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1 Introduction

This paper is concerned with some aspects of the search for conservation laws for mechanical
systems with nonholonomic constraints (i.e. velocity-dependent constraints). Such constraints
show up naturally e.g. in robotics and in control theory when one considers rigid bodies rolling
over a surface or over each other, or possessing a contact point with a surface in the form
of a knife edge. Standard references to the differential geometric approach to systems with
nonholonomic constraints are the recent books [2, 7, 14]. In this paper we follow a Lagrangian
formulation of nonholonomic systems. The constraints will be assumed to be linear in velocities
and both the Lagrangian and the constraints will be assumed to be independent of time.

We shall investigate the relation between first integrals (or constants of the motion) on the
one hand and symmetries on the other hand. In the absence of nonholonomic constraints, this
relation is often described by what is commonly called ‘Noether’s (first) theorem’. Although
anyone working in the field is familiar with this terminology (see [27] for a recent book on the
history of the subject), a quick scan through the literature immediately reveals that the precise
formulation of the theorem is somewhat subject to personal taste. In fact, the terminology
‘Noether’s theorem’ is associated with many slightly different manifestations of the same group
of underlying ideas. For example, some authors relate Noether’s theorem to invariance transfor-
mations of the action functional (up to a gauge term) depending on position (and possibly time)
only, while others also use the term Noether’s theorem for generalizations to velocity-dependent
transformations. At the infinitesimal level, the first point of view relates to the existence of a
vector field on the configuration space whose complete or tangent lift to velocity space preserves
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the Lagrangian, while the second viewpoint is related to the existence of a vector field on ve-
locity space, not necessarily projectable to one on the configuration space, that, among other
things, preserves the so-called Cartan 2-form. Throughout this paper, we shall refer only to the
first viewpoint as the ‘Noether theorem’, while we shall call the second viewpoint the ‘Cartan
form approach’. For unconstrained Lagrangian systems, the relation between the two viewpoints
was well established in e.g. [9], where it is argued that the Cartan form approach is superior
since it embodies a simple direct correspondence between symmetries and first integrals, and in
any case contains the Noether theorem (in the first sense) as a special case. Besides the two
above-mentioned versions of the Noether theorem, one may find in the literature many other
generalizations. For a review on those we refer to [32].

Given the lack of consensus for standard Lagrangian systems, it is no surprise that the situation
is even more troublesome for the translation of the ideas behind the Noether theorem to the
context of Lagrangian systems with additional nonholonomic constraints. It is well-known that
for those systems the relation between symmetries and constants of the motion is no longer as
natural as it is for the unconstrained case. Nevertheless, many people have investigated the
conditions under which symmetry properties of the system do lead to conservation laws. These
investigations have resulted mostly in generalizations of the two viewpoints described above for
the unconstrained situation. For example, papers discussing the first point of view are those by
Fassò and co-workers [19, 20, 21, 22] and Iliev et al. [24, 25]. Results concerning the Cartan
form viewpoint may be found in e.g. [23] (for time-dependent systems) and [1, 8, 15] (from
the Hamiltonian point of view). Actually, the bulk of the literature focusses on a very special
case: the one where the system is invariant under the tangent lift of an action of a Lie group
(see e.g. [3, 4, 5, 6, 26, 33]) (none of these lists is meant to be exhaustive). Unfortunately, for
nonholonomic systems it is far from immediately obvious how the two distinct viewpoints are
to be compared. The main goal of this paper is to come to a transparent description of these
two levels of generalization and of their interaction.

Throughout the paper we shall take advantage of a simple and well-known observation we have
used also in previous publications [11, 12]: the dynamics can be represented by means of a vector
field, and so can any symmetry (at an infinitesimal level). In Section 2 we recall the version of
the d’Alembert principle we stated in [11] and we interpret it here in terms of the fibre metric
given by the Hessian of the Lagrangian. In the following section we discuss some generalities
concerning the restriction of the Cartan 2-form to the constraint submanifold, we present what
we believe to be the most general relations between symmetries and constants of the motion in
the Cartan form approach and we discuss the special case where the nonholonomic distribution is
maximally non-integrable. In the fourth section we translate the nonholonomic Noether theorem
of [21] to our formalism. We further show how it can be derived from the results in the previous
section and we discuss some special cases. The last section contains applications of the previous
results to Riemannian submanifolds, to Lagrangians of mechanical type, and to the search for
linear and quadratic integrals.

We shall assume that the reader is familiar with the basic tools and concepts needed for the
geometric description of Lagrangian systems, such as the vertical and complete lifts XV and XC

of a vector field X on Q, the vertical endomorphism S, the concept of a second-order ordinary
differential equation vector field, etc. For definitions and basic properties we refer to e.g. [13, 17].
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2 The Lagrange-d’Alembert principle and the fibre metric

Our starting point is the formulation of the equations determining the dynamics of a regular
Lagrangian system subject to nonholonomic linear constraints which we gave in [11]. The
constraints may be defined by either a distribution D on configuration space Q (the constraint
distribution), or a submanifold C of TQ (the constraint submanifold). The two are related as
follows: C = {u ∈ TQ : u ∈ Dq ⊂ TqQ, q = τ(u)}; τ stands here for the tangent bundle
projection TQ → Q. We assume that the dimension of each Dq is constant and equal to m.
Throughout the paper we shall denote by ι the injection C → TQ. A vector field Γ on C is said
to be of second-order type if it satisfies τ∗uΓ = u for all u ∈ C. A Lagrangian function L on
TQ is said to be regular with respect to D if for any local basis {Xα} of D, 1 ≤ α ≤ m, the
symmetric m×m matrix whose entries are XV

α (XV

β (L)) (functions on C) is nonsingular. In [11]
we proved the following proposition.

Proposition 1. Let L be a Lagrangian on TQ which is regular with respect to D. Then there is
a unique vector field Γ on C which is of second-order type, is tangent to C, and is such that on C

Γ(ZV(L)) − ZC(L) = 0

for all Z ∈ D. Moreover, Γ may be determined from the equations

Γ(XV

α (L)) −XC

α(L) = 0, α = 1, 2, . . . m,

on C, where {Xα} is any local basis for D.

This is our version of the Lagrange-d’Alembert principle; the vector field Γ is the dynamical
field of the constrained system.

We shall make use of the following result. For any smooth map between manifolds φ : M → N ,
if ξ ∈ X(M) (the module of smooth vector fields on M) and η ∈ X(N) are φ-related and χ is
any form on N then Lξ(φ

∗χ) = φ∗(Lηχ). We shall apply it with φ = ι, when ξ is tangent to C
(so that the restriction of ξ to C is ι-related to ξ itself), to obtain Lξ(ι

∗χ) = ι∗(Lξχ) (where on
the left-hand side ξ should be understood as ξ|C). This holds, mutatis mutandis, when χ is a
function. In a similar vein, if ξ is tangent to C then ξ ι∗χ = ι∗(ξ χ).

We shall assume that the Lagrangian L, in addition to being regular with respect to D, is also
regular with respect to TQ (i.e. that L is a regular Lagrangian in the standard sense). Remark
that in case the Hessian of L is positive definite, L will automatically be regular with respect
to both TQ and D. The dynamical vector field Γ defined in the proposition above should not
be confused with the standard Euler-Lagrange field Γ0 of L on TQ. The latter is uniquely
determined by the condition that on TQ (i.e. not only on C)

Γ0(Z
V(L)) − ZC(L) = 0

for all vector fields on Q (i.e. not only those in D). We shall not make a notational distinction
between Γ0 and its restriction to C. It is easy to see that, on C, Γ − Γ0 is vertical (with respect
to the projection τ).

Let g be the Hessian of L with respect to fibre coordinates. It can be considered as a fibre metric
on TQ, so that it defines a scalar product of vertical vectors, as follows. Let us equip each fibre of
TQ, which is of course a vector space, with the flat connection, and denote its covariant derivative
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operator by ∇0. Then for any pair of vertical vector fields V and W , ∇0
VW makes sense, and is

a vertical vector field. Moreover ∇0
VW −∇0

WV = [V,W ]. Set g(V,W ) = V (W (L)) −∇0
VW (L).

Then g is bilinear over C∞(TQ) and symmetric. If we take V = XV, W = Y V for vector fields
X, Y on Q we get back the usual definition of the Hessian, XV(Y V(L)) = g(XV, Y V), since
∇0
V Y

V = 0 for any vertical V ; but note that we have extended the ring of coefficients from
C∞(Q) to C∞(TQ).

The interesting point is that Γ−Γ0 is perpendicular (with respect to g) to XV for all X in D. So
in an obvious sense, Γ is the perpendicular projection of the unconstrained dynamics Γ0 onto C.
The basic fact is evident: on C, (Γ−Γ0)(X

V(L)) = 0 for all X in D, since Γ(XV(L)) = XC(L)) =
Γ0(X

V(L)). In view of the definition of g it follows that g(Γ−Γ0,X
V) = 0 for all X ∈ D. In fact

g(Γ − Γ0, V ) = 0 for any vertical vector field V tangent to C; or if we restrict attention to any
fibre TqQ, we see that (Γ−Γ0)TqQ is normal, with respect to g|TqQ, to the submanifold (indeed,
linear subspace) Cq of TqQ. It will be convenient to say that a vector field V is fibre-normal to
C if it is vertical and g(V,W ) = 0 for all vertical vector fields W which are tangent to C. Then
Γ − Γ0 is fibre-normal to C.

