3). The
left (0,π ) and right (π,2π ) semiplanes correspond to the disk and an
ellipse, respectively.

an ellipse (right panel). For the disk the symmetry of η is
either isotropic or twofold for an out-of-plane and in-plane
reduction of the relaxation tensor, respectively. In contrast,
for the ellipse the symmetry is always twofold, even for the
case when the tensor is altered out of plane and, thereby,
homogeneous in plane. So, surprisingly, the shape anisotropy
also contributes to the symmetry of the relative relaxation
rate. This is also supported by the fact that the relative
relaxation rates are different for in-plane and out-of-plane
reductions of the relaxation tensor, i.e., along easy and hard
axes, respectively. Finally, the data suggest that changes of
the relaxation constant along the saturation direction do not
significantly change the value of the relative relaxation rate
with respect to the one obtained from LL, i.e., η ≈ 1.

To interpret our observations, we would like to remind that
the magnetization vector has three degrees of freedom. Two of
them correspond to precession (transverse degrees of freedom)
and one corresponds to the changes of the vector’s length
(longitudinal degree of freedom). These degrees of freedom
also represent the relaxation channels for the magnons in
magnetic systems. Since the relative relaxation rates calculated
with LLBar and LL are found to be the same when samples
are saturated along shortest eigenvector of the relaxation
tensor, then one can conclude that in our particular case the
longitudinal degree of freedom is not excited. Linearization
of the LLBar equation in the macrospin approximation under
assumption of diagonal relaxation tensor and constant mag-
netization length leads to (hereafter the Einstein summation
convention is used)

� = 1

N
ανii

ωi

ω

N=2= 1

2
α(ενii + ε−1νjj). (4)

The frequency of the precession and ratio between character-
istic frequencies are given by ω2 = ωiωj and ε = √

ωi/ωj ,
respectively (i �= j ). N , ωi , and ωj denote the number of
transverse degrees of freedom (that is 2 in our case) and their
characteristic frequencies, respectively. Hereafter we refer to
Eq. (4) as the linear macrospin model. It has a clear physical
meaning, so that the amount of dissipated energy is the
weighted sum of the energies stored in all degrees of freedom
with weighting coefficients (which are given by the corre-
sponding components of the relaxation tensor) that describe the
symmetry and strength of the energy scattering from spins to
the other subsystems. So the striking reduction of the relaxation
rate with the out-of-plane component of the relaxation tensor
suggests that for the given magnonic mode the out-of-plane
degree of freedom stores more energy than the in-plane one.
By estimating the ratio between the relative relaxation rates
�/�′ for two different structures of the tensor ν and ν ′, it is
possible to find the characteristic frequencies of all degrees of
freedom. In particular, for the out-of-plane component it reads

ωz =
√

νii − (�/�′)ν ′
ii

(�/�′)ν ′
zz − νzz

ω, i = x,y. (5)

If the linear macrospin model is valid, then for the disk the
frequency should be independent of the direction of in-plane
saturation. For the lowest magnonic mode, the simulated
relaxation rates for νii = [0.1,1,1] and ν ′

ii = [1,1,0.1] lead
to the values of ωz of ≈54.26 GHz and ≈47.94 GHz, at 0 rad
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and π
2 rad, respectively. For the higher-order magnonic mode,

the values of ωz at 0 rad and π
2 rad are ≈62.54 GHz and

≈55.54 GHz, respectively.
The relative difference of ωz(0)−ωz(π/2)

ωz(0) ≈ 11.2% between
the values of ωz at 0 and π

2 rad is roughly the same for
these two modes, suggesting the presence of a damping
mechanism beyond the trivial linear macrospin model. This
angular dependency cannot be simply attributed to the artificial
edge roughness (and corresponding two-magnon scattering
relaxation mechanism), because bulk modes are not sensitive
to it.32 So we assume that the observed discrepancy is
due to the nonlinear effects, i.e., excitation of the second
harmonics. According to the simulations, the ratios between
the amplitudes of the second harmonics and corresponding
eigenmodes are around 10−3. This dissipation channel is not
accounted for in the linear macrospin model given by Eq. (4).

The analysis revealed the expected property of the shape
anisotropy, i.e., that for the edge and bulk modes of the disk, the
out-of-plane characteristic frequencies are much larger than
the in-plane ones, ωz � ωy . However, the ratio between the
characteristic frequencies might change for the higher-order
modes because of interplay of the shape anisotropy and
exchange energy as explained in Ref. 33. In particular, in
thin magnetic nanoelements ωy/ωz � 1 and ωy/ωz → 1 for
low- and high-frequency magnons, respectively. Therefore we
can expect that the relative relaxation rate is mode specific.
The effect can only be accessed with full micromagnetic
treatment, since the macrospin approximation cannot describe
the nonzero-order magnons.

