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Abstract

It is well known that the smallest split Cayley generalized hexagon H(2) can
be embedded into the symplectic space W (5,2), or equivalently, into the parabolic
quadric Q(6,2). We establish a second way to embed H(2) into the same space
and describe a computer proof of the fact that these are essentially the only two
embeddings of this type.

1 Introduction

The split Cayley generalized hexagon H(K) over a field K is usually described as a point—
line geometry embedded into the parabolic quadric Q of type Q(6, K) with quadratic form
given by

Q(z) = z124 + Tox5 + T3T6 — T, (1)

and associated bilinear form

B(z,y) o Qx+y) —Qx) — Q(Y) = T1Ys + Tays + T3Ys + Talr + TsY2 + Teys — 227y7. (2)

The points of H(K') are exactly the points of Q, i.e., the points of the projective space
PG(6, K) whose coordinates satisfy Q(x) = 0. The lines of H(K) are the lines of Q whose
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Grassmann coordinates satisfy the following simple linear equations :

Pe2 = P17, P13 = P72, P24 = P37, P35 = P74, Pa6 = P57, P51 = P76, (3)
D14 + P25 + p3g = 0,

(see for instance [3, Section 3.5]), where, as customary, p;; o x;y; — x;; for the line joining
the points with coordinates x and .

Points that are at maximal distance in the collinearity graph of H(K) are called opposite.
The points represented by x and y in Q are opposite if and only if B(z,y) # 0. In Q, two
points = and y lie on the same line if and only if B(z,y) = 0. It follows that points of
H(K) are not opposite if and only if they are collinear in Q. The set of points collinear to
x in Q is denoted by z=.

An embedding of a point-line geometry A into a point-line geometry B is an injective map
¢ preserving incidence which maps the points of A onto a subset of the points of B and
the lines of A into a subset of the lines of B. If ¢ is an embedding of A into B, then so is
¢ = oapop, where o4 (resp. op) is an automorphism of the geometry A (resp. B). Any
¢’ of this form is considered equivalent to .

The representation of the hexagon H(K') given above satisfies this definition of an embed-
ding into Q. We shall call this the classical embedding of the split Cayley hexagon, and
denote it by ¢¢.

It is natural to think that ¢¢ is essentially the only way to embed H(K) into Q, in other
words, that all other embeddings of H(K) into Q are necessarily equivalent to ¢¢. In
this paper we will show that, at least when K is the field GF(2) of two elements, this is
not true. In Section 2 we will establish an embedding ¢g of H(2) into Q (called the skew
embedding) which is not equivalent to .

When charK = 2, we may project the points of Q onto PG(5, K') by dropping the coor-
dinate z7. When K is perfect, i.e., when every element of K is a square (e.g., when K is
finite), this projection is a bijection, with inverse operation

(931, . ,ZL‘G) — (ZBl, ..., Tg, \/9311'2 + T34 + $5$6).
Lines of @ map to lines of PG(2,5) that satisfy

0 = pra + pos + pos(= 1y + T2Ys + T3Ys + Tay1 + T5y2 + Teys),

i.e., lines of the symplectic space W (5, K). The symplectic form on this space is the
essentially the same as the bilinear form on Q (and we will use the same notation) :

B(z,y) = x1Ys + T2ys + T3ys + TaY1 + TsYa + TeYs-
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As a consequence, when charK = 2, there is a one-to-one correspondence between the
embeddings of H(K) into Q and the embeddings of H(K) into W (5, K). In this paper it
will sometimes be more convenient to consider the latter type of embedding, which we will
call a symplectic embedding.

In Section 3 we describe a computer algorithm which can be used to find all embeddings
of H(2) into W(5,2). It turns out that, apart from the classical embedding and the skew
embedding, no other embeddings of this type exist.

It is well known that H(2) has a universal embedding ¢y into PG(13,2). This embedding
has the property that every other embedding of H(2) into any projective space over the same
field (hence also ¢ and ¢g) can be obtained by first applying ¢y and then projecting the
result onto a smaller projective subspace. Thas and Van Maldeghem [2] give an elegant
description of ¢y and also classify the homogeneous embeddings of H(2), i.e., those for
which all automorphisms of the geometry are represented by projectivities of the space
into which it is embedded. (¢ is homogeneous, but g is not.)

