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ABSTRACT
We show that the general relativistic theory of the dynamics of isotropic stellar clusters
can be developed essentially along the same lines as the Newtonian theory. We prove that
the distribution function can be derived from any isotropic momentum moment and that
every higher order moment of the distribution can be written as an integral over a zeroth-
order moment. We propose a mathematically simple expression for the distribution function
of a family of isotropic general relativistic cluster models and investigate their dynamical
properties. In the Newtonian limit, these models obtain a distribution function of the form
F(E) ∝ (E − E0)α , with E binding energy and E0 a constant that determines the model’s outer
radius. The slope α sets the steepness of the distribution function and the corresponding radial
density and pressure profiles. We show that the field equations only yield solutions with finite
mass for α ≤ 3.5. Moreover, in the limit α → 3.5, only Newtonian models exist. In other words:
within the context of this family of models, no general relativistic version of the Plummer
model exists. The most strongly bound model within the family is characterized by α = 2.75
and a central redshift zc ≈ 0.55.

Key words: relativistic processes – galaxies: kinematics and dynamics – galaxies: nuclei.

1 IN T RO D U C T I O N

The so-called Plummer model was introduced by Plummer (1911)
as a description of the stellar density distribution in Galactic globular
clusters (Plummer 1911). Subsequently, Eddington (1916) showed
that this spherically symmetric density profile could be derived from
a phase-space distribution of the form

F (ε) ∝ (−ε)7/2, (1)

with ε = ψ + v2/2 being the Newtonian specific energy of a star
and ψ the Newtonian gravitational potential of the stellar cluster
(Dejonghe 1987). This distribution function (DF) self-consistently
generates a mass distribution with a gravitational potential

ψ(r) = −GM

a

1√
1 + (

r
a

)2
(2)

and density profile

ρ(r) = 3

4π

(
1 +

( r

a

)2
)−5/2

M

a3
= 3

4π

(
− a

GM
ψ

)5 M

a3
. (3)

Here, M is the total mass of the cluster and a the scalelength.
Certain general relativistic (GR) extensions of the Plummer

model can already be found in the literature and we give an overview
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here. For instance, in the case of a spherically symmetric cluster,
the density, the potential (or some generalization thereof), and the
DF are all functions of one argument, so it makes sense to construct
the metric around a single, unknown function of the radius, usually
denoted simply by f(r). An example, inspired by the Schwarzschild
metric is

ds2 =
(

1 − f

1 + f

)2

c2dt2 − (1 + f )4(dr2 + r2d�2). (4)

In the Newtonian limit, f(r) reduces to −ψ/(2c2).
One approach is to choose f(r) such that it produces a meaningful

cluster model in the Newtonian limit, for instance by equating it
to the gravitational potential of the Newtonian cluster. Nguyen &
Lingam (2013) show how this technique can be used to recover
GR extensions of the hypervirial models of which the Plummer
model is a special case. Solving the time–time-component of the
field equations yields a density that together with f, by construction,
correctly reduces to the corresponding Newtonian potential–density
pair. However, as these authors note, the pressure does not reduce
to the expected Newtonian limit. This is because the underlying DF
does not reduce to the proper Newtonian limit.

Another possibility is to equate the radial and tangential field
equations, thus enforcing isotropy, and to solve the resulting equa-
tion for the metric. This solution can then be plugged in the time–
time-component of the field equations to yield the density profile.
Buchdahl (1964) has used this procedure to produce a cluster model
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Relativistic cluster models 2405

with an equation of state analogous to that of the Plummer model,
i.e. a polytrope with index n = 5. Fackerell (1971), using a metric
of the form

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2d�2, (5)

subsequently derived a rather unwieldy analytical expression for
the DF of this model and showed that, unless the central value of
the potential satisfies exp (ν(0)) > 0.413, it can show a ‘tempera-
ture inversion’ in the sense that it is not a monotonically decreasing
function of energy. Alternatively, one can impose the polytropic
equation of state on the field equations, which yields a generaliza-
tion of the Lane–Emden equation, and thus solve for the unknown
function in the metric (Tooper 1964; Kaufmann 1967).

Both techniques avoid an explicit calculation of the DF. Using
a generalization of Eddington’s integral equation, it can, however,
be determined from the density profile (Fackerell 1968; Pogorelov
& Kandrup 1996). Unfortunately, this DF is not guaranteed to be
positive everywhere in phase space, although necessary conditions
for positivity have been derived (Suffern 1977).