The frequency dependence of the relative relaxation rate,
�LLBar, of an isotropic disk with νii = [0.1,1,1] is presented in
Fig. 3. The striking feature here is the frequency dependence
even when the relaxation tensor is effectively isotropic (θ =
π/2). This effect has been recently demonstrated experimen-
tally by Nembach et al.34 The relative linewidth decreases with
the frequency of the mode, since in the exchange dominated
regime the in-plane and out-of-plane characteristic frequencies
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FIG. 3. (Color online) The frequency dependence of the relative
relaxation rate in an isotropic Co disk (|Ku| = 0 J m−3) is shown. The
frequencies correspond to the eigenmodes of the disk. The straight
lines are there to guide the eye. The diagonal components of the
tensor ν̂ are [0.1,1,1]. θ = 0 and θ = π/2 correspond to anisotropic
and effectively isotropic relaxation tensor, respectively.

converge to the same point, thereby equalizing both relaxation
channels. So according to Eq. (4) for the exchange dominated
magnons the relaxation rate eventually approaches the bottom
limit defined by the components of the relaxation tensor,
i.e., 0.0044 and 0.008 for θ = 0 and θ = π/2, respectively.
The calculated values of the relaxation rate are higher than
the intrinsic values fixed by the relaxation tensor, i.e., 0.013
and 0.023 for θ = 0 and θ = π/2, respectively. This can be
attributed to the nonuniform spatial character of the magnonic
modes.35

Let us employ the linear macrospin model to explain the
results obtained in an ellipse, which naturally introduces an
in-plane shape anisotropy. For the cases of νii = [0.1,1,1] at 0
rad (along the minor axis) and νii = [1,0.1,1] at π

2 rad (along
the major axis) the in-plane and out-of-plane characteristic
frequencies are ωx ≈ 36.14 GHz, ωz ≈ 55.11 GHz and ωy ≈
23.81 GHz, ωz ≈ 51.11 GHz, respectively. For both cases the
ωz is similar to that of the disk, while the in-plane characteristic
frequency is enhanced (reduced) for saturation along the major
(minor) due to the in-plane shape anisotropy.36 For the quantity
represented in Fig. 2 we can simply write

η = �LLBar

�LL
= 1

1 + ε−2
νii + 1

1 + ε2
νjj , (6)

where i = x,y for 0 and π
2 rad, respectively. These theoretical

values are represented by dots in Fig. 2 and qualitatively mimic
the behavior observed in Fig. 2.

In contrast to shape, magnetocrystalline anisotropy could
be relatively easily tuned dynamically, i.e., in multiferroic
materials.37 The relative linewidth calculated on the same
samples but in the presence of uniaxial anisotropy is shown in
Fig. 4. The direction of uniaxial anisotropy always coincides
with the shortest eigenvector of the damping tensor for the
reasons explained above. The results presented in Fig. 4
qualitatively reproduce those from Fig. 2. For all the cases at
0 (π

2 ) rad the uniaxial anisotropy softens (hardens) the lowest
magnonic mode thus reducing (enhancing) the influence of the
in-plane relaxation channel. Therefore the relative relaxation
rate is always enhanced as compared to the isotropic case.
Furthermore, in the case of an ellipse for νii = [1,0.1,1]
at π

2 rad, the relative linewidth tends to unity. This effect
could be easily explained if we take into account that shape
and uniaxial anisotropies act in the same way, i.e., soften
the lowest magnonic mode, eventually vanishing the role of
in-plane relaxation. Since the out-of-plane relaxation channel
is equivalent to that of the isotropic case, the linewidth tends
to the one calculated with the LL equation.

So, by tuning the strength of the uniaxial anisotropy we can
effectively change the relative relaxation rate within the limits
defined by the anisotropy of the damping tensor. The relative
linewidth as a function of the uniaxial anisotropy constant |Ku|
is shown in Fig. 5. A fit to the linear macrospin model is also
shown. We assumed that the frequency of the mode is given
by (SI units)

ω = ω0 − (γLL/2π )

μ0Ms

∣∣Ku

∣∣, (7)

where ω0 is the frequency of the mode in the isotropic case with
the assumption that contribution of the magnetocrystalline
anisotropy is second order with respect to ω0. So the ratio
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FIG. 4. (Color online) The angular dependence of the ratio
between relative relaxation rates of LLBar and LL is shown for
different structures of the tensor ν̂. The ratio is extracted for the
edge mode in a uniaxial Co nanoelement (|Ku| = 5.2 × 105 J m−3).
The left (0,π ) and right (π,2π ) semiplanes correspond to the disk
and an ellipse, respectively.

of relative relaxation rates is given by

η = 1

1 + (ωj/ω)2
νii + 1

1 + (ω/ωj )2
νjj, i �= j. (8)

So by changing the strength of the magnetocrystalline
anisotropy, we change the ellipse of motion, and thereby the
relative contribution of the different relaxation channels. By
aligning the easy axis with the shortest eigenvector of the
relaxation tensor the anisotropy of the damping could be sup-
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FIG. 5. (Color online) The ratio between the relative relaxation
rates �LLBar/�LL in function of the uniaxial anisotropy constant |Ku|
is shown for different structures of the tensor ν̂. The solid and dotted
lines correspond to the “edge” and “bulk” modes of a uniaxial Co
disk, respectively.

pressed, i.e., η → 1 when Ku → μ0Msω0

γLL/2π
. The slight difference

between the slopes of the curves calculated for the edge and
bulk modes is due to the difference in ratio of characteristic
frequencies ε of these two modes calculated with Eq. (6).

