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Abstract An overview is given to a new approach for

obtaining generalized Fourier transforms in the context

of hypercomplex analysis (or Clifford analysis). These

transforms are applicable to higher-dimensional signals

with several components and are different from the clas-

sical Fourier transform in that they mix the components

of the signal.

Subsequently, attention is focused on the special

case of the so-called Clifford-Fourier transform where

recently a lot of progress has been made. A fractional

version of this transform is introduced and a series ex-

pansion for its integral kernel is obtained. For the case

of dimension 2, also an explicit expression for the kernel

is given.

Keywords Hypercomplex analysis · fractional

transform · generalized Fourier transform · Clifford-

Fourier transform

1 Introduction

Recently, there has been an increasing interest in the

theory of hypercomplex signals (i.e. functions taking

values in a Clifford algebra, a generalization of the com-

plex numbers) and the possibility of defining and using

Fourier transforms (FTs) that interact with the Clif-

ford algebra structure. This has been investigated from

a practical engineering point of view (see e.g. [1–5]) but

also from a purely mathematical point of view (see e.g.
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[6–8]) using the function theory of Clifford analysis es-

tablished in a.o. [9,10]. Also in applications, there is a

lot of interest in having available a good hypercomplex

Fourier transform (e.g. in GIS research, see [11]).

In the context of this paper, a hypercomplex signal

is a function ofm real variables x1, . . . , xm taking values

in a Clifford algebra Cl0,m. This means that our signals

can equivalently be represented by a vector

[f1(x1, . . . , xm), . . . , f2m(x1, . . . , xm)]

with at most 2m components fi(x1, . . . , xm) which are

real-valued signals.

There are quite a few drawbacks to most of the ker-

nels proposed so far in the literature. First, several au-

thors work only in low dimensions (dimension 3 or 4,

enabling them to use quaternions instead of a full Clif-

ford algebra) which is usually because they have a spe-

cific application in mind in these dimensions (e.g. in

color image processing). Second, most authors use ad

hoc formulations for the kernel function of their trans-

forms, after which the properties of the related trans-

form are studied in detail. A notable exception is the

paper [12], where the authors give a general definition

of a hypercomplex FT, encompassing many of the pre-

vious definitions.

In recent work (see [13–17]) we have developed a dif-

ferent methodology: we start from a list of properties or

general mathematical principles we want a hypercom-

plex Fourier transform to have, and then determine all

kernels that satisfy these properties.

In the present paper, after a short introduction to

Clifford algebras and analysis, we give an overview of

the results obtained so far. In particular we devote

our attention to the so-called Clifford-Fourier transform

(as studied in [17,13]). Subsequently, we introduce a

new fractional version of the Clifford-Fourier transform
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(CFT). We determine a series expansion for its integral

kernel in all dimensions. When restricting to the case

of dimension 2, we are able to obtain an explicit ex-

pression for the kernel. In that special case, we can also

derive further properties of the fractional CFT.

2 Preliminaries

Clifford analysis (see e.g. [9,10]) is a theory that offers a

natural generalization of complex analysis to higher di-

mensions. To Rm, the Euclidean space in m dimensions,

we first associate the Clifford algebra Cl0,m, generated

by the canonical basis ei, i = 1, . . . ,m. These genera-

tors satisfy the multiplication rules eiej +ejei = −2δij .

The Clifford algebra Cl0,m can be decomposed as

Cl0,m = ⊕mk=0Clk0,m with Clk0,m the space of k-vectors

defined by

Clk0,m := span{ei1...ik = ei1 . . . eik , i1 < . . . < ik}.

More precisely, we have that the space of 1-vectors is

given by Cl10,m = span{ei, i = 1, . . . ,m}, a space obvi-

ously isomorphic with Rm. The space of so-called bivec-

tors is given explicitly by Cl20,m = span{eij = eiej , i <

j}.
We identify the point (x1, . . . , xm) in Rm with the

vector variable x given by x =
∑m
j=1 xjej . The Clifford

product of two vectors splits into a scalar part and a

bivector part:

xy = x.y + x ∧ y,

with

x.y := −〈x, y〉 = −
m∑
j=1

xjyj =
1

2
(xy + yx)

and

x ∧ y :=
∑
j<k

ejk(xjyk − xkyj) =
1

2
(xy − yx).