Since employing the Eddington integral equation can lead to
rather cumbersome expressions for the DF and, moreover, the lat-
ter’s positivity is not guaranteed from the outset, we here advocate
another approach. We first write down a mathematically simple
DF that is everywhere positive and that reduces to a well-defined
Newtonian limit. From this DF, the density and pressure profiles
can be calculated. By construction, all moments of the DF will
reduce to the proper Newtonian limit. Solving the field equations
finally yields the metric. While such generalizations of Newtonian
cluster models may not have the same equation of state as in the
Newtonian limit, they have the benefit of having a mathematically
simple, strictly non-negative DF with a properly defined, meaning-
ful Newtonian limit. Our goal is to produce GR cluster models with
isotropic, polytropic DFs, to study their dynamical properties, and
to investigate their Newtonian limits. In particular, we wish to study
how the Newtonian polytropes, of which the well-known Plummer
model is a special case, fit in this more general scheme of models.

In Section 2, we develop the dynamical theory of GR stellar
cluster models and calculate the properties of models with isotropic,
polytropic DFs. In Section 3, we present our method for solving the
field equations for such models. We end with a discussion of the
models in Section 4 and conclude in Section 5.

2 ISOTROPIC DY NA MICAL MODELS FOR G R
ST ELLAR C LUSTERS

2.1 The internal dynamics of isotropic clusters

In GR dynamics, the DF F(xμ, pi)d3xd3p counts the number of occu-
pied world lines that intersect a six-dimensional submanifold of the
eight-dimensional phase space. This six-dimensional submanifold
consists of a three-dimensional spatial hypersurface and its future
mass hyperboloid. In the absence of particle creation/annihilation
or collisions, the Lie derivative of the DF is zero, or[

pμ ∂

∂xμ
− 


μ
αβpαpβ ∂

∂pμ

]
F (x, p) = 0. (6)

Let p̂μ be the components of the momentum four-vector in a local
orthonormal frame at rest, such that p̂2

0 − ∑
i p̂2

i = (mc)2, with m
the rest mass of a single star. In such a local orthonormal frame,
tensor quantities of the form

Tμν...κ (x) =
∫

p̂μp̂ν . . . p̂κ

p̂0
F (x, p)dp̂1dp̂2dp̂3 (7)

can be defined. If the Lie derivative of the DF disappears, then
all these quantities have zero covariant divergence. The most well-
known such tensor quantities are those with one index (the stream
density vector) and two indices (the energy–momentum tensor).

In an isotropic cluster, the DF depends only on p0, the zero-
component of the momentum four-vector, which is a constant in a
time-independent gravitating system (see below). Obviously, what
matters in the above definition of the momentum moments of the
DF is the number of instances of each momentum component. We
therefore re-write these momentum moments as

μk,2m,2n,2l(x) =
∫

p̂k
0p̂

2m
1 p̂2n

2 p̂2l
3 F (p0)

dp̂1dp̂2dp̂3

p̂0
. (8)

Using the parametrization

p̂0 =
√

(mc)2 + p2

p̂1 = p cos ϑ

p̂2 = p sin ϑ cos ϕ

p̂3 = p sin ϑ sin ϕ, (9)

this reduces to

μk,2m,2n,2l(x) = 1

2π



(
m + 1

2

)



(
n + 1

2

)



(
l + 1

2

)



(
m + n + l + 3

2

)
× 4π

∫
F (p0)p̂k−1

0 p2(m+n+l)+2dp. (10)

Let E be the energy of a star as measured by an observer at rest at
infinity, where the geometry of space–time is essentially flat. The
energy measured by a local observer at rest, denoted by Elocal, is
linked to E via

E = √
g00Elocal = eφ/2Elocal = cp0. (11)

The zero-momentum in the local orthonormal frame, p̂0, is related
to the energy at infinity as

cp̂0 = cp0√
g00

= E√
g00

. (12)

Therefore,

E2 − m2c4g00 = g00p
2c2 (13)

and

pdp = EdE

c2g00
. (14)

Then

μk,2m,2n,2l(x) = 1

2π



(
m + 1

2

)



(
n + 1

2

)



(
l + 1

2

)



(
m + n + l + 3

2

)
× μk,2(m+n+l)(x), (15)

which defines the set of isotropic k-moments

μk,2q = 4π

∫
F (p0)p̂k

0

(
p̂2

0 − m2c2
)q+(1/2)

dp̂0

= (mc)2q+k+2

2q+(3/2)E
2q+k+2
0

μ̃k,2q

(
E2

0

)
(16)

with

μ̃k,2q

(
E2

0

) = 2q+5/2π

∫
E2

0

F (E2)(E2)(k−1)/2
(
E2 − E2

0

)q+(1/2)
dE2

(17)
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and E2
0 = (mc2)2g00. Deriving this equation q times with respect to

E2
0 leads to

μ̃k,0

(
E2

0

) = (−1)q

(2q + 1)!!
D

q

E2
0
μ̃k,2q

(
E2

0

)
. (18)

Here,

(2q + 1)!! = (2q + 1)(2q − 1) · · · 1 (19)

indicates the double factorial. This equation is formally identical to
equation 1.3.7 in Dejonghe (1986). We can therefore simply invoke
equation 1.3.8 from that same work to invert the above expression
and to write all higher order k-moments of the DF in terms of the
zeroth-order k-moment:

μ̃k,2q

(
E2

0

) = (2q + 1)!!