In principle, the symplectic embeddings of H(2) could be enumerated by considering all
possible projections of ¢y into a projective space of dimension 6 and then checking whether
the resulting points and lines lie on a parabolic quadric of type Q(2,6). However, even for
modern computers, the number of projections to consider is much too large to make this
a feasible project.

2 The skew embedding of H(2)

In what follows we shall restrict ourselves to the field K = GF(2). Note that in this case
k* = k for all k € K. Also the projective space PG(5,2) is essentially the same as the
6-dimensional space over GF(2) without the zero vector. Henceforth we shall abbreviate

H(2) to H.

Theorem 1 The coordinate map
€:(x1,...,x7) = (1 + 26+ f5(x), 20 + 23 + fu(T), 23, 4, X5, T, T7) (4)

with ot .
e de
fa(z) = 2325 + 27704, f5(7) = T4706 + T7T5, (5)

establishes an embedding g o wce of H into Q.



Proof : Note that e only changes the first two coordinates of x and that these coordinates
do not occur in the expression for fi(z) and f5(x). As a consequence €2 is the identity
map, and hence € is a bijection.

Let x denote a point of Q. We have

= (1 + 26+ fo(x))ra + (22 + 23 + fa(2))25 + 2326 + 22
= X1T4 + TyXe + .T4(334£L’6 + 237.2135) + ZoZ5 + T3T5 + 335(333.T5 + $7.T4) + r3x6 + x? (6)
= z124 + (14 + 2326 + T4T5T7 + D5 + (75 + 12) X3 + TYT5T7 + X376 + T

T1Ty + ToTs + 1376 + T2 = Q(z).

This proves that € maps points of Q onto points of Q, and hence that g maps points of
‘H onto points of Q.

Because € is not linear, it does not necessarily map all lines of Q onto lines. However, at
least the lines of H are mapped onto lines of Q. Indeed, let {x,y,x + y} denote the image
by ¢ of a line of H. In terms of coordinates, we find

(@ +y) —a" =y
(fs(x+y) — fs(x) = f5(y), falz +y) — fa(z) — fu(y),0,0,0,0,0)
(T3ys + T7ya + Y375 + YrTa, Tays + T7Ys + YaTe + Y725, 0,0,0,0,0)
= (p3s + P74, pas + p75,0,0,0,0,0)

and this is zero, by (3). It follows that {z¢, ¥, (z + y)} is a line of Q and hence that also
g maps lines of H onto lines of Q. "

As was already indicated in the introduction, the embedding pg will be called the skew
embedding of H into Q.

We denote the set of points of H that are not opposite to a given point a of H by S(a).
If ¢ is an embedding of H into Q, then we call a point a of ‘H classical with respect to
¢ if and only if p(S(a)) = ¢(a)*. Note that for ¢ every point is classical (whence the
terminology).

Theorem 2 There are exactly 3 points of H which are classical with respect to pg. These
points form a line of H.

Proof :  Let a be a point of H. Then S(a) consists of those points b of H for which
B(pc(a), pc(b)) = 0. Writing z = ¢g(a), y = pg(b), and using the fact that €? is the
identity (from the proof of Theorem 1), this is equivalent to B(z¢,y¢) = 0. On the other
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hand, the set of points for which pg(b) € pg(a)t are exactly those that satisfy B(z,y) = 0.
Hence a is classical with respect to ¢g if and only if B(z, y¢) and B(z,y) are zero for
exactly the same values of y, or equivalently (as B(x,y) must either be equal to 0 or 1),
for which B(z¢,y°) = B(z,y). We shall investigate what conditions need to be satisfied by
x for this to be true for all values of y that correspond to points of H.

We have

B(Ievye) - B(ZL‘,y)

_ (m o))+ (5 + Fo(@))s + (06 + Fo@))as+ (s + fil)rs

and this is zero for all ¥y when x3 = x4 = x5 = 24 = 0.