Note that the square of a vector variable x is scalar-

valued and equals the norm squared up to a minus sign:

x2 = −〈x, x〉 = −|x|2.

We also introduce a first order vector differential

operator by

∂x =

m∑
j=1

∂xjej .

This operator is the so-called Dirac operator. Its square

equals, up to a minus sign, the Laplace operator in Rm:

∂2x = −∆.

The Dirac operator ∂x acts on functions f taking

values in Cl0,m. Such functions can always be decom-

posed as

f(x) = f0(x) +

m∑
i=1

eifi(x)

+
∑
i<j

eiejfij(x) + . . .+ e1 . . . emf1...m(x)

with f0, fi, fij , . . . , f1...m all real-valued functions. As

f has in total 2m components (which equals the di-

mension of Cl0,m), this is the maximal number of com-

ponents of the signals that can be studied using the

transforms in the next section.

Finally, another important operator in Clifford anal-

ysis is the so-called Gamma operator, defined by

Γx = −x ∧ ∂x = −
∑
j<k

ejk(xj∂xk − xk∂xj ).

This operator is bivector-valued.

3 Overview of recent results

In the paper [13] we started our analysis from 4 differ-

ent, yet equivalent, definitions of the classical Fourier

transform in Rm. Each of these formulations allows

for generalization to hypercomplex FTs. We summa-

rize them briefly. The first and most basic formulation

is of course given by the integral transform

F1 F(f)(y) =
1

(2π)m/2

∫
Rm

e−i〈x,y〉 f(x) dx

with 〈x, y〉 the standard inner product and dx the Lebes-

gue measure on Rm. Alternatively, one can rewrite the

transform as

F2 F(f)(y) =
1

(2π)m/2

∫
Rm

K(x, y) f(x) dx

where K(x, y) is, up to a multiplicative constant, the

unique solution of the system of PDEs

∂yjK(x, y) = −ixjK(x, y), j = 1, . . . ,m.

Yet another formulation is given by

F3 F = e
iπm
4 e

iπ
4 (∆−|x|2)

with ∆ the Laplacian in Rm. This expression connects

the Fourier transform with the Lie algebra sl2 gener-

ated by ∆ and |x|2 and with the theory of the quantum
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harmonic oscillator. Finally, the kernel can also be ex-

pressed as an infinite series in terms of special functions

as

F4 K(x, y) = 2λΓ (λ)(|x||y|)−λ
∞∑
k=0

(k + λ)(−i)k

× Jk+λ(|x||y|) Cλk (〈ξ, η〉),
(1)

where ξ = x/|x|, η = y/|y| and λ = (m − 2)/2. Here,

Jν is the Bessel function and Cλk the Gegenbauer poly-

nomial.

Each formulation has its specific advantages and

uses. F1 immediately yields a bound of the kernel and is

hence ideal to study the transform on L1 spaces or more

general function spaces. F2 gives the calculus properties

of the transform. F3 emphasizes the structural (Lie al-

gebraic) properties of the Fourier transform and allows

to compute its eigenfunctions and spectrum. Finally,

F4 connects the Fourier transform with the theory of

special functions, and is the ideal formulation to obtain

e.g. the Bochner identities.

These 4 definitions serve as guidance in defining hy-

percomplex Fourier transforms, as each definition gives

access to a crucial piece of information about the trans-

form. A suitable hypercomplex transform should hence

be expressible in these 4 different ways.

So far, we have applied these ideas in 3 different

directions of hypercomplex FTs, namely

– k-vector Fourier transforms ([14])

– radially deformed Fourier transforms ([15,16])

– Clifford-Fourier transforms ([17,13]).