(q − 1)!!

∫
E2

0

(
E2 − E2

0

)q−1
μ̃k,0(E2)dE2. (20)

With the aid of equation 1.3.12 from Dejonghe (1986), equation
(17) can be inverted as

Ek−1F (E) = 1

2q+(5/2)π3/2

(
q + 3

2

)D
q+2
E2

∫
E2

μ̃k,2q

(
E2

0

)
√

E2
0 − E2

dE2
0

= (mc)−2q−k−2

2π3/2

(
q + 3

2

)D
q+2
E2

∫
E2

E
2q+k+2
0 μk,2q

(
E2

0

)
√

E2
0 − E2

dE2
0 .

(21)

In particular, for (q = 0, k = 2) and for (q = 1, k = 0) the above
inversion relation reduces to the two important special cases

EF (E) = 1

π2 m4c3
D2

E2

∫
E2

E4
0ρ

(
E2

0

)
√

E2
0 − E2

dE2
0

1

E
F (E) = 2

π2 m4c5
D3

E2

∫
E2

E4
0P

(
E2

0

)
√

E2
0 − E2

dE2
0 (22)

with ρ being the mass density and P the pressure. These are none
other than the inversion relations derived by Fackerell (1968) and
Pogorelov & Kandrup (1996). Here, we made use of the fact that

μ2,0 = 4π

g2
00c

4

∫
F (E)E2

√
E2 − E2

0 dE = ρc

μ0,2 = 4π

g2
00c

4

∫
F (E)

(
E2 − E2

0

)3/2
dE = 3P

c
(23)

(Zel’dovich & Podurets 1965; Occhionero & San Martini 1974).
Hence, we have shown that these two relations linking the density
and pressure to the isotropic DF are simply specific cases of a more
general link between the DF and any of its moments μk,2q.

2.2 A generalized polytropic DF

For a static, spherically symmetric gravitational system, the metric
can always be brought in the form

ds2 = eφ(r)c2dt2 −
(

1 − 2GM(r)

c2r

)−1

dr2 − r2d�2, (24)

with M(r) being the total gravitating mass interior to the areal radius
r and φ a potential function that, in the Newtonian limit, reduces to
2ψ/c2. We propose a DF of the form

F (E) = f0

(
mc2

E

)2β (
m2c4e� − E2

m2c2

)α

, (25)

with α and β being positive real numbers, f0 a constant forefactor,
and � = φ(R), the value of the potential at the outer edge of the
cluster at radius r = R.

For the isotropic DF given above, the energy density is given by

ρc2 = 4π

c3
e−2φ

∫ mc2e�/2

mc2eφ/2
F (E)E2

√
E2 − m2c4eφdE

= π3/2 
(α + 1)



(
α + 5

2

)f0 m4c3+2αe−2φ
(
e� − eφ

)α+(3/2)

× e((1/2)−β)�
2F1

(
β − 1

2
; α + 1; α + 5

2
;

e� − eφ

e�

)
(26)

(Zel’dovich & Podurets 1965; Occhionero & San Martini 1974).
Here, 
(x) is Euler’s gamma-function and 2F1(a, b; c; z) is the
Gaussian hypergeometric function

2F1(a, b; c; z) = 
(c)


(b)
(c − b)

∫ 1

0
tb−1(1 − t)c−b−1 dt

(1 − zt)a

=
∑
n≥0

(a)n(b)n
(c)n

zn

n!
(27)

with (q)n being the Pocchammer symbol, defined as
(q)n = 
(q + n)/
(q). We can choose a scalelength a and de-
note the scaled radius by x = r/a. With the choice of a mass-scale
M, we can introduce the dimensionless parameter

A = c2a

2GM
. (28)

If the mass-scale M is taken to coincide with the model’s total
mass, then A is simply the ratio of the scalelength a to the model’s
Schwarzschild radius. We can then take

f0 = 3

4π5/2c3+2α



(
α + 5

2

)

(α + 1)

MAα+(3/2)

m4a3
. (29)

With this choice for the forefactor f0, we find the following expres-
sion for the density

ρ(φ) = 3

4π
Aα+(3/2)e−2φ

(
e� − eφ

)α+(3/2)

× e((1/2)−β)�
2F1

(
β − 1

2
, α + 1; α + 5

2
;

e� − eφ

e�

)
M

a3
.(30)