This discussion may be summarized in the form of the following proposition, which amounts to
an alternative formulation of the Lagrange-d’Alembert principle of Proposition 1.

Proposition 2. Let L be a Lagrangian on TQ which is regular with respect to both D and TQ.
Then the dynamical field Γ of the corresponding constrained system is the unique vector field
tangent to C such that Γ − Γ0 is vertical and fibre-normal to C with respect to the fibre metric
determined by L.

Note that Γ is necessarily of second-order type since it differs from a second-order differential
equation field by a vertical field.

In what follows we shall always implicitly assume that L is regular with respect to both D and
TQ.

The fact that Γ is the image of Γ0 under a projection operator appears in a paper of de León
and Mart́ın de Diego [16], but the result is derived there in a way which somewhat obscures the
role of the Hessian g.

3 The Cartan form approach

Let S be the vertical endomorphism on TQ. It can be defined by means of its action on vertical
and complete lifts: S(XC) = XV and S(XV) = 0. It is common to call the form θL = dL ◦S, or
more succinctly S(dL), the Cartan 1-form; the Cartan 2-form is ωL = dθL. Some authors also use
‘Poincaré-Cartan forms’ or simply ‘Poincaré forms’ for these forms. According to [28] Poincaré
was the first to introduce the forms, while Cartan defined their extension to the context of time-
dependent Lagrangians. The Cartan 2-form can be thought of as the Kähler lift of the Hessian
g. As such, ωL evaluated on a pair of vertical vectors gives zero, ωL(S(X), Y ) = ωL(S(Y ),X),
and if V is vertical then ωL(V,Z) = g(V, S(Z)). The next subsection is concerned with the
properties of the restriction of the form ωL to the constraint submanifold C, in both senses: ωL|C
and ι∗ωL.

At any point u ∈ C ⊂ TQ, the tangent space TuC projects onto TqQ (where q = τ(u)), and the
kernel of the projection is the vertical lift of Dq. We denote the vertical lift of Dq to u by DV

u ,
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and the vertical subspace of Tu(TQ) by Vu(TQ). The subspace of Vu(TQ) consisting of vectors
fibre-normal to DV

u , say (DV

u )⊥, is complementary to TuC in Tu(TQ). An obvious move is to
consider those vectors ξ ∈ TuC such that S(ξ) ∈ DV

u , and those such that S(ξ) ∈ (DV

u )⊥. Denote
the former by D̃u, the latter by D̃⊥

u . Then D̃u and D̃⊥
u are subspaces of TuC, which together

span it; but they are not complementary, in fact D̃u ∩ D̃⊥
u = DV

u .

Let us consider the distribution D̃ : u 7→ D̃u in greater detail. It is clearly projectable to Q, and
τ|C∗D̃ = D. Its kernel under projection is just DV, that is, the vertical distribution on C. So the

fact that τ|C∗D̃ = D defines D̃; we can write D̃u = τ|C∗u
−1(Dτ(u)).

We can now use the distributions D̃ and D̃⊥ to construct a convenient local basis for X(TQ), or
in other words an anholonomic frame on TQ, adapted to the study of the restriction of ωL to C.

3.1 Construction of a suitable anholonomic frame

We can evidently find local vector fields Xα ∈ D̃ and Xa ∈ D̃⊥ such that

• for each u, {τ∗uXα, τ∗uXa} is a basis for TqQ;

• {S(Xα)} is a basis for DV;

• {S(Xa)} is a basis for (DV)⊥.

We could start with a basis {Xi} = {Xα,Xa} of vector fields on Q (an anholonomic frame on Q)
with {Xα} a basis for D. Take for Xα some projection of XC

α into TC along vertical vectors: then
S(Xα) = XV

α . By suitable similar modifications of the XC

a we can fulfill the other requirements.
Note that the vector fields Xi cannot be assumed to be projectable to Q.

Denote S(Xα) by Yα and S(Xa) by Ya. Then {Xα,Xa,Yα} is a local basis for X(C), and
{Xα,Xa,Yα,Ya} is a local basis for X(TQ). We have g(Yα,Ya) = 0, where g is the fibre metric.
Let us set g(Yα,Yβ) = gαβ and g(Ya,Yb) = gab. If L is regular with respect to D, (gαβ) is
nonsingular. From the above relation between ωL and g, we get

ωL(Yα,Xβ) = gαβ , ωL(Ya,Xb) = gab, ωL(Yα,Xa) = ωL(Ya,Xα) = 0.

Set ωL(Xα,Xβ) = ωαβ and so on. If we change Xa to X̄a = Xa − gαβωaβYα then X̄a ∈ D̃⊥
u ,

S(X̄a) = Ya, but
ωL(X̄a,Xα) = ωaα − gβγωaβgαγ = 0.

So without loss of generality we can assume that ωaα = 0. We are still free to modify Xα
similarly, by the addition of a linear combination of the Yα. Since gaα = 0, this won’t alter the
value of ωaα. Let X̄α = Xα − 1

2g
βγωαγYβ. Then

ωL(X̄α, X̄β) = ωαβ −
1
2g
γδωαδgβγ + 1

2g
γδωβδgαγ = 0.

So without loss of generality we can further assume that ωαβ = 0.

We shall assume from now on that these modifications have been made, and we shall drop the
overbars. The constructions of the previous paragraphs may then be summarized as follows.

Consider the following three distributions on C.

• DV = 〈Yα〉, of dimension dimD = m, is the vertical lift of D to C;
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• D̂ = 〈Xα〉, of dimension m, projects onto D, satisfies S(D̂) = DV, is a complement to DV

in D̃, and is isotropic with respect to ωL;

• D̃⊤ = 〈Xa〉, of dimension n−m, projects onto a complement to D in X(Q), is a complement
to D̃ in X(C), and is symplectically orthogonal to D̃; it satisfies S(D̃⊤) = (DV)⊥.

These three distributions are related to D̃, to X(C) and to X(TQ) as follows:

D̃ = DV ⊕ D̂

X(C) = D̃ ⊕ D̃⊤

X(TQ) = X(C) ⊕ (DV)⊥.

Let {ϑα, ϑa, ϕα, ϕa} be the local basis of 1-forms on TQ, or coframe, which is dual to the basis
{Xα,Xa,Yα,Ya} of X(TQ). Then ϑi = S(ϕi) (i = α, a). Also, {ϑα, ϑa, ϕα}, when restricted to
acting on X(C), is a local basis of 1-forms on C (or more accurately, {ι∗ϑα, ι∗ϑa, ι∗ϕα} is a basis
for 1-forms on C; however, we shall usually ignore this refinement, trusting that it will be clear
from the context what is intended); and 〈ϕa〉 is X(C)◦, the annihilator of X(C), so that ι∗ϕa = 0.
In terms of this coframe

ωL|C = gαβϕ
α ∧ ϑβ + gabϕ

a ∧ ϑb + 1
2ωabϑ

a ∧ ϑb.

Evidently for ωL|C to be symplectic (that is, for L to be regular) it must be the case that (gab)
is nonsingular (this will automatically be so if the Hessian of L is positive definite). Assuming
L is regular, at any u ∈ C the symplectic orthogonal to TuC in Tu(TQ) is given by

(TuC)⊤ =
〈

Xa + gbcωabYc
〉

u
.

The characteristic subspace χ(ι∗ωL) of ι∗ωL is (TuC)⊤ ∩ TuC, and is therefore given by

χ(ι∗ωL) = {ξaXa : ξbωab = 0} = χ
(

ωL|D̃⊤
u

)

.

In summary, we have the following proposition.

Proposition 3. We can find a frame {Xα,Xa,Yα,Ya} on TQ such that 〈Yα〉 = DV, 〈Xα,Yα〉 =
D̃, 〈Xα,Xa,Yα〉 = X(C), 〈Ya〉 = (DV)⊥; and such that with respect to the dual coframe {ϑα, ϑa, ϕα, ϕa}
we have 〈ϕa〉 = X(C)◦ and

ι∗ωL = gαβϕ
α ∧ ϑβ + 1

2ωabϑ
a ∧ ϑb.

(Strictly speaking there should be an ι∗ on each 1-form on the right-hand side of the final
formula.) We shall use this expression for ι∗ωL repeatedly below. Note that at u ∈ C the
first term on the right-hand side is the restriction of ι∗ωL to D̃u, the second its restriction to
D̃⊤
u ; these are complementary subspaces of TuC and are symplectically orthogonal. Moreover,

χ(ι∗ωL) ⊂ D̃⊤
u ; as is evident also from the expression above, ι∗ωL is nonsingular on D̃u.