We briefly discuss the first 2 directions, after which

we focus on the Clifford-Fourier transform. k-vector

Fourier transforms are transforms with integral kernel

K(x, y) a k-vector valued function (i.e. taking values in

Clk0,m) which is moreover a solution to the system of

PDEs (compare with F2)

∂yK(x, y) = −iK(x, y)x. (2)

Contrary to the classical case, the system (2) does not

have a single unique solution but instead a whole family

of suitable solutions.

Radially deformed Fourier transforms are obtained

by adapting the formulation F3 of the classical Fourier

transform to

FD = ei
π
2 ( 1

2+
m−1

2(1+c) )e
−iπ

4(1+c)2
(D2−(1+c)2x2)

.

with

D = ∂x + c|x|−2x
m∑
j=1

xj∂xj ,

a radial deformation (depending on the numerical pa-

rameter c ∈ R) of the Dirac operator ∂x underlying the

Laplace operator. So far, for this class of transforms

also formulation F2 and F4 have been obtained, but

the question to find an explicit analytical expression

for its kernel (formulation F1) is extremely hard.

The situation is quite different for the Clifford-Fourier

transform (CFT), where by now an almost complete

treatment has been obtained. This transform was first

introduced in [18] and further studied in [19,20]. It

was initially also defined using a generalization of F3,

namely

F± = e
iπm
4 e∓

iπ
2 Γ e

iπ
4 (∆−|x|2) = e

iπm
4 e

iπ
4 (∆−|x|2∓2Γ )

with Γ the Gamma operator. The motivation behind

this definition was to find a couple of transforms F±
such that

F+F− = F−F+ = F2.

It turned out to be a difficult problem to find the other

formulations for this particular transform. A breakthrough

was recently obtained in [17]. As an analog of formula-

tion F4 the following result was obtained:

Theorem 1 The Clifford-Fourier transform

F− = e
iπm
4 e

iπ
2 Γ e

iπ
4 (∆−|x|2) is given by the integral trans-

form

1

(2π)m/2

∫
Rm

K−(x, y) f(x) dx

with integral kernel

K−(x, y) = Aλ +Bλ +
(
x ∧ y

)
Cλ

with

Aλ(w, z) = 2λ−1Γ (λ+ 1)z−λ
∞∑
k=0

(i2λ+2 + (−1)k)

× Jk+λ(z) Cλk (w),

Bλ(w, z) = − 2λ−1Γ (λ)z−λ
∞∑
k=0

(k + λ)(i2λ+2 − (−1)k)

× Jk+λ(z) Cλk (w),

Cλ(w, z) = − 2λΓ (λ+ 1)z−λ−1
∞∑
k=1

(i2λ+2 + (−1)k)

× Jk+λ(z) Cλ+1
k−1 (w),

where z = |x||y|, w = 〈ξ, η〉 and λ = (m− 2)/2.

Note that it can be computed that the kernelK+(x, y)

of F+ is given by K+(x, y) = K−(x,−y) where the bar

denotes complex conjugation.

Moreover, it was then possible to obtain formulation

F1 in the case where the dimension m is even.
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Theorem 2 The kernel of the Clifford-Fourier trans-

form in even dimension m > 2 is given by

K−(x, y) = ei
π
2 Γye−i〈x,y〉

= (−1)
m
2

(π
2

) 1
2
(
A∗(m−2)/2(s, t)

+B∗(m−2)/2(s, t) + (x ∧ y) C∗(m−2)/2(s, t)
)

where s = 〈x, y〉 and t = |x ∧ y| =
√
|x|2|y|2 − s2 and

A∗(m−2)/2(s, t) =

bm4 − 3
4c∑

`=0

sm/2−2−2`
1

2``!

×
Γ
(
m
2

)
Γ
(
m
2 − 2`− 1

) J̃(m−2`−3)/2(t),

B∗(m−2)/2(s, t) = −
bm4 − 1

2c∑
`=0

sm/2−1−2`
1

2``!