Clearly, the choice β = 0.5 yields the ‘simplest’ mass density profile
since in that case the hypergeometric function is identically one and

ρ(φ) = 3

4π
Aα+(3/2)e−2φ

(
e� − eφ

)α+(3/2) M

a3
. (31)

The expression for the pressure follows from

P = 4π

3c3
e−2φ

∫ mc2e�/2

mc2eφ/2
F (E)

(
E2 − (mc2)2eφ

)3/2
dE

= 3

4π

Aα+(3/2)

(2α + 5)
e−(β+(1/2))�e−2φ

(
e� − eφ

)α+(5/2)

× 2F1

(
β + 1

2
, α + 1; α + 7

2
;

e� − eφ

e�

)
Mc2

a3
. (32)

The proper mass density is given by

nm = 4πm

c3
e−3φ/2

∫ mc2e�/2

mc2eφ/2
F (E)E

√
E2 − m2c4eφdE

= 3

4π
Aα+(3/2)e−β�e−3φ/2

(
e� − eφ

)α+(3/2)

× 2F1

(
β, α + 1; α + 5

2
;

e� − eφ

e�

)
M

a3
, (33)
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with n being the stellar proper number density. The proper mass of
the cluster is then

Mp(r) = 4π

∫ r

0

n(r)mr2dr√
1 − 2GM

c2r

. (34)

The difference between the total proper mass Mp(R) and the total
gravitating mass M(r) can be interpreted as the gravitational binding
energy of the cluster. We will henceforth use the fractional binding
energy

f = Mp(R) − M(R)

Mp(R)
(35)

as a measure for the stability of a cluster since analytical and numer-
ical work has shown that radial instability sets in clusters around
the first maximum of f (Fackerell, Ipser & Thorne 1969; Shapiro &
Teukolsky 1985).

From pμpμ = (mc)2, J = r2p3 = mruφ , and p0c = Ee−φ , it follows
that for a circular orbit in the θ = π/2 plane the angular momentum
is given by

J = r

c
E

√
e−φ −

(
mc2

E

)2

. (36)

For a given radius r, the energy of the circular orbit with that radius
can be found by setting dJ/dr = 0. This leads to

mc2

E
=

√(
1 − r

2

dφ

dr

)
e−φ. (37)

Plugging this into the expression for the angular momentum yields

uφ

c
= E

mc2

√
r

2

dφ

dr
e−φ. (38)

From the viewpoint of a distant observer, the velocity of a star on a
circular orbit with radius r is given by

vcirc(r) = dτP

dt
uφ = mc2

E
eφuφ = c

√
r

2

dφ

dr
eφ, (39)

since the derivative of the star’s proper time τ P with respect to
coordinate time is

dτP

dt
= mc

p0
= mc2

E
eφ. (40)

The radiation of a light source at rest at radius r, is observed at
infinity to have undergone a gravitational redshift

z(r) = e−φ(r)/2 − 1. (41)

This ‘redshift-from-rest’ is a measure for how ‘relativistic’ a given
cluster model is. Where it was first thought that no stable models
with a central redshift-from-rest z(0) � 0.5 can exist (Zel’dovich &
Podurets 1965; Ipser 1969; Occhionero & San Martini 1974), more
recent work has shown that arbitrarily large values for the central
‘redshift-from-rest’ are possible in stable models. The first hint that
large redshifts are possible came from numerical integrations of
the relativistic Boltzmann equation (Rasio, Shapiro & Teukolsky
1989) that was later on backed up by detailed analytical calcu-
lations (Merafina & Ruffini 1995). It was subsequently shown in
Bisnovatyi-Kogan et al. (1998) and Bisnovatyi-Kogan & Merafina
(2006) that arbitrarily large central redshifts are possible in stable
models with a DF of the form F(E) ∝ exp ( − E/T), with T the uni-
form kinetic temperature as observed from infinity, only if T/mc2

� 0.06. ‘Hotter’ models are stable only for redshifts below ≈0.5.

2.3 The Newtonian limit

In the Newtonian limit, we can employ the approximation

dτP

dt
= mc2

cp0
= mc2

E
eφ

= 1

c

ds

dt
≈

√
eφ −

( v

c

)2
, (42)

or, in other words,

E ≈ mc2eφ√
eφ − (

v
c

)2
≈ mc2

(
1 + 1

2
φ + 1

2

v2

c2

)

≈ mc2 + m

(
ψ + 1

2
v2

)
= mc2 + mε. (43)

Here, ε is the Newtonian energy per unit mass. Moreover, p̂0c ≈
mc2 + 1

2 mv2.
These results can be used to calculate the Newtonian approxi-

mation for the isotropic momentum moments of the DF, given by
expression (16):

μk,2q ≈ 4π(mc)k−1
∫

F (E)p2q+2dp

≈ (mc)k−1μN
2q (ψ). (44)