Of course, we do not claim that the frame described in the proposition is unique.
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3.2 First integrals and symmetries

We are now ready to establish some relations between first integrals on the one hand and
symmetries on the other. Some of the results in this section are closely related to analogous
results that may be found in [23] (albeit in the context of time-dependent constraints) and [1, 15]
(albeit in a Hamiltonian formalism). The reader should also keep in mind that by setting the
constraint submanifold C equal to the whole tangent manifold TQ, one recovers the well-known
relations between symmetries and constants of motion, to be found in e.g. [9, 32].

Let us now work locally on C, in terms of the local bases of vector fields {Xα,Yα,Xa}, and the
dual basis of 1-forms (i.e. sections of T ∗C → C) {ϑα, ϕα, ϑa}. Note that {ϑa} is a basis for D̃◦,
the annihilator of D̃.

Given a 1-form ψ on C, there need not be a vector field Z on C such that Z ι∗ωL = ψ: it is
necessary that ψ(W ) = 0 for all W ∈ χ(ι∗ωL); and if such Z exists it won’t be unique. However,
we have the following important result, which establishes a modified construction for obtaining
vector fields from 1-forms.

Proposition 4. For any 1-form ψ on C, there is a unique vector field Z on C such that Z ∈ D̃
and Z ι∗ωL − ψ ∈ D̃◦.

Proof. The vector field Z given by

Z = gαβ
(

〈Xβ, ψ〉Yα − 〈Yβ, ψ〉Xα

)

is well defined because of the assumed regularity of L. It belongs to D̃ and satisfies Z ι∗ωL−ψ ∈
D̃◦. Now if Y ∈ D̃ then Y ι∗ωL ∈ 〈ϑα, ϕα〉, by inspection of the expression for ι∗ωL; so if Y ∈ D̃
and Y ι∗ωL ∈ D̃◦ then Y = 0, and the vector field Z displayed above is uniquely determined.

The penultimate statement is worth recording separately.

Corollary 1. If Z ∈ D̃ and Z ι∗ωL ∈ D̃◦ then Z = 0.

It is well-known (see [13, 17]) that Γ0, the dynamical vector field of the unconstrained system,
can be characterized as the unique second-order vector field satisfying Γ0 ωL + dEL = 0. The
function EL = ∆(L) − L is the energy of the Lagrangian L and ∆ is the Liouville field (the
infintesimal generator of scaling transformations). It follows that the dynamical vector field
of the constrained system, Γ, is determined by the 1-form −d(ι∗EL) in the way described in
Proposition 4. Recall first of all that Γ ∈ D̃ (it is tangent to C and at each u ∈ C, τ∗uΓ = u ∈
Dτ(u)); and secondly that Γ − Γ0 ∈ (DV)⊥: say Γ = Γ0 + γaYa (the γa are multipliers in some
manifestation). Then on C

Γ ωL + dEL = (Γ − Γ0) ωL = γaYa ωL = γbgabϑ
a.

Now apply ι∗, and the result follows.

Theorem 1. For f a function on C, let Zf be the unique vector field on C such that Zf ∈ D̃
and Zf ι∗ωL − df ∈ D̃◦. Then f is a first integral of Γ if and only if Zf (ι∗EL) = 0.
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Proof. Since Γ, Zf ∈ D̃,

Γ(f) = Γ (Zf ι∗ωL) = −Zf (Γ ι∗ωL) = Zf (ι∗EL),

and the result follows.

This procedure sets up a 1-1 correspondence between local first integrals of Γ (determined up
to the addition of a constant) and vector fields Z ∈ D̃ such that LZ(ι∗ωL) ∈ d(D̃◦) (i.e. such
that LZ(ι∗ωL) = dφ for some φ ∈ D̃◦) and Z(ι∗EL) = 0. Indeed, LZ(ι∗ωL) = d(Z ι∗ωL) = dφ

for φ ∈ D̃◦ if and only if Z ι∗ωL differs from φ ∈ D̃◦ by a closed, and so locally exact, 1-form.
If we set LZ(ι∗θL) − φ = dF , then f above is given by f = F − ι∗θL(Z) = F − S(Z)(L).

Notice that ι∗EL is a first integral, with corresponding vector field Γ, though the proposition is
vacuous in this case; however, it is clear from the facts that Γ ι∗ωL + d(ι∗EL) ∈ D̃◦ and Γ ∈ D̃
that Γ(ι∗EL) = 0.

We can now consider the question of whether there is any correlation between conserved quan-
tities and symmetries for constrained systems. By an infinitesimal symmetry of Γ we mean a
vector field Z tangent to C such that LZΓ = 0. We shall give two different sets of conditions for
deriving a symmetry from a first integral: the first result involves conditions on Γ, the second on
the vector field Zf ∈ D̃ corresponding to a first integral f . We derive them both as corollaries
of the following proposition.

Proposition 5. Let Z be a vector field tangent to C such that D̃ LZ(ι∗ωL) ⊂ D̃◦ and LZ(D̃) ⊂
D̃. Let f be any function on C and Zf ∈ D̃ the corresponding vector field. Then LZ(Zf ) ι∗ωL−
d(Z(f)) ∈ D̃◦. If, further, Z(f) = 0 then LZ(Zf ) = 0.

Proof. We have Zf ι∗ωL − df = φ ∈ D̃◦. Take the Lie derivative with respect to Z to obtain

LZ(Zf ) ι∗ωL − d(Z(f)) = −Zf LZ(ι∗ωL) + LZφ.

Since Zf ∈ D̃, by assumption the first term on the right-hand side belongs to D̃◦. Now for any
Y ∈ D̃,

LZφ(Y ) = Z(φ(Y )) − φ(LZY ) = 0

since LZY ∈ D̃ by assumption. Thus LZφ ∈ D̃◦. So LZ(Zf ) ι∗ωL − d(Z(f)) ∈ D̃◦. If Z(f) = 0
(or indeed if Z(f) is constant) then LZ(Zf ) ∈ D̃ while LZ(Zf ) ι∗ωL ∈ D̃◦, and so LZ(Zf ) = 0
by Corollary 1.

In the course of the proof we have in effect established that LZ(D̃) ⊂ D̃ if and only if LZ(D̃◦) ⊂
D̃◦.

The condition D̃ LZ(ι∗ωL) ⊂ D̃◦ is equivalent to LZ(ι∗ωL)(D̃, D̃) = 0, or in other words the
distribution D̃ is isotropic for LZ(ι∗ωL); but in view of the appeal to Corollary 1 the formulation
in the statement of the proposition seems preferable.

Corollary 2. Suppose that Γ satisfies the conditions specified for Z in the proposition above.
Then for any first integral f , Zf is a symmetry of Γ.

Proof. Since Γ(f) = 0, LZf
Γ = −LΓ(Zf ) = 0.

Corollary 3. Let f be a first integral of Γ, Zf the corresponding vector field. Suppose that Zf
satisfies the conditions specified for Z in the proposition above. Then Zf is a symmetry of Γ.

8



Proof. A certain amount of mental gymnastics is required here: we take Zf for Z in the proposi-
tion above, and Γ for Zf (that is, we take −ι∗EL for f). Since f is a first integral, Zf (ι∗EL) = 0,
and the final conclusion of the proposition holds.

From the second of these corollaries we obtain the following theorem, which gives sufficient
conditions on a vector field Z ∈ D̃ for it to both be a symmetry and generate a first integral.

Theorem 2. Let Z ∈ D̃ be such that D̃ LZ(ι∗ωL) ⊂ D̃◦, LZ(D̃) ⊂ D̃, LZ(ι∗ωL) ∈ d(D̃◦), and
Z(ι∗EL) = 0. Then Z is a symmetry of Γ, and there is, at least locally, a function f on C such
that Z = Zf and Γ(f) = 0. The set of vector fields Z satisfying these conditions forms a Lie
algebra S. For Z1, Z2 ∈ S, with corresponding first integrals f1, f2, we have Z1(f2) = −Z2(f1),
and the first integral corresponding to [Z1, Z2] is (up to an additive constant) Z1(f2).

Proof. The vector field Z satisfies the conditions of Theorem 1 (see the remarks following it)
and Corollary 3. If Z1, Z2 ∈ S, then Z2 ∈ D̃ and LZ1

(D̃) ⊂ D̃, so [Z1, Z2] = LZ1
Z2 ∈ D̃. It is

easy to see that [Z1, Z2] satisfies the other conditions, and also that k1Z1 + k2Z2, k1, k2 ∈ R,
satisfies the conditions. Thus S is a Lie algebra. We have Z1(f2) = ι∗ωL(Z1, Z2) = −Z2(f1).
From Proposition 5 we see that [Z1, Z2] ι

∗ωL − d(Z1(f2)) ∈ D̃◦.

3.3 Systems with maximally nonintegrable constraint distributions

The statements in the previous sections can be further refined if one is in the situation where
the distribution is ‘as non-integrable as it can be’ (in a sense we shall explain next). We shall
show that one may actually assume without loss of generality that this is always the case.