To prove the converse, we first restrict ourselves to the case y4, = y5 = 0 (and hence
f1(y) = f5(y) = 0). In that case (7) reduces to

B(xf,y°) — B(z,y) = yeTa + Y325,

which is identically zero for all possible values of yg, y3 only if x4 = x5 = 0. Hence a can
be classical for ¢g only if z4 = x5 = 0. (Note that to every quadruple ys, y4,ys, yg there
correspond several points of H.)

Taking this into account (7) now reduces to
B(z,y°) — B(z,y) = yawe + Y573,
for general y. It follows that also x3 = x4 = 0 if a is to be classical.
The points of Q satisfying x3 = x4 = x5 = x¢ have coordinates
(1,0,0,0,0,0,0), (0,1,0,0,0,0,0), (1,1,0,0,0,0,0)
and it is easily verified that they form the image of a line of the hexagon through ¢pg. =

The line in the statement of the theorem above will be called the azis of pg.

3 There are no other embeddings

To find out whether apart from ¢ and ¢g there exist any other embeddings of H into Q,
we had to resort to the computer. Below we shall describe the algorithm which we have
used. It turned out to be more convenient to enumerate the (symplectic) embeddings of
H into W (5,2) instead of Q.



In what follows, let ¢ denote any embedding of H into W (5,2). A set S of points of H is
called a geometric hyperplane of H if and only if every line of H either has all of its points
in 9, or intersects S in exactly one point.

Lemma 3 Leta,b € H. Let H(a) denote the set of points b of H such that B(y(a), (b)) =
0 in W(5,2). Then

1. H(a) is a geometric hyperplane of H,
|H(a) =31,

|H(a) N H(b)| = 15, when a # b,

a € H(a),

if a,b are collinear in H, then b € H(a),

S & e

a € H(b) if and only if b € H(a).
Proof : By definition H(a) is the image through ¢! of p(a)t. Note that xt is a
hyperplane of W(5,2) for all x # 0.

1. Every hyperplane of W(5,2) is a geometric hyperplane. As ¢ maps lines of H to lines
of W(5,2) and preserves incidence, it follows that also H(a) is a geometric hyperplane.

2. A hyperplane of W (5,2) contains exactly 31 points.

3. Two different hyperplanes in W(5,2) intersect in 15 points. It is therefore sufficient
to prove that H(a) # H(b) when a # b. In W(5,2) the point z is the only point that is
collinear with all points of x*, hence 2+ = y* if and only if z = v, and the statement
follows.

4. We have B(z,z) = 0 and hence x € x* for every point x of W (5,2).

5. Because ¢ is an embedding, two collinear points of ‘H are mapped to collinear points of
W (5,2). In W (5,2) two points x,y are collinear precisely if they are conjugate, and hence
the statement follows.

6. We have B(z,y) = B(y,r) and hence z € y= if and only if y € 2. .

Note that H(a) and S(a) coincide if and only if a is classical with respect to ¢.



The algorithm we used essentially generates all functions H that satisfy Lemma 3.

First we generate all geometric hyperplanes of H. For this we have used the universal
embedding of H in PG(13,2), because in that embedding the hyperplanes and the geometric
hyperplanes coincide [1]. There are 2'* — 1 = 16383 hyperplanes in PG(13,2), a number
that can easily be managed by computer.

Of these geometric hyperplanes we are only interested in those that contain exactly 31
points of the hexagon. There turn out to be 3591 geometric hyperplanes of this type.
(This number is also listed in [1].) For each point a of the hexagon there are exactly 175
geometric hyperplanes that contain a and all points collinear to a.

Using a simple backtracking algorithm we assign to each point a of the hexagon a candidate
geometric hyperplane H (a) from this list of 175, making sure that all constraints of Lemma
3 are satisfied. It takes the computer about one minute to come up with the final answer,
which turns out to be a list of 64 possible functions H.

Because we did not make any provisions in the algorithm for isomorph-free generation,
several of these functions H may correspond to the same embedding. In fact, by applying
a suitable automorphism o of H, we may obtain a skew embedding opg with any of the
lines of H as an axis. These account for 63 of the 64 functions H found (the automorphism
group of H acts transitively on its 63 lines). The remaining function H then corresponds
to the classical embedding ¢ (for which H = 5).

Hence, every embedding of H into W (5,2) is equivalent to either p¢ or pg.
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