Except for the inconsequential forefactor (mc)k − 1, this is the correct
expression for the Newtonian isotropic momentum moment μN

2q (ψ).
Taking together E ≈ E0 ≈ mc2, DE2 ≈ 1

2m2c2 Dε , dE2
0 ≈

2 m2c2dψ , and equation (44), the inversion formula for the DF
can be written in the form

F (ε) ≈ 1

2q+2π3/2

(
q + 3

2

)
m2q+3

Dq+2
ε

∫
μN

2q (ψ)√
2(ψ − ε)

dψ, (45)

the correct Newtonian expression for the DF in terms of a Newtonian
momentum moment. For q = 0, one obtains the important special
case

F (ε) ≈ 1

2π2m3
D2

ε

∫
ρ(ψ)√

2(ψ − ε)
dψ, (46)

with ρ being the mass density.
In the Newtonian limit, the DF equation (25) becomes F(E)

≈ f0[2(� − ε)]α , with � = ψ(R), the value of the Newtonian
gravitational potential at the outer edge of the cluster. For an in-
finitely extended system with α = 7/2 and � = ψ(∞) = 0 this is
fPlum(E) = f0( − 2ε)7/2, the DF of the Newtonian Plummer model.
The Newtonian limit of the DF does not depend on the parameter
β: it only serves to change the slope of the DF for the most strongly
relativistic models. In the Newtonian limit, the density reduces to

ρ(ψ) ≈ 3

4π

(
− a

GM
(� − ψ)

)α+(3/2) M

a3
. (47)

For a Plummer model, with α = 7/2, we retrieve the relation

ρPlum ≈ 3

4π

(
− a

GM
ψ

)5 M

a3
. (48)

The proper density nm reduces to the same expression as the grav-
itating mass density ρ, as it should. The Newtonian expression for
the pressure is found to be

P ≈ 3

2π(2α + 5)

(
− a

GM
(� − ψ)

)α+(5/2) GM2

a4
. (49)

For a Plummer model, we find

PPlum ≈ 1

8π

(
− a

GM
ψ

)6 GM2

a4
∝ ρ

6/5
Plum. (50)
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Clearly, these Newtonian models have equations of state of the
form

P = Kρ(2α+5)/(2α+3) = Kρ1+(1/n) (51)

for some constant K. They are polytropes with polytropic index

n = α + 3

2
≥ 0. (52)

The GR cluster models, due to the presence of the hypergeometric
functions in the expressions for the density and pressure, are not
polytropes and have more complicated equations of state. Newto-
nian polytropes have finite mass for n ∈ [0, 5] and finite radius for
n ∈ [0, 5]. The Plummer model, with n = 5 is the first polytropic
model with infinite radius but still with finite mass. It is generally
assumed that the condition df/dE < 0 is a prerequisite for the radial
stability of a cluster (Ipser 1969; Fackerell 1971). We therefore limit
ourselves to models with α ≥ 0, and hence n ≥ 3

2 , for which this
condition is definitely fulfilled.

As is well known, the structure of a polytrope with index n and
equation of state P = Kρ1 + (1/n) for some constant forefactor K is
given by the Lane–Emden equation

1

ξ 2

d

dξ

(
ξ 2 dθ

dξ

)
= −θn. (53)

Here, ξ is a dimensionless radius related to the radius r via

ξ =
√

2πc2a3

(n + 1)AM

ρ2
c

Pc

r

a
, (54)

with ρc and Pc the central density and pressure, respectively. This
equation must be integrated numerically for the function θ (r) out
to its first zero, which then defines the outer radius R of the
cluster. Then the density is given by ρ(r) = ρcθ

n(r), and the
gravitational potential by ψ(r) = −(n + 1)Kρ1/n

c θ (r) + ψ(R). The
circular-velocity profile, vcirc(r), then follows from the relation

vcirc(r) =
√

r
dψ

dr
. (55)

With which Newtonian model should a given relativistic cluster be
compared? A natural choice for the polytropic index is given by
equation (52). From equation (54), it is obvious that the dimension-
less radius ξ can be rescaled to the dimensionless radius x with the
scale depending on the central pressure and density. We rescale the
density profile such that the total mass equals unity, something we
will also do with the relativistic models, giving us a value for ρc.
We then adopt a value for the constant K such that Pc = Kρ1+(1/n)

c .
In this case, 2ψ(R)/c2 = −1/AX with X = R/a the dimensionless
outer boundary of the Newtonian cluster (which, obviously, does not
need to coincide with the outer boundary of the relativistic cluster).