For any distribution D on Q let [D] be the smallest involutive distribution containing D; it
consists of linear combinations of repeated brackets of vector fields in D, as the notation is
designed to suggest. If [D] = X(Q) we say that D is maximally nonintegrable. Other authors
use other adjectives, such as e.g. ‘totally nonholonomic’ [18] or ‘completely nonholonomic’ [31].

Let D′ be the distribution on TQ spanned by all vector fields XC and XV for X ∈ D. Then
D′ has the properties that τ∗D

′ = D and S(D′) = V ∩ D′ (where V is the vertical distribution),
and it is determined by these properties. If D is involutive so is D′, since for any X,Y ∈ D,
[XC, Y C] = [X,Y ]C ∈ D′, [XC, Y V] = [X,Y ]V ∈ D′, and of course [XV, Y V] = 0. Note that
X(Q)′ = X(TQ).

Proposition 6.
[D]′ = [D′].

Proof. Evidently D′ ⊂ [D]′ and [D]′ is involutive, so [D′] ⊂ [D]′. On the other hand, [D′] is
spanned by the repeated brackets of complete and vertical lifts of vector fields in D, and these
(when nonzero) are complete or vertical lifts of vector fields in [D]: so [D]′ ⊂ [D′].

Corollary 4. If D is maximally nonintegrable so is D′.

Now consider, for a constrained system with constraint distribution D, those conserved quantities
which are just functions on Q. Of course in the unconstrained case there aren’t any; but in the
constrained case the condition for f to be conserved is just that X(f) = 0 for all X ∈ D. Then
evidently X(f) = 0 for X ∈ [D] (see [20] for a similar statement). So these conserved quantities
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are constant on the integral submanifolds of [D]; and conversely, since D ⊂ [D]. So the leaves
(maximal connected integral submanifolds) of [D] are the level sets of (an independent subset
of) the conserved quantities f .

Let us restrict everything to a leaf  L of [D]. Note that D is still a distribution on  L; and since
the base integral curves of Γ are everywhere tangent to D, if they start in  L they lie in  L.

Proposition 7. Let  L be a leaf of [D], L̄, D̄ the restrictions of L and D to  L, then (assuming
that L is regular with respect to D) the dynamical field of the constrained system on  L defined
by L̄ and D̄ is just the restriction of Γ to T  L ∩ C.

Proof. We can identify T  L with the leaf of [D′] in TQ which projects onto  L, and the constraint
submanifold C̄ ⊂ T  L corresponding to D̄ with T  L ∩ C. We know that Γ belongs to D′, and
is therefore tangent to C̄. Its restriction to C̄ is uniquely determined by the restriction of the
equations Γ(XV(L)) − XC(L) = 0, X ∈ D, to C̄; but these are just the Lagrange-d’Alembert
equations for the system on  L.

So without essential loss of generality we may assume that D is maximally nonintegrable: if not
we just have to restrict to a leaf  L of [D]. Suppose coordinates have been chosen on Q so that
the leaves of [D] are given by xr = constant for an appropriate range of values of r: then these
coordinates will of course appear in the expressions for base the integral curves of the restriction
of Γ to  L, but only as parameters which take the constant values appropriate to  L, the leaf in
which the curve lies.

Let D̃ be as in the previous section. We also need to identify [D̃], the smallest involutive
distribution on C containing D̃. Now for any projectable vector fields Z1, Z2 on C, [Z1, Z2] is
projectable, and τ|C∗[Z1, Z2] = [τ|C∗Z1, τ|C∗Z2]. Since [D̃] is spanned by repeated brackets of local

basis vector fields of D̃, it is projectable to Q, and its projection is an involutive distribution
containing D. But by construction τ|C∗[D̃] is spanned by repeated brackets of vector fields in D,

so τ|C∗[D̃] ⊂ [D], whence τ|C∗[D̃] = [D]. Clearly the kernel of [D̃] under projection is DV. So [D̃]

is determined by the fact that τ|C∗[D̃] = [D]; that is, [D̃]u = τ|C∗u
−1([D]τ(u)). In particular, if D

is maximally nonintegrable so is D̃.

Clearly if Z ∈ D̃ is such that LZ(ι∗ωL) = 0, so that Z is a symmetry of ι∗ωL, and LZ(D̃) ⊂ D̃
and Z(ι∗EL) = 0, then Z satisfies the conditions of Theorem 2. When the constraint distribution
is maximally nonintegrable we have the following partial converses. In the first we assume that
D is 2-step maximally nonintegrable. A distribution D on a manifold Q is 2-step maximally
nonintegrable if D + [D,D] = X(Q).

Proposition 8. If D is 2-step maximally nonintegrable then a vector field Z ∈ D̃ satisfying
D̃ LZ(ι∗ωL) ∈ D̃◦, LZ(D̃) ⊂ D̃ and LZ(ι∗ωL) ∈ d(D̃◦) is a symmetry of ι∗ωL.

Proof. We have LZ(ι∗ωL) = dφ for some φ ∈ D̃◦ such that Y dφ ∈ D̃◦ for all Y ∈ D̃, or
dφ(Y1, Y2) = 0 for all Y1, Y2 ∈ D̃. But for Y1, Y2 ∈ D̃, dφ(Y1, Y2) = −φ([Y1, Y2]). If D is 2-step
maximally nonintegrable, so is D̃. So φ vanishes on X(C), that is, LZ(ι∗ωL) = 0.

For the second result we need to strengthen the first condition of the theorem.

Proposition 9. If D is maximally nonintegrable then a vector field Z ∈ D̃ satisfying D̃ LZ(ι∗ωL) =
0, LZ(D̃) ⊂ D̃ and LZ(ι∗ωL) ∈ d(D̃◦) is a symmetry of ι∗ωL.
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Proof. We have LZ(ι∗ωL) = dφ for some φ ∈ D̃◦ such that Y dφ = 0 for all Y ∈ D̃. We
therefore consider the set S of those 1-forms ψ ∈ D̃◦ such that Y dψ = 0 for all Y ∈ D̃, or
equivalently LY ψ = 0 for all Y ∈ D̃. It is an R-linear subspace of D̃◦, and indeed a module
over functions invariant under D̃. Now if Y is any vector field on C such that ψ(Y ) = 0 and
LY ψ = 0, and Y ′ = fY for any function f on C, then ψ(Y ′) = 0, and

LY ′ψ = f(Y dψ) + d(fY ψ) = fLY ψ = 0.

Moreover, if Y1, Y2 satisfy ψ(Y1) = ψ(Y2) = 0 and LY1ψ = LY2ψ = 0 then

ψ([Y1, Y2]) = Y1(ψ(Y2)) − LY1ψ(Y2) = 0,

and
L[Y1,Y2]ψ = [LY1 ,LY2 ]ψ = 0.

So if [D̃] is the smallest involutive distribution containing D̃ then S ⊂ [D̃]◦. But if D is maximally
nonintegrable then [D̃] = X(C) and so S = {0}. Thus LZ(ι∗ωL) = 0.

4 The nonholonomic Noether theorem

The title of this section refers to the terminology used in the paper [21] by Fassò et al. We shall
first re-express their version of the theorem in the current framework. Next we shall show how
it relates to the Cartan form approach.

4.1 The theorem and the reaction-annihilator distribution

In [11] we defined (for any second-order field Γ) a 1-form ε along the tangent bundle projection
(restricted to C in the nonholonomic case) by ε(X) = Γ(XV(L))−XC(L) for X a vector field on
Q. The Lagrange-d’Alembert principle is that there is a unique Γ of second-order type, tangent
to C, such that ε annihilates D. The form ε corresponding to that particular Γ is what Fassò et
al., in [21], call the reaction set R. The idea of Fassò et al. is that there may be vector fields
Z on Q, not necessarily in D, such that ε(Z) = 0; such a vector field belongs to the so-called
reaction-annihilator distribution R◦. The next statement is the nonholonomic Noether theorem
of [19, 21, 22].

Theorem 3. For a vector field Z on Q any two of the following three conditions imply the third:
(1) ZC(L) = 0 on C; (2) ε(Z) = 0; (3) ZV(L)|C is a first integral of Γ.

Proof. The proof is straightforward: we have Γ(ZV(L)) = ZC(L) + ε(Z), so if any two of the
terms vanish so does the third.

We may equivalently express matters in terms of multipliers. Let {Xα,Xa} be a basis of vector
fields on Q, where the Xα span D. Evidently ε(Xα) = 0 on C, while ε(Xa) = λa, for some
functions λa on C. These λa play the role of the Lagrangian multipliers one finds in many
formulations of the equations of nonholonomic dynamics. Let Z = ZaXa + ZαXα; then Z is
in R◦ if and only if Zaλa = 0. By definition, Zaλa = Γ(ZaXV

a (L)) − (ZaXa)
C(L). If now

ZC(L) = 0, then (ZaXa)
C(L) = −(ZαXα)C(L). Replacing this above, and taking into account
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the fact that Γ is such that (ZαXα)C(L) = Γ(ZαXV

α (L)), we easily get that Zaλa = Γ(ZV(L)),
and the result follows.