×
Γ
(
m
2

)
Γ
(
m
2 − 2`

) J̃(m−2`−3)/2(t),

C∗(m−2)/2(s, t) = −
bm4 − 1

2c∑
`=0

sm/2−1−2`
1

2``!

×
Γ
(
m
2

)
Γ
(
m
2 − 2`

) J̃(m−2`−1)/2(t)

with J̃α(t) = t−αJα(t).

Subsequently, in [13] we studied the formulation F2

for the CFT, which determines the kernel of this trans-

form as a solution of the following system of PDEs:

∂y[K+(x, y)] = (−i)m K−(x, y) x

[K+(x, y)]∂x = (−i)m y K−(x, y).
(3)

Indeed, it is e.g. easy to check that the result of The-

orem 2 satisfies (3). However, a new phenomenon ap-

pears here, as the solution given by Theorem 2 is not

the unique solution of the system (contrary to the case

of the ordinary Fourier transform or the Dunkl trans-

form, see [21]).

To obtain more insight in this phenomenon, we de-

termined all solutions of (3). In even dimension, these

are of the form

K−(x, y) = f(s, t) + (x ∧ y) g(s, t)

with s = 〈x, y〉, t = |x ∧ y| and f and g real-valued

functions. In this way, we aimed to find an explanation

for the precise form of the kernel given in Theorem 2.

As result, we obtained, as solutions of (3), a set of

m− 1 kernels

Kj
−,m(x, y), j = 0, . . . ,m− 2

that can be organized in a diagram as follows

m = 2 m = 4 m = 6 m = 8

K6
−,8

K4
−,6

55

// K5
−,8

K2
−,4

55

// K3
−,6

// K4
−,8

K0
−,2

55

))

// K1
−,4

// K2
−,6

// K3
−,8

K0
−,4

))

// K1
−,6

// K2
−,8

K0
−,6

))

// K1
−,8

K0
−,8

Here the arrows describe certain recursive relations (given

explicitly in [13]).

The middle line, namely the kernels K
(m−2)/2
−,m (x, y)

correspond to the kernels obtained in Theorem 2. The

other kernels yield new integral transforms that have

the same calculus properties as the original CFT but

with different spectrum. Of all these transforms, only

the transform given by Theorem 2 is unitary. We ob-

serve that with each step in the dimension, two new

kernels appear. In particular the kernels K0
−,m(x, y) on

the lower diagonal are interesting, as they give us the

Fourier-Bessel transform which was previously intro-

duced in [22] for different reasons.

For explicit formulas for the kernels Kj
−,m(x, y) we

refer the reader to formula (4.6) and Theorem 4.2 (where

series representations as in F4 are obtained) in [13].

Also in the odd dimensional case, we can solve the

system (3). The result can again be organized in a

scheme, similar to the one above in the even dimen-

sional case. Although the Fourier-Bessel kernel (in odd

dimension) again appears on the lower diagonal, the

Clifford-Fourier kernel can no longer be found in this

scheme. For details, we again refer to [13].

4 Fractional version of the Clifford-Fourier

transform

In this section, we show how a fractional version of the

CFT can be obtained. To that end, we adapt the defi-

nition F3

F± = e
iπm
4 e

iπ
4 (∆−|x|2∓2Γ )
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to

F±,α = e
iαm
2 e

iα
2 (∆−|x|2∓2Γ )

where α ∈] − π, π[ and α 6= 0. Notice that we have

immediately

F+,αF−,α = F2
α

with Fα = e
iαm
2 e

iα
2 (∆−|x|2) the fractional version of the

ordinary Fourier transform, given explicitly by (see [23])

Fα(f)(y) =
(
π(1− e−2iα)

)−m/2
×
∫
Rm

e−i〈x,y〉/ sinαe
i
2 (cotα)(|x|

2+|y|2)f(x)dx.

Our aim is to find an integral expression for F−,α:

F−,α(f)(y) =
(
π(1− e−2iα)

)−m/2
×
∫
Rm

K−,α(x, y) f(x) dx.