Based on our model and results obtained in an isotropic
disk and an ellipse we conclude that (a) the highest reduction
of relative relaxation rate is observed when the shortest
eigenvector of the relaxation tensor is parallel to the hardest
degree of freedom and (b) the reduction (enhancement) of
characteristic frequency leads to the reduction (enhancement)
of the contribution of corresponding relaxation channel.
These conclusions could be used to design a representative
experiment, e.g., measurements of the magnonic linewidths
in Co nanoelements with in-plane and out-of-plane uniaxial
anisotropies. Then by estimating the characteristic frequen-
cies from the micromagnetic simulations, the corresponding
components of the relaxation tensor could be extracted.

In conclusion, we showed that the symmetry of the
magnonic relative relaxation rate with respect to the direction
of saturation is determined by the superposition of the
symmetries of the relaxation tensor and the ellipse of motion.
The latter is mode-specific due to the competition between
the shape anisotropy and the exchange energy (that eventually
becomes dominant for high-order magnons), thereby making
the absolute value of the relative relaxation rate frequency
dependent. Moreover, it could be altered by changing the
strength of the magnetocrystalline anisotropy, e.g., in mul-
tiferroic materials. Finally, our numerical implementation is
open, and so, it can be freely used by the community to fit
experimental data.

We would like to thank J. Leliaert for critical reading of
the manuscript. A.V. acknowledges financial support from the
Flanders Research Foundation (FWO).

APPENDIX

Here we would like to show how the LLBar reduces to the
LL in the limiting case of the isotropic relaxation and conser-
vative magnetization dynamics. So we start from the general
Baryakhtar equation without the nonlocal damping term:

∂M
∂t

= −γLLM × H + λ̂(M)H. (A1)

Then we expand the damping tensor around the absolutely
symmetric magnetic ground state as it was discussed above:

λ̂(M) = λ̂(0) + μ̂pq(0)MpMq + · · · . (A2)

Since the nonconservative zero-order term dominates in
ferromagnetic metals, then

λ̂(M) ≈ λ̂(0) = −γLLMsα̂, (A3)

where α̂ is the dimensionless relaxation tensor. By representing
M as M = Mm, m is the unit vector, and substituting Eq. (A3)
into Eq. (A1) we get

∂M

∂t
m + M

∂m
∂t

= −γLLMm × H − γLLMsα̂H. (A4)
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Now multiply Eq. (A4) by m,

∂M

∂t
m2 + 1

2
M

∂m2

∂t
= −γLLMm[m × H] − γLLMsmα̂H.

(A5)

Taking into account that m2 ≡ 1, ∂m2

∂t ≡ 0 and m[m × H] ≡ 0,
Eq. (A5) reduces to

∂M

∂t
= γLLMsmα̂H. (A6)

Then we substitute Eq. (A6) into Eq. (A4) and divide
everything by M , so Eq. (A4) transforms into

γLLMs

M
mα̂Hm + ∂m

∂t
= −γLLm × H − γLLMs

M
α̂H.

(A7)

By taking into account triple cross product property, i.e.,
a × b × c = b(ac) − c(ab), we reduce Eq. (A7) to

∂m
∂t

= −γLLm × H − γLLMs

M
m × α̂(m × H). (A8)

So Eqs. (A6) and (A8) form a system of coupled equations.
However, if we assume that ∂M

∂t ≡ 0 (such as in LL model),
then M ≡ Ms and the system of equations given by Eqs. (A6)
and (A8) reduces to a single equation,

∂m
∂t

= −γLLm × H − γLLm × α̂(m × H), (A9)

that under assumption of isotropic damping tensor transforms
to

∂m
∂t

= −γLLm × H − γLLαm × m × H, (A10)

which is the Landau-Lifshitz equation. The fact that in the
limiting case LLBar reduces to LL shows self-consistency of
the former. So if the magnetization dynamics is conservative,
then nonconservative relaxation automatically transforms into
conservative damping of the simplest LL form. Physically it
means that in magnetic metals, the spin-electron scattering is
not only responsible for the relaxation of the magnetization
length, but also for the relaxation of precessional degrees of
freedom.
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