In this general situation, the conserved momentum ZV(L) may depend on the component of Z
transverse to D.

We could introduce the following small improvement to the above theorem: for any function f

on Q,
ε(X) = Γ(XV(L) − f) − (XC(L) − ḟ);

if any two of the three terms vanish so does the third. If L is of mechanical type (meaning that
it is of the form T − V , where T is associated to a Riemannian metric, and V is a potential)
this adds nothing new, since if XC(L) = ḟ then each side must be zero, by equating to zero the
separate powers of u. Symmetries for which XC(L) = ḟ are therefore only of interest for more
general types of Lagrangians, e.g. for Lagrangians with magnetic terms. In that context, the
Lagrangian is said to be quasi-invariant, see e.g. [30].

We shall now reinterpret the reaction-annihilator distribution R◦. It is not immediately clear
which manifold R◦ is supposed to be a distribution on. For each point (q, u) of C, there is a
subspace of TqQ consisting of vectors v such that ε(q,u)(v) = 0: but it will in general depend on u.
For example, if the Lagrangian is of mechanical type with a potential term φ, then λa contains
two terms, one quadratic in velocities and one independent of them: the first is what one gets
from the kinetic energy term, the second is just Xa(φ) (see the computations in Section 5.2).
So the set {v ∈ TqQ : vaλa(q, u) = 0} will depend on u, as we claimed above.

One may impose further conditions so that R◦ can be regarded as a distribution on Q. Indeed,
there may very well be vector fields Z on Q such that Za(q)λa(q, u) = 0 for all u ∈ Cq (any
Z ∈ D will do). In the case of a Lagrangian of mechanical type, since the Za are functions of
q alone they must in fact satisfy two conditions: the one coming from the quadratic part of λa,
and in addition ZaXa(φ) = 0. It will become clear immediately below that to restrict attention
to vector fields on Q in this way (i.e. to think of R◦ as a distribution on Q) is to impose an
unnecessary limitation, so we shall not insist on it.

We can reinterpret ε in terms of the fibre metric, much as we did in Section 2. In fact for any
vector field X on Q,

ε(X) = Γ(XV(L)) −XC(L) = (Γ − Γ0)(X
V(L)) = g(Γ − Γ0,X

V).

From this perspective it is clear that if we require R◦ to be in some sense a distribution, it must
be interpreted as the distribution of vector fields along ι which are fibre-normal to Γ − Γ0. It
will then consist of vertical vector fields on C ⊂ TQ, rather than vector fields on Q; but it may
contain vertical lifts of vector fields on Q, and it is these which are of interest from the point of
view of Theorem 3.

4.2 Relation to the Cartan form approach

We now discuss the nonholonomic Noether theorem of Fassò et al. from the Cartan form point
of view.

We first make one further interpretation of ε. Notice that Γ ωL + dEL is a semi-basic 1-form
along C, say ǫ. For any v ∈ Tu(TQ) (where u ∈ C), ǫu(v) = gab(u)ϑa(v)γb = gu(S(v),Γ − Γ0),
since S(v) = ϑα(v)Yα + ϑa(v)Ya. That is to say, ǫu(v) = εu(τ∗v), or in other words ǫ is ε
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considered as a semi-basic 1-form along C. The element of D̃◦ determined by Γ ι∗ωL + d(ι∗EL)
according to Proposition 4 is ι∗ǫ.

Recall that for any vector field X on Q, the vector field XC satisfies LXCS = 0 and [∆,XC] = 0,
where ∆ is the Liouville field.

For any Lagrangian system (with Cartan forms θL and ωL = dθL)

XC ωL = XC dθL

= LXCθL − d(XC θL)

= LXC(S(dL)) − d(XV(L))

= S(d(XC(L))) − d(XV(L)).

This holds everywhere on TQ, and regardless of whether L is regular.

Secondly,

ε(X) = ǫ(XC) = (Γ ωL + dEL)(XC)

= −(XC ωL)(Γ) +XC(EL)

= −∆(XC(L)) + Γ(XV(L)) +XC(∆(L)) −XC(L)

= Γ(XV(L)) −XC(L)

as expected. This holds along C, but neither XC nor XV need be tangent to C.

Thirdly, we propose an analogue of Theorem 3:

Theorem 4. For any vector field Z tangent to C and for any function f on C such that Z ι∗ωL−
df ∈ D̃◦, we have

Γ(f) = Z(ι∗EL) − ι∗ǫ(Z);

and if any two of the terms vanish so does the third.

Proof. This is a small generalization of the proof of Theorem 1.

(Note in passing that since ι∗ǫ(Zf ) = (Γ ι∗ωL + d(ι∗EL))(Zf ) and Γ ι∗ωL + d(ι∗EL) ∈ D̃◦,
ι∗ǫ(Zf ) = 0. Moreover, if Z ι∗ωL ∈ D̃◦ then evidently ι∗ǫ(Z) = Z(ι∗EL).)

We shall rederive Theorem 3 from the displayed formula in the statement of Theorem 4; that
is, we shall show that Theorem 3 is a special case of our analogue theorem. Naively, one would
like to substitute XC for Z: but this is not permissible since XC is not necessarily tangent to C,
and in any case XC does not correspond directly to XV(L) via ωL. Let us denote by X̄C the
projection of XC onto C along the Ya, and let us set

Z = −X̄C + gαβYβ(XC(L))Yα.

Then Z is tangent to C and satisfies Z ι∗ωL − d(ι∗(XV(L))) ∈ D̃◦. To see the latter, note
that S(d(XC(L))) is semi-basic and S(d(XC(L)))(Xα) = Yα(XC(L)), whence S(d(XC(L))) −
Yα(XC(L))ϑα ∈ 〈ϑa〉. Recall the formula

ωL = gαβϕ
α ∧ ϑβ + gabϕ

a ∧ ϑb + 1
2ωabϑ

a ∧ ϑb.
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We have, on C,

Z ωL = −XC ωL + Yα(XC(L))ϑα (mod ϑa)

= −S(d(XC(L))) + d(XV(L)) + Yα(XC(L))ϑα (mod ϑa)

= d(XV(L)) (mod ϑa),

whence Z ι∗ωL − d(ι∗(XV(L))) ∈ D̃◦. Now since ǫ is semi-basic, ι∗ǫ(Z) = −ǫ(XC) = −ε(X). It
remains to calculate Z(ι∗EL). For this purpose we require the following general result. Let V
be any vertical vector field. Then from the general formula for the fibre metric g

g(V,∆) = V (∆(L)) −∇0
V ∆(L) = V (∆(L)) − V (L) = V (EL),

since ∇0
V ∆ = V . Thus on C

Z(EL) = (−X̄C + gαβYβ(XC(L))Yα)(EL)

= (−XC + ϕa(XC)Ya + gαβYβ(XC(L))Yα)(EL)

= −XC(EL) + ϕa(XC)g(Ya,∆) + gαβYβ(XC(L))g(Yα,∆).

Since the constraints are linear, ∆ is tangent to C, so g(Ya,∆) = 0. If we write ∆ = ναYα then
g(Yα,∆) = gαβν

β, and

gαβYβ(XC(L))g(Yα,∆) = gαβYβ(XC(L))gαγν
γ

= νβYβ(XC(L)) = ∆(XC(L)).

It follows that on C, Z(EL) = −XC(EL) + ∆(XC(L)) = XC(L), and therefore Z(ι∗EL) =
ι∗(XC(L)). So the formula Γ(f) = Z(ι∗EL) − ι∗ǫ(Z) becomes Γ(ι∗(XV(L))) = ι∗XC(L) + ε(X).
This is for a particular choice of Z such that Z ι∗ωL−d(ι∗(XV(L))) ∈ D̃◦. For any other choice,
say Z ′, we have (Z − Z ′) ι∗ωL ∈ D̃◦, so that Z ′(ι∗EL) − ι∗ǫ(Z ′) = Z(ι∗EL) − ι∗ǫ(Z), and the
same conclusion holds.

The drawback of the approach in Theorem 4, however, is that the correspondence between first
integrals and vector fields is no longer 1-1, as it was in Theorem 1.

4.3 Special cases

A particular question of interest is whether, and under what conditions, a complete lift XC can
satisfy the hypotheses of Theorem 2 on symmetries and first integrals. For this we require that

1. XC ∈ D̃,

2. D̃ LXC(ι∗ωL) ⊂ D̃◦,

3. LXC(D̃) ⊂ D̃,

4. LXC(ι∗ωL) ∈ d(D̃◦),

5. XC(ι∗EL) = 0.

A couple of points of notation.
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• For a distribution D, we denote by D1 its first derived distribution, which is the distribution
spanned by D and brackets of vector fields in D, that is, D1 = D + [D,D]. (Thus D is
2-step maximally nonintegrable just when D1 = X(Q).)