We compute formally

F−,α = e
iαm
2 e

iα
2 (∆−|x|2+2Γ )

= e
iαm
2 eiαΓ e

iα
2 (∆−|x|2)

=
(
π(1− e−2iα)

)−m/2
eiαΓy

×
∫
Rm

e−i〈x,y〉/ sinαe
i
2 (cotα)(|x|

2+|y|2)(.)dx

hence the kernel of the fractional CFT is given by

K−,α(x, y) = eiαΓy
(
e−i〈x,y〉/ sinαe

i
2 (cotα)(|x|

2+|y|2)
)

= e
i
2 (cotα)(|x|

2+|y|2)eiαΓy
(
e−i〈x,y〉/ sinα

)
where the last line follows because Γy commutes with

|y|. Now using the series expansion (1), the term

eiαΓy
(
e−i〈x,y〉/ sinα

)
can be computed. Indeed, we find

eiαΓy
(
e−i〈x,y〉/ sinα

)
= eiαΓyΓ (λ)

∞∑
k=0

2λ(k + λ)(i sinα)−k

× (|x||y|)kJ̃k+λ
( |x||y|

sinα

)
Cλk (〈ξ, η〉)

= Γ (λ)

∞∑
k=0

2λ(k + λ)(i sinα)−k

× J̃k+λ
( |x||y|

sinα

)
eiαΓy

(
(|x||y|)kCλk (〈ξ, η〉)

)
so we have reduced the problem to calculating

eiαΓy
(
(|x||y|)kCλk (〈ξ, η〉)

)
. This can be done in a man-

ner analogous to Lemma 3.1 in [17]. The result is given

in the following lemma.

Lemma 1 One has

eiαΓy (|x||y|)kCλk (〈ξ, η〉)

=
1

2

(
eiα(k+m−2) + e−iαk

)
(|x||y|)kCλk (〈ξ, η〉)

− λ

2(k + λ)

(
eiα(k+m−2) − e−iαk

)
(|x||y|)kCλk (〈ξ, η〉)

+
λ

k + λ
x ∧ y(eiα(k+m−2) − e−iαk)(|x||y|)k−1Cλ+1

k−1 (〈ξ, η〉).

Using this lemma and the previous computation,

we arrive at the following series representation for the

kernel of the fractional CFT.

Theorem 3 The fractional Clifford-Fourier transform

F−,α = e
iαm
2 e

iα
2 (∆−|x|2+2Γ ) is given explicitly by the

integral transform

(
π(1− e−2iα)

)−m/2 ∫
Rm

K−,α(x, y) f(x) dx

with kernel

K−,α(x, y) =
(
Aλ +Bλ +

(
x ∧ y

)
Cλ
)
e
i
2 (cotα)(|x|

2+|y|2)

with

Aλ(w, z̃) = − 2λ−1Γ (λ+ 1)z̃−λ
∞∑
k=0

i−k(eiα(k+2λ) − e−iαk)

× Jk+λ(z̃) Cλk (w),

Bλ(w, z̃) = 2λ−1Γ (λ)z̃−λ
∞∑
k=0

(k + λ)i−k(eiα(k+2λ) + e−iαk)

× Jk+λ(z̃) Cλk (w),

Cλ(w, z̃) =
2λΓ (λ+ 1)

sinα
z̃−λ−1

∞∑
k=1

i−k(eiα(k+2λ) − e−iαk)

× Jk+λ(z̃) Cλ+1
k−1 (w),

where z̃ = (|x||y|)/ sinα, w = 〈ξ, η〉 and λ = (m−2)/2.

In a similar way, one can obtain a series expansion

for the kernel K+,α(x, y).

Remark 1 A different type of a fractional hypercomplex

FT is studied in [24]. This transform is only defined over

the quaternions and not over a general Clifford algebra.