One further remark concerns the fact that in the case of Newtonian
stellar clusters, one can choose the mass-scale M and the length-
scale a independently from each other whereas in the GR models
presented here these two parameters are linked by the parameter A,
defined as equation (28), and they cannot be chosen freely. However,
in the Newtonian limit, which can be defined formally as the limit
c → ∞, the parameter 1/A goes to zero,

lim
c→∞

1

A = lim
c→∞

2GM

c2a
= 0, (56)

for a finite mass-scale M and non-zero length-scale a. In that limit,
M and a are effectively decoupled since 1/A is always zero, irre-
spective of which mass and length-scale one chooses.

3 SO LV I N G T H E FI E L D E QUAT I O N S

The two relevant field equations, as shown in e.g. Occhionero &
San Martini (1974), are

dM

dr
(r) = 4πr2ρ (57)

dφ

dr
(r) = 2G

c2r2

[
M(r) + 4πr3 P

c2

] [
1 − 2GM(r)

rc2

]−1

. (58)

If we denote the dimensionless radius by x = r/a, the scaled mass
by M(r) = M(r)/M , the scaled density by ρ̃ = ρa3/M , and the
scaled pressure by P̃ = Pa3/Mc2, we can rewrite these equations
in a fully dimensionless form as

dM
dx

= 4πx2ρ̃ (59)

dφ

dx
= 1

Ax2

[M + 4πx3P̃
] [

1 − M
Ax

]−1

. (60)

These equations must be integrated numerically starting from the
initial conditions

M(0) = 0,

φ(0) = φ0, (61)

where φ0 must be chosen such that

exp(φ(X)) = exp(�) = 1 − M(X)

AX
, (62)

with X = R/a being the scaled radius at the cluster’s outer boundary.
This ensures that the ‘internal’ solution smoothly goes over into
the ‘external’ Schwarzschild solution. This precludes the retrieval
of infinitely extended models, especially if they have a diverging
mass. By explicitly pulling out the A-dependence of the density
and pressure, it becomes clear that by rescaling the mass and radius
according to

x ′ = A(1+2α)/4x (63)

M′ = A(2α−3)/4M, (64)

the parameterA can be completely removed from the dimensionless
field equations. So one can always set A = 1 in the field equations,
solve them, and then afterwards rescale to that particular value of
A for which M(X) = 1. In that case, the mass-scale M equals the
total gravitating mass of the cluster and A has the meaning of the
ratio of a to RS.

We wrote a small PYTHON program to numerically integrate these
equations and to determine the central value of the potential using
a least-squares minimizer.

4 D I SCUSSI ON

4.1 Existence of solutions

For each choice of α, the only free parameter in the field equa-
tions is the value of the potential at the outer boundary of the
cluster, in the form e�. Our numerical work shows that the field
equations presented in the previous section have a bifurcation at
some α-dependent critical value, e�0(α). For e� < e�0(α), no solu-
tions exist. At e� = e�0(α), a single solution appears. For choices
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1 ≥ e� > e�0(α), two solutions, with different central potential val-
ues φ0, exist. This can be seen in Fig. 1 in which the fractional
binding energy f is plotted versus the central redshift-from-rest zc

for models with α = 0.5, 2.75, and 3.4. We always adopt the value
β = 1/2 except in the top panel, where the effects of different
β-values are explored. In each panel, the model with the smallest
value for e� is indicated by a white dot. The colour of the other
data points corresponds to their e�-value, as indicated by the colour
bar. To the left of the white dot are models with shallower potential
wells with the Newtonian f = 0, zc = 0 model as limit. To the right
of the white dot are models with deeper potential wells and corre-
spondingly higher central redshifts. This situation is reminiscent to
that of the family of models discussed by Bisnovatyi-Kogan et al.
(1998), which also exhibits both bifurcations (i.e. more than one
solution for a given set of model parameters) and limiting values
for a parameter connected to the energy at the outer boundary.

For small values for the power α, below α ∼ 3, the f–zc-curve
has a maximum around zc ≈ 0.5. As α increases, the right side
of the f–zc-curve appears to curl up from right to left until this
maximum disappears and the f–zc-relation is monotonically rising.
In the limit α → 7/2, only the Newtonian f = 0, zc = 0 model
exists. This means that the Plummer model is a purely Newtonian
construct: no relativistic models with α = 7/2 exist. Also in the
Newtonian is the Plummer model a limiting case. As the polytropic
index n is increased from zero, it is the first solution of the Lane–
Emden equation with infinite extent. It is also the last model with
a finite total mass. This appears also to be true relativistically. By
construction we are searching for models with a finite total mass by
trying to match the solutions of the field equations to an external
Schwarzschild metric. No such solutions exist for α > 7/2.

This is true for different values of the power β. However, increas-
ing β shifts the high-zc end of the f–zc-relation in the direction of
smaller zc, i.e. towards models with shallower potentials. An in-
crease of β also raises the e�-value of those most relativistic cluster
models which means they become less compact (see Section 4.4).