• We denote projectable vector fields on TQ, and more particularly on C, with overbars;
thus Ȳ is projectable, and we set τ∗Ȳ = Y . Note that S(Ȳ ) = Y V.

Lemma 1. A vector field X on Q is an infinitesimal symmetry of the distribution D (that is,
it satisfies LX(D) ⊂ D) if and only if XC is tangent to C.

Proof. Let (va, vα) be the quasi-velocities corresponding to the frame {Xα,Xa}, as in [11]. Then

va = 0 on C. One easily verifies that XC(va) = 0 if and only if [X,Xα] is of the form A
β
αXβ .

Lemma 2. For a vector field X on Q, if XC ∈ D̃ then LXC(D̃) ⊂ D̃.

Proof. First of all, since XC is evidently tangent to C, LX(D) ⊂ D. We have to show that for any
vector field Z ∈ D̃, and for any u ∈ C, (LXCZ)u is tangent to C and τ∗(LXCZ)u ∈ Dτ(u). It will

be enough to consider those vector fields in D̃ which are projectable. Let Ȳ be any projectable
vector field in D̃, so that Y ∈ D: then LXC Ȳ is tangent to C since both XC and Ȳ are; it is
projectable, and its projection LXY belongs to D.

So in this case condition 3 is superfluous.

Proposition 10. For a vector field X on Q, XC satisfies the conditions

1. XC ∈ D̃,

2. D̃ LXC(ι∗ωL) ⊂ D̃◦,

3. LXC(ι∗ωL) ∈ d(D̃◦),

4. XC(ι∗EL) = 0,

if and only if

• LX(D) ⊂ D,

• X ∈ D,

• there is a (locally defined) function F on Q such that XC(L) = Ḟ on C,

• for any Y ∈ D1, Y V(XC(L)) = Y (F ) on C.

(Notice that if Y ∈ D, so that Y V is tangent to C, Y V(XC(L)) = Y V(Ḟ ) = Y (F ) on C, so the
final condition is automatically satisfied. So that condition is really concerned with derivatives of
XC(L) in directions transverse to C; that is, it says something about how XC(L) changes as one
moves off C. Moreover, the transverse directions involved are those that arise from bracketing
vector fields in D.)
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Proof. As a preliminary step we evaluate LXC(ι∗θL). Firstly, LXCθL = S(d(XC(L))), whence
LXCθL(Ȳ ) = Y V(XC(L)) and LXCθL vanishes on vertical vector fields (both of these assertions
holding everywhere on TQ). Thus LXC(ι∗θL) vanishes on any vertical vector field tangent to C,
while for any Ȳ tangent to C, LXC(ι∗θL)(Ȳ ) = ι∗(Y V(XC(L))).

Now suppose that LX(D) ⊂ D, X ∈ D, and on C, XC(L) = Ḟ and Y V(XC(L)) = Y (F ) for any
Y ∈ D1. We show that the numbered conditions are satisfied.

Since LX(D) ⊂ D, XC is tangent to C. Furthermore, τ |C∗X
C = X ∈ D, so XC ∈ D̃, which

establishes that condition 1 is satisfied. For Ȳ ∈ D̃, so that Y V is tangent to C, we have

LXC(ι∗θL)(Ȳ ) = Y V(ι∗(XC(L))) = Y V(Ḟ ) = Y (F )

(strictly speaking, τ |∗C(Y (F ))). It follows that LXC(ι∗θL)−dF ∈ D̃◦ (since both terms vanish on
vertical vector fields). Thus LXC(ι∗ωL) ∈ d(D̃◦), and condition 3 is satisfied. We next consider
condition 2. It can be written dLXC(ι∗θL)(D̃, D̃) = 0. Using the usual formula for the exterior
derivative it is easy to see that if either or both of the arguments is vertical then one gets zero.
For Ȳ1, Ȳ2 ∈ D̃,

dLXC(ι∗θL)(Ȳ1, Ȳ2) = Ȳ1(LXC(ι∗θL)(Ȳ2) − Ȳ2(LXC(ι∗θL)(Ȳ1)

−LXC(ι∗θL)([Ȳ1, Ȳ2])

= Ȳ1(Y2(F )) − Ȳ2(Y1(F )) − LXC(ι∗θL)([Ȳ1, Ȳ2])

= [Y1, Y2](F ) − ι∗([Y1, Y2]V(XC(L)))

= 0

because Y V(XC(L)) = Y (F ) on C for any Y ∈ D1. Finally, condition 4 follows directly from the
fact that ∆(Ḟ ) = Ḟ .

For the converse we shall make use of a frame {Xi} on Q with {Xα} a local basis for D, as
usual. We take vector fields X̄i on (and tangent to) C projecting onto the Xi: they could be the
fibre-orthogonal projections onto C of the XC

i , for example. (These are not to be confused with
the Xα etc., which are not necessarily projectable.) Then S(X̄α) = XV

α , and {X̄α,X
V

α} is a basis
for D̃. We denote by vi the corresponding quasi-coodinates; va = 0 on C.

Suppose that XC satisfies the numbered conditions. It follows from condition 1, firstly that XC

is tangent to C and so LX(D) ⊂ D, and secondly that X = τ|C∗X
C ∈ D. Condition 3 implies

the existence (locally) of a function F on C such that LXC(ι∗θL) − dF ∈ D̃◦. Since LXC(ι∗θL)
vanishes on any vertical vector field V tangent to C, and all such vector fields belong to D̃, it
follows that V (F ) = 0 for all such V , so F is (the pull-back of) a function on Q. Then

Xα(F ) = LXC(ι∗θL)(X̄α) = XV

α (XC(L)),

whence by condition 4

XC(L) = ∆(XC(L)) = vαXV

α (XC(L)) = vαXα(F ) = Ḟ

on C. From the calculation of dLXC(ι∗θL)(Ȳ1, Ȳ2) above we see that on C, for any Y ∈ D1,
Y V(XC(L)) = Y (F ).

Corollary 5. The numbered conditions are satisfied if X is a horizontal quasi-symmetry of the
system, that is, if LX(D) ⊂ D, X ∈ D, and for some function F on Q, XC(L) = Ḟ holds on
TQ. In fact LXC(ι∗ωL) = 0 in this case.
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Proof. We have Y V(XC(L)) = Y (F ) for any vector field Y on Q. It follows that LXC(ι∗θL) =
dF .

We may conclude, from Theorem 2, that if X is a horizontal quasi-symmetry then XC is a
symmetry of ι∗ωL and of Γ, and there is, at least locally, a function f on C such that XC = Zf
and Γ(f) = 0. This result, with f = F − ι∗(XV(L)) of course, is well-known; the point of the
exercise was to see how it is related to the theorem. To turn things around, we may say that the
vector fields Z satisfying the hypotheses of Theorem 2 should be regarded as generalizations of
horizontal quasi-symmetries.

5 Applications

The bulk of the literature concentrates on the case where the Lagrangian is of mechanical type.
So we now explain how the theory works in that special case. A simple subcase, but one which
contains several instructive pointers to what happens in general, is furnished by submanifolds
in Riemannian geometry.

5.1 Conservation laws in Riemannian geometry

First, some elementary remarks about geodesic conservation laws in Riemannian geometry.

Let (M,g) be a Riemannian manifold, with Levi-Civita connection ∇. For any vector field Z

on M , define a type (0, 2) tensor KZ by KZ(u, v) = g(∇uZ, v). The necessary and sufficient
condition for Z to be a Killing field (infinitesimal isometry) is that KZ is skew-symmetric; in
fact LZg(u, v) = KZ(u, v) +KZ(v, u).

For any curve c in M , and any vector field Z,

d

dt
(g(Z, ċ)) = g(∇ċZ, ċ) + g(Z,∇ċ ċ) = KZ(ċ, ċ) + g(Z,∇ċċ).

If c is an affinely parametrized geodesic, so that ∇ċċ = 0, and KZ(ċ, ċ) = 0, then g(Z, ċ) is
constant along c. If Z is a Killing field then g(Z, ċ) is constant along every geodesic; and
conversely (since there is a geodesic in every direction, so ċ is an arbitrary vector). This, in fact,
is Noether’s theorem in Riemannian geometry: there is a 1-1 correspondence between geodesic
invariants of the form g(Z, ċ) and infinitesimal symmetries, that is, isometries or Killing fields.

Now consider the case of a Riemannian submanifold N of a Riemannian manifold (M,g) (the
metric on N is the restriction of g). The second fundamental form Π is a type (0, 2) tensor on
N with values in the normal bundle, defined as follows. For any vector fields η, ζ on N , set
Π(η, ζ) = ∇ηζ

⊥ (the normal component of ∇ηζ). For any function f on N we have ∇ηfζ =
f∇ηζ + η(f)ζ, and so Π(η, fζ) = fΠ(η, ζ), and Π is tensorial. Moreover, ∇ηζ − ∇ζη = [η, ζ]
and the latter is tangent to N , which implies that Π is symmetric in its arguments.

A curve c on N is geodesic with respect to the induced metric if and only if ∇ċċ is normal to N
(here ∇ is the Levi-Civita connection of (M,g)). If c is geodesic then ∇ċċ = Π(ċ, ċ).