5 Kernel of the fractional CFT in dimension 2

In this section, we give an explicit construction of the

kernel K−,α(x, y) of the fractional CFT in dimension 2

(resulting in Theorem 4).
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The method we use is an adaptation of the one de-

signed in [19]. In this method, the following Clifford

numbers play a crucial role:

P± =
1

2
(1± ie12).

They are self-adjoint mutually orthogonal idempotents

which, by multiplication, transform e12 into the imagi-

nary unit i. Hence, they satisfy the following properties:

(i)

P++P− = 1; P+P− = P−P+ = 0; (P±)2 = P±

(ii) for k ∈ N:

P+(ie12)k = P+ or P+(e12)k = P+(−i)k; (4)

P−(ie12)k = (−1)kP− or P−(e12)k = P−ik. (5)

Proof See [20], Lemma 4.4, p. 123. ut

By means of P+ + P− = 1 and Γy = −e12L12 with

L12 = y1∂y2 − y2∂y1 the Euler angle, we now compute

that

eiαΓy
(
e−i〈x,y〉/ sinα

)
= P+e−iαe12L12

(
e−i〈x,y〉/ sinα

)
+ P−e−iαe12L12

(
e−i〈x,y〉/ sinα

)
.

(6)

Moreover, using property (4), we obtain

P+e−iαe12L12 = P+
∞∑
k=0

(−ie12)k

k!
(αL12)k

= P+
∞∑
k=0

(−1)k

k!
(αL12)k

= P+e−αL12

and similarly, using (5), we find

P−e−iαe12L12 = P−eαL12 .

Hence, equation (6) becomes

eiαΓy
(
e−i〈x,y〉/ sinα

)
= P+e−αL12

(
e−i〈x,y〉/ sinα

)
+ P−eαL12

(
e−i〈x,y〉/ sinα

)
.

(7)

We now prove the following intermediate result.

Lemma 2 Let f be a real-analytic function in R2, let

L12 = y1∂y2−y2∂y1 be the Euler angle, α ∈]−π, π[ and

let R±α be the operator exponential given by

R±α := e±αL12 .

Then one has

R±α [f(y1, y2)] = f(cosα y1∓sinα y2,± sinα y1+cosα y2).

Proof In terms of polar coordinates{
y1 = r cos θ

y2 = r sin θ

with r = |y| ∈ [0,+∞[ and θ ∈ [0, 2π[, the operator

exponential R+
α takes the form

R+
α,θ := eα∂θ .

We have

R+
α,θ[f(r, θ)] = R+

α,ψ[f(r, θ + ψ)]ψ=0

=

∞∑
k=0

1

k!
αk ∂kψ[f(r, θ + ψ)]ψ=0.

As we assume f to be real-analytic in R2, this becomes

R+
α,θ[f(r, θ)] = f(r, θ + α),

which leads to the desired result. The result for the

operator exponential R−α is proved in a similar way. ut

Applying the above lemma to equation (7) yields:

eiαΓy
(
e−i〈x,y〉/ sinα

)
= P+ e−

i
sinα (x1y1 cosα+x1y2 sinα−x2y1 sinα+x2y2 cosα)

+ P− e−
i

sinα (x1y1 cosα−x1y2 sinα+x2y1 sinα+x2y2 cosα)

= P+ e−i(x1y2−x2y1) e−i cotα〈x,y〉

+ P− e−i(x2y1−x1y2) e−i cotα〈x,y〉.

Next, by means of property (4), we have consecutively

P+ e−i(x1y2−x2y1) = P+
∞∑
k=0

(−i)k

k!
(x1y2 − x2y1)

k

= P+
∞∑
k=0

(e12)k

k!
(x1y2 − x2y1)

k

= P+e(x∧y)

because in dimension two one has x∧y := e12 (x1y2 − x2y1).

Similary, applying (5) we find

P− e−i(x2y1−x1y2) = P−e(x∧y).