The general conclusion we can draw from this is that the steeper
the DF F(E) varies as a function of energy E, the more the solutions
are confined towards the Newtonian limit (f = 0, zc = 0) and that
no relativistic models with finite mass exist with α > 7/2.

4.2 Model properties

In Fig. 2, we present the potential function φ, the gravitating and
proper mass profiles,M andMp , the circular-velocity profile, vcirc,
the density ρ and pressure P profiles, and the effective polytropic
index n for models with α = 0.5, 2.75, and 3.4. For all models,
we adopt β = 1/2. The dashed curves indicate the circular-velocity
profile, density profile, and polytropic index of the corresponding
Newtonian cluster with the same total gravitating mass and the same
central pressure. The effective polytropic index n is here defined as

1 + 1

n
= d ln P

d ln ρ
(65)

which can be compared with the index (52) derived from the power
α in the expression for the DF. In the Newtonian limit, both indices
coincide.

The α = 3.4 model shown in Fig. 2 has a very shallow potential
and is essentially Newtonian. Therefore, it is indistinguishable from
the Newtonian solution of the Lane–Emden equation. The models
with α = 0.5 and α = 2.75 have much deeper gravitational wells
and are well in the GR regime. Clearly, these models do not have
polytropic equations of state and their effective polytropic indices
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Figure 1. Central redshift-from-rest versus fractional binding energy
f = (Mp(R) − M(R))/Mp(R) for all models with α = 0.5 (top), α = 2.75
(middle), and α = 3.4 (bottom). For α = 0.5, the effect of different β-values,
between 0.5 and 5.0, is explored. For all other α-values, only β = 0.5 was
used. The colour scale of the data points indicates the value of the potential
at the outer boundary of the model, e�. The model with the smallest value
for e� for each α-value is indicated with a white dot in each panel. Models
to the left of this white dot have shallower potentials; those to the right of it
have deeper potentials .
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Figure 2. The potential, φ, gravitating and proper mass profiles, M and Mp, circular-velocity profile, vcirc, density ρ and pressure P profiles, and effective
polytropic index n for models with α = 0.5, 2.75, and 3.4. Where visible, the vertical line indicates the outer boundary of the cluster model. The dashed curves
indicate the circular-velocity profile, density profile, and polytropic index of the corresponding Newtonian cluster with the same total gravitating mass and the
same central pressure. For each model, its values for α, the boundary potential e�, the central potential φ(0), and the fractional binding energy f are indicated.
All models have β = 1/2.
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Figure 3. The ratio of the scale radius to the Schwarzschild radius, A = a/RS versus outer boundary radius R/RS (left-hand panel) and the central redshift-
from-rest zc (right-hand panel) for the models with α = β = 0.5. The colour scale of the data points indicates the value of the potential at the outer boundary
of the model, e�.

can differ significantly from the value expected from their α-value.
For the same total mass, their density profiles are less steep than
those of the Newtonian models. This, combined with the gravita-
tional time dilatation effect in equation (39) for the circular velocity,
causes the relativistic circular-velocity curve to be much flatter than
its Newtonian counterpart.

The ratio of the scalelength to the Schwarzschild radius, quan-
tified by A = a/RS, is plotted as a function of the ratio of the
outer boundary radius to the Schwarzschild radius, R/RS, and of
the central redshift-from-rest, zc, in Fig. 3 for the α = β = 0.5
models. a/RS shows a non-trivial behaviour in the sense that the
model with the smallest scalelength is neither the most tightly
bound model (the one with the largest fractional binding energy
f) nor the most compact one (the one with the smallest e� or R/RS

value). a/RS diverges for zc → 0 since the Schwarzschild radius
tends to zero in the Newtonian limit. In the limit of extremely
compact models, a/RS increases again. Apparently, only models
with very flat-topped density profiles, with a � R, can exist in this
regime.

4.3 Binding energy

We plot the fractional binding energy f = (Mp(R) − M(R))/Mp(R)
as a function of central redshift zc and the potential at the outer edge
of the mass distribution, quantified by exp (�), in Fig. 4. The open
circles in this figure indicate the loci of the models that were actually
constructed. The different model sequences have different values
for the power α, the leftmost corresponding to α = 0.05. The 2D
map of the binding energy was constructed by applying a bicubic
spline interpolator to the model points. The models nicely cover
the first maximum of f, where dynamical instability is expected
to set in Bisnovatyi-Kogan et al. (1998) and Bisnovatyi-Kogan &
Merafina (2006).