Now consider a vector field Z defined in a neighbourhood of N in M . Then for a geodesic c in
N ,

d

dt
(g(Z, ċ)) = KZ(ċ, ċ) + g(Z,∇ċċ) = KZ(ċ, ċ) + g(Z,Π(ċ, ċ)).
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Of course if Z is tangent to N the last term vanishes and the situation reduces to the one
discussed earlier. But suppose that Z is not tangent to N , but satisfies the following two
conditions: the restriction of KZ to TN is skew, and Z is orthogonal to the second fundamental
form of N . (Of course the codimension of N must be greater than 1 for this to be possible for
Z not tangent to N .) Then g(Z, ċ) is constant along every geodesic of N . In fact any two of the
following conditions implies the third:

1. Z is orthogonal to the second fundamental form of N ;

2. the restriction of KZ to TN is skew;

3. g(Z, ċ) is constant along every geodesic of N .

The first and last of these depend only on the values of Z on N . Recall that KZ(u, v) =
g(∇uZ, v), so that KZ involves derivatives of Z: but since we are interested only in the case
where u and v are tangent to N , we have to take derivatives only in directions tangent to N ,
so that KZ(u, v) also depends only on the values of Z on N . In other words, one could state
the result as follows: let Z be a vector field on N (but not necessarily tangent to it — that
is, strictly speaking Z is a vector field along the injection of N into M); then any two of the
conditions above imply the third.

Although Z need not be tangent to N , the conserved quantity g(Z, ċ) depends only on its
component tangent to N .

This result is of course the nonholonomic Noether theorem of [21], for a kinetic energy La-
grangian, in the case where the constraints are actually holonomic! Let us consider the result
in this light. The equivalence between the condition ZC(L) = 0 on C and item 2 above is dealt
with below. The function ZV(L) on C is more-or-less g(Z, ċ) (the latter is the former restricted
to a base integral curve of Γ); note that since Γ is tangent to C, in computing Γ(ZV(L)) we can
restrict ZV(L) to C, i.e. we can set va = 0 before acting with Γ. (The conserved quantity depends
only on the component of Z along the constraint distribution, just as we pointed out above for
the submanifold case.) The new ingredient is the identification of the condition ε(Z) = 0 in
terms of the second fundamental form. In fact the definition of the second fundamental form
given above extends in a fairly obvious way to a distribution D (assuming of course one has a
metric): for any vector fields X, Y in D set

Π(X,Y ) = 1
2 (∇XY + ∇YX)⊥

where Z⊥ is the component of Z perpendicular to D. Note that symmetry is no longer automatic
— since we are now dealing with a nonholonomic distribution we won’t have [η, ζ] ∈ D. The
condition ε(Z) = 0 is just Z ⊥ Π.

5.2 Lagrangians of mechanical type: the general case

We shall derive expressions for ε for a Lagrangian of mechanical type,

L(q, u) = 1
2gq(u, u) − φ(q).

The fibre metric essentially coincides with the metric g on Q, at least so far as vertical lifts are
concerned.
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First of all, XV(L) = g(X,u), while XC(L) = g(∇uX,u) −X(φ). Let us take a frame {Xα,Xa}
in which the Xα span D and the Xa are normal to D, so that gaα = 0. As before we denote the
corresponding quasi-velocities by (vα, va), and we denote by RγαβXγ the component of [Xα,Xβ ]
in D. We write Γ = vαXC

α + ΓαXV

α . Recall that Γ is tangent to C, and that va = 0 on C, so that
u = vαXα on C, and (for example) g(Xα, u) = gαβv

β. Moreover, vβXC

β (vγ) = −Rγβδv
βvδ = 0 on

C (by skew-symmetry). It follows that

ε(Xα) = (vβXC

β + ΓβXV

β )(g(Xα, u)) − g(∇uXα, u) +Xα(φ)

= gαβΓβ +Xβ(gαγ)vβvγ − g(∇Xβ
Xα,Xγ)vβvγ +Xα(φ)

= gαβΓβ + g(Xα,∇Xβ
Xγ)vβvγ +Xα(φ),

from which we can determine Γ. The calculation of ε(Xa) is much simplified by the choice of
Xa, since g(Xa, u) = g(Xa, v

αXα) = 0 on C: thus

ε(Xa) = −g(∇XαXa,Xβ)vαvβ +Xa(φ) = g(Xa,∇XαXβ)vαvβ +Xa(φ).

In the first term in the final expression, only the component of ∇XαXβ normal to D matters.
Let us write Παβ = Πa

αβXa for the symmetric part of the normal component of ∇XαXβ (i.e. the
generalized second fundamental form). Then

ε(Xa) = gabΠ
b
αβv

αvβ +Xa(φ),

or more generally, for any vector field Y on Q normal to D,

ε(Y ) = g(Y,Π(u, u)) + Y (φ).

Since ε annihilates D and Π is normal to it, we conclude that a vector field Z on Q satisfies
ε(Z) = 0 if and only if g(Z,Παβ) = 0 and Z⊥(φ) = 0 where Z⊥ is the component of Z normal
to D. These are the conditions we alluded to in the discussion on the reaction-annihilator
distribution of Section 4.1.

If g is actually a flat metric (as is the case in many examples) then the second fundamental form
condition is vacuous.

The conditions for Z to generate a conserved momentum are that

g(Z,Παβ) = 0, Z⊥(φ) = 0,

g(∇XαZ,Xβ) + g(∇Xβ
Z,Xα) = 0, Z(φ) = 0.

Regarding the potential φ, note that in fact it isn’t enough that Z(φ) = 0: in effect, both the
component of Z along D and the component normal to D separately have to annihilate φ. The
condition g(∇XαZ,Xβ)+g(∇Xβ

Z,Xα) = 0 just says that KZ , restricted to D, is skew-symmetric.
This result may also be found in e.g. [25].

Finally, we make the link to the Riemannian case, as described in Section 5.1. The Euler-
Lagrange field Γ0 is the geodesic field. Consider a curve c in Q, and its natural lift C = (c, ċ)
to TQ. It is easy to see (by a coordinate calculation for example) that the tangent field to the
natural lift can be expressed as follows:

Ċ = Γ0|C + (∇ċċ)
V.

For a constrained system of this type, therefore, c will be a base integral curve of the constrained
dynamical field Γ if and only if ∇ċċ is normal to D|c. This includes the case in which D is
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integrable, giving the rule for geodesics in a submanifold. In fact for a base integral curve c of
Γ we have (Γ − Γ0)C = (∇ċċ)

V = Π(ċ, ċ)V. So the formula

d

dt
(g(Z, ċ)) = KZ(ċ, ċ) + g(Z,Π(ċ, ċ))

(see above) is the formula

Γ(ZV(L)) = ZC(L) + g(Γ − Γ0, Z
V)

for this case (along the natural lift C of c).

5.3 Quadratic first integrals for constrained systems of mechanical type

In the previous example we have used the conditions of the nonholonomic Noether theorem as
discussed in Section 4. In this section we give an example where we use the more general results
of the section on the Cartan form approach. More in particular, we shall apply the conditions
of Theorem 1.

First, a remark about connections. Let E → M be a vector bundle with linear connection,
with covariant derivative operator ∇ and horizontal lift X 7→ XH. Any section σ of E → M

determines a vertical vector field on E by the identification of a point of a vector space with a
(constant) vector field on it, ie by a variant of the vertical lift construction: call it therefore σV.
Then [XH, σV] = (∇Xσ)V.

Now let F →M be a vector sub-bundle of E, and suppose that E is equipped with a constant
fibre metric g. For any v ∈ F , let H̄v be the fibre-orthogonal projection of the horizontal
subspace Hv of TvE into TvF , and X 7→ X H̄ the corresponding horizontal lift to F . Then for
any section τ of F → M , [X H̄, τV] is a vertical lift, and if we set [X H̄, τV] = (∇̄Xτ)V then ∇̄ is
the covariant derivative operator of a linear connection on F .