Hence, we arrive at

eiαΓy
(
e−i〈x,y〉/ sinα

)
= (P+ + P−) e(x∧y) e−i cotα〈x,y〉

= e(x∧y) e−i cotα〈x,y〉.
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Finally, taking into account that

e(x∧y) =

∞∑
k=0

1

2k!
(−|x ∧ y|2)k

+ (x ∧ y)

∞∑
k=0

1

(2k + 1)!
(−|x ∧ y|2)k

=

∞∑
k=0

(−1)k

2k!
t2k +

(x ∧ y)

t

∞∑
k=0

(−1)k

(2k + 1)!
t2k+1

= cos t+
(x ∧ y)

t
sin t,

with t = |x ∧ y| =
√
|x|2|y|2 − 〈x, y〉2 = |x1y2 − x2y1|,

we can summarize our result in the following Theorem.

Theorem 4 (Fractional Clifford-Fourier kernel,

m = 2) The kernel of the fractional Clifford-Fourier

transform is given by

K−,α(x, y) = e
i
2 (cotα)(|x|

2+|y|2)eiαΓy
(
e−i〈x,y〉/ sinα

)
=

(
cos t+

(
x ∧ y

) sin t

t

)
× e−i〈x,y〉 cotαe i2 (cotα)(|x|

2+|y|2)

with t = |x ∧ y| =
√
|x|2|y|2 − 〈x, y〉2.

Let us now discuss some properties of the two-dimen-

sional fractional CFT. First we note that the kernel can

be written explicitly as

K−,α(x, y) =

(
cos t+ e1e2(x1y2 − x2y1)

sin t

t

)
× e−i〈x,y〉 cotαe i2 (cotα)(|x|

2+|y|2).

Both the scalar component and the component of e1e2
are clearly bounded, as∣∣∣∣(x1y2 − x2y1)

sin t

t

∣∣∣∣ ≤ | sin t| ≤ 1.

Hence the resulting integral transform(
π(1− e−2iα)

)−1 ∫
R2

K−,α(x, y) f(x) dx

is well-defined on L1(R2)⊗ Cl0,2, the space of L1 func-

tions taking values in the Clifford algebra associated

with R2.

If one computes the kernel K+,α(x, y), one finds

K+,α(x, y) =

(
cos t−

(
x ∧ y

) sin t

t

)
× e−i〈x,y〉 cotαe i2 (cotα)(|x|

2+|y|2).

Both transforms F±,α now satisfy nice calculus proper-

ties. They are given in the following theorem.

Theorem 5 Let f ∈ S(R2)⊗ Cl0,2. Then

F+,α

(
(x cosα− i sinα∂x) f

)
= e−iαyF−,α (f) ,

F+,α

(
(cosα∂x − ix sinα)f

)
= e−iα∂yF−,α (f) .

Proof Using the explicit expressions for the kernels

K±,α(x, y) we can compute that the following identities

hold:

e−iαyK−,α(x, y) = K+,α(x, y)(i sinα ∂x + cosα x),

e−iα∂yK−,α(x, y) = −K+,α(x, y)(i sinα x+ cosα ∂x).

In these formulas, the Dirac operator ∂x is acting from

the right on K+,α as

(K+,α) ∂x :=

2∑
j=1

(
∂xjK+,α

)
ej .

Because the kernel is bounded, we can now apply

integration by parts. This yields the formulas stated in

the theorem. ut

Finding an explicit analytic expression (as in F1)

for the kernel of the fractional CFT in all dimensions is

again a difficult problem. Hence we postpone its deter-

mination to a subsequent publication.

6 Conclusion

In this paper we have given an overview of a new ap-

proach in the design of hypercomplex FTs. We have put

special emphasis on the Clifford-Fourier transform, as

the canonical example in this line of research.

Moreover, we have defined a fractional version of

the CFT and have determined a series expansion for its

integral kernel. In the special case of dimension 2, we

have even obtained explicit formulas and we were able

to prove the calculus properties of the transform.

In future publications, we aim to study the frac-

tional CFT in higher dimensions. Also the question of

how to define convolution and translation for this new

transform will be tackled.
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