The grey line connects the models which, for a given α, attain
the maximum fractional binding energy. The models with α in the
range 0.05 to ≈3.0 have central redshift-from-rest values between
≈0.5 and ≈0.55. For higher α-values, the maximum central redshift
rapidly drops to zero. As the power α approaches the value of

Figure 4. The fractional binding energy f = (Mp(R) − M(R))/Mp(R) as
a function of central redshift zc and the potential at the outer edge of the
mass distribution, quantified by exp (�). The colour scale measures f in
percentages; the open circles indicate the positions of the models that were
actually constructed. The different model sequences have different values
for the power α.

7/2, the Plummer model value, both the central redshift-from-rest
and the fractional binding energy go to zero, the Newtonian limit.
The overall maximum central redshift-from-rest is achieved by the
model with α = 2.75.

This behaviour is caused by the α-dependence of the shape of
the f–zc-relation which was discussed in Section 4.1. At first, steep-
ening the DF by increasing α above zero leads to a deepening of
the potential well and therefore to a slight increase of zc. Above
α ≈ 2.75, a further steepening of the DF and of the density pro-
file limits the models more and more to the Newtonian limit, thus
reducing zc.
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Figure 5. The minimum value for e� versus α (left) and the smallest possible radius, divided by the model’s Schwarzschild radius versus α (right).

4.4 The radius

Each model is labelled by a unique A-value for which the mass-
scale M coincides with the model’s total mass. If we select this
particular value for A or, equivalently, M, the quantity

RS = 2GM

c2
(66)

has the physical meaning of being the model’s Schwarzschild radius.
Numerically integrating the field equations yields the dimensionless
outer radius X. Multiplying this radius with the scalelength a gives
the physical value for the radius R = aX. It then follows that

1

A = 2GM

c2a
= 2GM

c2R
X (67)

and consequently

R

RS
= AX = 1

1 − exp(�)
, (68)

where we made use of equation (62).
For each value of α, there exists a minimum value for � below

which no solutions to the field equations can be found. Using the
above, this corresponds to a minimum value for R/RS. As α tends
to zero, the minimum radius shrinks to R ≈ 3.6RS, as can be seen in
Fig. 5. Hence, models with very ‘flat’ DFs and density and pressure
profiles can be very small, with radii only a few times larger than
their Schwarzschild radius. As the DF and the corresponding density
and pressure profiles are steepened by increasing the value of the
power α, this minimum radius steadily increases. In the limit α →
7/2, the only possible solution is the Newtonian Plummer model
and the minimum radius grows to infinity.

5 C O N C L U S I O N S

We show that the equations underlying the GR theory of spherically
symmetric isotropic stellar clusters can be cast in a form analogous
to that of the Newtonian theory. Using the mathematical formal-
ism developed for the latter, we prove that the DF can be derived
from any isotropic momentum moment μ̃k,2q . This is a direct gen-
eralization of the inversion relations derived by Fackerell (1968)
and Pogorelov & Kandrup (1996). Moreover, every higher order
moment μ̃k,2q , with q > 0, can be written as an integral over the
corresponding zeroth-order moment μ̃k,0.

We propose a mathematically simple expression for the DF of a
family of isotropic cluster models which is guaranteed to be positive
everywhere in phase space. The DF of each model is basically
defined by two parameters: the slope α and the value of the potential
at the boundary, �. In the Newtonian limit, these models reduce to
the family of polytropic models. In the relativistic regime, however,
these models do not have a polytropic equation of state. We derive
the Newtonian limits of the general equations underlying the cluster
dynamics and the density and pressure profiles of the polytropic
cluster models.

For a given α, the field equations for these GR cluster models only
allow solutions if � > �0(α), with �0(α) an α-dependent minimum
value for the potential at the outer boundary. In other words: for a
given slope of the DF, a model cannot be made arbitrarily compact.
The ratio of the minimum outer radius to the model’s Schwarzschild
radius is a rising function of α, increasing from R/RS ≈ 3.6 for
α = 0 to R/RS = ∞ for α = 3.5. For less compact models, always
two solutions to the field equations exist: one with a higher central
redshift than the most compact model and one with a lower central
redshift.

The models we constructed, for α-values between 0.05 and 3.5,
fully cover the first maximum of the fractional binding, where
dynamical instability is expected to set in. This first maximum
is achieved by models which all have a central redshift below
zc ≈ 0.55. The most strongly bound model is characterized by
α = 2.75 and a central redshift zc ≈ 0.55. Models with steeper DFs
have lower fractional binding energies than the α = 2.75 model
whereas models with flatter DFs have higher fractional binding en-
ergies. In the limit α → 3.5, the binding energy and the central
redshift both tend to zero. This indicates that in this limit the DF
has become too steep to allow for anything but the Newtonian solu-
tion: no models with a finite mass exist for α > 3.5. Hence, we can
conclude that, at least within the context of this family of models,
the Plummer model by necessity is a purely Newtonian construct.
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