For x ∈M , let {ei(x)} be a basis for Ex such that {eα(x)} is a basis for Fx and {ea(x)} a basis
for its orthogonal complement. Suppose that we have, locally, such a choice of bases depending
smoothly on x; in other words, we have local sections ei with these properties. Let {Xr} be a
local basis of vector fields on M , and set ∇Xrei = Γjriej ; the Γjri are the connection coefficients
of ∇ with respect to the chosen bases. Let (ui) be the fibre coordinates on E corresponding to
the basis of sections {ei}, so that eVi (uj) = δ

j
i ; note that F is the submanifold ua = 0. Then

[XH

r , e
V

i ](uj) = XH

r (δji ) − eVi
(

XH

r (uj)
)

= (∇Xrei)
V(uj) = Γjri,

so that
XH

r (uj) = −Γjriu
i,

as one would expect. Now XH

r −X H̄

r ∈ 〈ea〉, say XH

r −X H̄

r = ξar e
V

a . Thus on F (where ua = 0)
ξar = −Γa

rαu
α, using the fact that X H̄

r (ua) = 0 since X H̄

r is tangent to the submanifold F . It
follows that X H̄

r = XH

r + Γa
rαu

αeVa . So finally

[X H̄

r , e
V

α] = [XH

r , e
V

α] + [Γa
rβu

βeVa , e
V

α] = Γ i
rαe

V

i − Γa
rαe

V

a = Γβrαe
V

β ;

that is to say, the connection coefficients for ∇̄ are Γβrα.
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Now let us specialize to the case in which E = TQ and F = C, for a constrained system of
mechanical type. Choose the basis of vector fields {Xα,Xa} with {Xα} a basis for D and Xa

orthogonal to D; then XV

i corresponds to eVi above. We take for ∇ the Levi-Civita connection
of the kinetic energy metric; we have an induced connection ∇̄ on sections of C, i.e. on vector
fields in D, with ∇̄Xi

Xα = ΓβiαXβ . This is all very much like the definition of the connection
induced on a submanifold in Riemannian geometry (the connection ∇̄ may in fact be found in
e.g. [29]); note that indeed the generalized second fundamental form is given by

Πa
αβ = 1

2

(

Γ a
αβ + Γ a

βα

)

.

Moreover,

Γ = vαXC

α −
(

Γα
βγv

βvγ + (gradφ)α
)

XV

α .

We have written gradφ for the vector field obtained by raising the index on dφ: that is to
say, g(X, grad φ) = X(φ). The corresponding term in Γ is (the vertical lift of) the orthogonal
projection of gradφ onto D. With our present choice of basis this is gαβXβ(φ)Xα, where (gαβ)
is the inverse of (gαβ), and also the corresponding block in the inverse of (gij). Likewise, the
fact that we have Γα

βγ in the first term in the brackets is due to the choice of basis with Xa

orthogonal to D, and therefore XV

a fibre-normal to C. Now on C (where va = 0)

Γ0 = vαXC

α −
(

Γ i
αβv

αvβ + (grad φ)i
)

XV

i ,

so that
Γ − Γ0 =

(

Πa
αβv

αvβ + (gradφ)a
)

XV

a .

The vector fields {XH

α ,X
H

a ,X
V

α ,X
V

a } form a local basis for X(TQ), of course: denote by {θα, θa, φα, φa}
the dual basis of 1-forms. We have

X H̄

i = XH

i + Γaiαv
αXV

a ;

the vector fields {X H̄

i ,X
V

α} form a basis for X(C), with {X H̄

α ,X
V

α} a basis for D̃ and S(X H̄

a ) = XV

a .
Notice that since 〈XV

a , θ
α〉 = 〈XV

a , θ
b〉 = 〈XV

α , φ
β〉 = 0, {ι∗θα, ι∗θa, ι∗φα} is the dual basis of 1-

forms on C, and {ι∗θa} is a basis for D̃◦. We don’t claim that these bases correspond exactly to
the ones used in Section 3, but nevertheless we can use them to analyse ι∗ωL in the same way
as we did there.

We have
ωL = gαβφ

α ∧ θβ + gabφ
a ∧ θb.

Using the expression for ωL given above we obtain, on C,

X H̄

α ωL = −gαβφ
β + gabΓ

a
αβv

βθb

X H̄

a ωL = −gabφ
b + gbcΓ

b
aαv

αθc

XV

α ωL = gαβθ
β.

Then for any vector Z = ξαX H̄

α + ξaX H̄

a + ηαXV

α tangent to C we find that

Z ωL(X H̄

α ) = gαβη
β − gabΓ

a
αβv

βξb

Z ωL(X H̄

a ) = gabΓ
b
αβv

βξα + (gacΓ
c
bα − gbcΓ

c
aα)vαξb

Z ωL(XV

α ) = gαβξ
β.
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Thus the characteristic vector fields of ωL take the form Z = ξaX H̄

a + ηαXV

α where ηα =
gαβgabΓ

a
βγv

γξb, and ξb satisfies

(gacΓ
c
bα − gbcΓ

c
aα)ξb = 0.

Now the connection coefficients are those for the Levi-Civita connection, but with respect to an
anholonomic frame such that gaα = 0. It follows that gbcΓ

c
aα + gαβΓβab = 0. Thus the condition

on ξa may be written
gαβ(Γβba − Γβab)ξ

b = 0.

But since the Levi-Civita connection has no torsion, [Xa,Xb] = (Γ i
ab − Γ i

ba)Xi. So the condition
on ξb amounts to [ξaXa,Xb] ∈ D⊥, or more generally [ξaXa,D

⊥] ∈ D⊥. That is, ξaXa (a vector
field in D⊥) has the property that its bracket with every vector field in D⊥ belongs to D⊥.
This condition determines a subdistribution of D⊥, which is easily seen to be integrable (by the
Jacobi identity). It’s obviously a fundamental feature of D⊥ (or indeed of any distribution). It is
perfectly possible, if the dimensions are right, for this distribution to reduce to the zero vector,
in which case ι∗ωL is symplectic: this should be an interesting class of constrained systems. The
so-called nonholonomic particle in 3 dimensions is an example.

Now C is a vector bundle, and so has associated with it tensor bundles of all types, which we
shall call C-tensor bundles. Let A be a symmetric type (0, 2) C-tensor. With respect to the local
basis of sections {Xα} of C, A has components Aαβ ; we can think of A as the corresponding
collection of functions on Q, with the transformation rule induced by that of a change of basis
for D. Then Aαβv

αvβ is a well-defined function on C. Let f be a function on Q. We seek the
conditions for ψ = Aαβv

αvβ + f to be a conserved quantity for Γ. The vector field Zψ ∈ D̃ from
Theorem 1 determined by ψ is easily seen to be given by

gαβ
(

X H̄

α (ψ)XV

β −XV

α (ψ)X H̄

β

)

,

so ψ is conserved if and only if

gαβ
(

X H̄

α (ψ)XV

β (EL) −XV

α (ψ)X H̄

β (EL)
)

= 0.

In the computation it helps to note that we can replace X H̄

α by XH

α since there are no occurrences
of va; XH

α (vβ) = −Γβ
αγv

γ on C; and XH

α (T ) = 0 where T is the kinetic energy. We obtain

(Xα(Aβγ) −AδγΓ δ
αβ −AβδΓ

δ
αγ)vαvβvγ +

(

Xα(f) − 2Aαβ(gradφ)β
)

vα = 0.

So the necessary and sufficient conditions for ψ = Aβγv
βvγ + f to be a constant are that

∇̄(αAβγ) = 0, Xα(f) = 2Aαβ(grad φ)β .

(We have used brackets around indices to denote symmetrization, so that for example T(ijk) are

the components of the symmetrized tensor derived from a tensor T , ie 1
6

∑

Tijk where the sum
is over all permutations of i, j and k. In view of the assumption that Aαβ is symmetric in its
indices, ∇̄(αAβγ) is in this case a constant multiple of the cyclic sum.)

This is a direct analogue of the corresponding result for the unconstrained system (see [10]).
That this is so is due to the fact that we are working with an anholonomic frame, to the choice
of frame, and to the use of the induced connection ∇̄.

The next question is what happens if A is actually the restriction of a tensor on Q? The answer
is easier to state if we assume that the tensor on Q is also symmetric, but this is not essential —
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all we require is that the restriction to D is symmetric. On the other hand, there is no significant
loss of generality in working with symmetric tensors. So let A be a symmetric type (0, 2) tensor
on Q. For the restriction to C of the function Aijv

ivj + f to be a conserved quantity for Γ
the components Aαβ of A must satisfy the conditions above. Since A is a tensor on Q we can
attempt to express those conditions in terms of ∇. Then the condition ∇̄(αAβγ) = 0 becomes

∇(αAβγ) +Aa(αΠa
βγ) = 0.

We are not forced to take Aa(αΠa
βγ) = 0, though it is obviously convenient if it holds. The

condition Xα(f) = 2Aαβ(grad φ)β is unchanged.

Finally, suppose that Aijv
ivj + f is a conserved quantity for the unconstrained system. Under

what conditions is it also a conserved quantity for the constrained system? From the assumption
that it is conserved for the unconstrained system we have

∇(iAjk) = 0, Xi(f) = 2Aij(grad φ)j .

From the first, in particular ∇(αAβγ) = 0, so we require in addition that Aa(αΠa
βγ) = 0. From the

second, Xα(f) = 2Aαβ(gradφ)β + 2Aαa(gradφ)a, so we require in addition that Aαa(gradφ)a =
0.

These results include and extend those of Iliev and Semerdzhiev [24, 25] on quadratic integrals.
It is easy to extend them also to constants of higher degree in v; however, this is the most
interesting case because of the interaction between f and φ. For higher degree constants of the
form Aαβ...δv

αvβ · · · vδ + f the conditions corresponding to the first set are

∇̄(αAβγ...) = 0, Xα(f) = 0, Aαβ...δ(grad φ)δ = 0.
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