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Abstract

A full classification (up to equivalence) of all complete k-arcs in the De-
sarguesian projective planes of order 27 and 29 was obtained by computer.
The resulting numbers of complete arcs are tabulated according to size of the
arc and type of the automorphism group, and also according to the type of
algebraic curve into which they can be embedded. For the arcs with the larger
automorphism groups, explicit descriptions are given.

The algorithm used for generating the arcs is an application of isomorph-
free backtracking using canonical augmentation, an adaptation of an earlier
algorithm by the authors.

Part of the computer results can be generalized to other values of q: two
families of arcs are presented (of size 12 and size 18) for which the symmetric
group S4 is a group of automorphisms.

1 Introduction

Consider the Desarguesian projective plane PG(2, K) over a field K. Let k be a
positive integer. A k-arc of PG(2, K) is defined to be a set of k points of the plane
no three of which are collinear.

We shall be interested in the case where K is the finite field of q elements, and write
PG(2, q) = PG(2, K) as customary. In that case it is easily seen that k cannot be
larger than q + 2. For every even q examples of (q + 2)-arcs are known. When q
is odd, it can be proved that (q + 2)-arcs do not exist. However, every conic is a
(q+ 1)-arc, and a well-known theorem of Segre proves that also the converse is true
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when q is odd. For further information on the geometrical properties of k-arcs we
refer to [9].

The subject of k-arcs is not only of interest in its purely geometrical setting. Arcs
have applications in coding theory, where they can be interpreted as linear maximum
distance separable (MDS) codes, and they are related to superregular matrices (i.e.,
matrices with entries in K where every minor is non-zero), to linearly independent
sets of vectors in vector spaces over K and to optimal covering arrays.

A k-arc is called complete if and only if it is not contained in a (k + 1)-arc. Two k-
arcs are called PΓL-equivalent if there exists a collineation of PΓL(3, q) mapping one
of them to the other one. If there also exists a collineation of PGL(3, q) mapping
one arc to the other one, then the arcs will be called PGL-equivalent. In this
paper, we are interested in the finite fields of order q = 27 and q = 29. We have
[PΓL(3, 27) : PGL(3, 27)] = 3 and PΓL(3, 29) = PGL(3, 29).

Many attempts have been made to determine all complete k-arcs in PG(2, q) up
to equivalence. For all but the smallest q this is infeasible without the use of a
computer. Full classifications for q ≤ 25 have been known for some time, a survey
for q ≤ 19 can be found in [6]. In [4], we presented a full classification of the complete
arcs in PG(2, 23) and PG(2, 25).

Marcugini et al. [14] found the spectrum of all complete ars in PG(2, 27) (i.e., the
list of values k for which a complete k-arc exists). They also found that in PG(2, 29)
no arc of size k < 13 exists. G. Kéri [10] has obtained a classification of all arcs of
size k ≥ q − 8 for values of q up to 32, in the context of MDS codes. Our results
agree with the partial results of [10]. This article finishes the full classification of all
complete k-arcs in PG(2, 27) and PG(2, 29). As far as we know, we are the first to
do this.

The algorithm we used is that of [4] with some small (but significant) adaptations
(cf. Section 2). The same method can also be used to classify the full set of arcs,
i.e., not necessarily only those that are complete, and in that case we also think we
are the first to obtain a full classification for q = 27 and q = 29 (cf. Section 6).

One of the purposes of doing a computer classification of this type is to gain further
insight into the general class of objects under investigation. In our case we hope to
find patterns in the vast amount of data, which may for instance allow us, or other
researchers, to derive new general constructions of arcs that also work for larger
fields. Using our results, we already managed to discover two (general) types of arc
with the symmetric group S4 as a group of automorphisms. These two types are
described in Section 3.

Most well-known constructions produce arcs that have an interesting (and often
large) automorphism group. For this reason we have computed the automorphism
groups of all complete arcs (cf. Tables 1 and 3). We have also studied the arcs with
the larger automorphism groups in more detail, in order to describe them in a more
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elegant way than by just listing the coordinates of their points. (See Section 4 for
q = 27 and Section 5 for q = 29.)

Sometimes general families of arcs can be described as special subsets of cubic curves
or pairs of conics. For this reason we have also computed for each arc the type of
algebraic curve of lowest degree into which it can be embedded (cf. Tables 2 and 4).

Our programs, which were written in Java, were run on a Debian Linux system with
two quad core Intel Xeon X5355 2.66GHz processors (for q = 27) and on a cluster of
Debian Linux systems with 56 quad core Intel Xeon X3220 2.40GHz processors (for
q = 29). The generation of all complete arcs of PG(2, 27) up to equivalence takes
approximately 33 days of CPU time. For q = 29 it took approximately 1870 days
(five years) of CPU time. To store the results (in compressed form) we need about
130GByte of disk space.

We estimate that for the next case (q = 31) the same algorithm would need about
110 000 days (three centuries) and 9000 GByte of storage. This might be just feasible
on a large cluster if the program were rewritten in C (which is still faster than Java
for this type of application).

2 The algorithm

For the generation of the (complete) k-arcs up to equivalence in PG(2, 23) and
PG(2, 25), we used an application of isomorph-free generation using canonical aug-
mentation, as introduced by B. McKay [15], which we adapted to the special case
of k-arcs in Desarguesian projective planes [4].

The basic idea behind this generation algorithm is the use of a function F wich
singles out a special orbit in the set of all orbits of the stabilizer of the arc S on
the points of S, and which is group invariant. Arcs of size k + 1 are then generated
from arcs of size k by adding a single point s to an arc S but only in those cases
where s belongs to the special orbit F (S ∪{s}) of the generated arc. Computations
are speeded up by making careful use of a special point invariant, a function IS
that associates an integer IS(p) to every point p of the arc S, in such a way that
IS(p) = IS(p′) whenever p and p′ are in the same orbit of the stabilizer group of the
arc.

In [4] we used two variants of the same algorithm. One variant makes use of the
set stabilizer of the partial arc which we obtain, the other does not, but requires
further checks to make sure that no two isomorphic arcs are ever generated. In the
first algorithm, the set stabilizer of the arc has to be recomputed for every iteration,
a non-trivial task.

However, in some cases too much work was done. Indeed, whenever ΓS is trivial,
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and the point s has a unique value of IS(s), then also ΓS′ must be trivial (with
S ′ = S ∪ {s}), and therefore there is no need to compute ΓS′ explicitly. Also, when
a sufficient number of points of S have a value of IS that is unique (five points when
q = 27, four when q = 29), this again implies that ΓS is trivial.

Because we compute the values of IS in the course of the algorithm anyway, these
extra checks allow us to make some simple shortcuts. Note that a trivial stabilizer
group implies trivial orbits, making it easy to ensure that we select not more than
one point for each orbit, a crucial step in the algorithm. Moreover, it turns out that
almost all arcs that are encountered have a trivial automorphism group.

This idea is essentially a toned down version of a similar technique Brinkmann and
McKay used for generating posets up to isomorphism [1].

For the case q = 27 we made an additional change to the algorithm. In [4] generation
was done using PGL-equivalence, as this was easier to program. Since then we have
expanded the program to also use PΓL-equivalence. If the stabilizer group GS of the
arc S in PGL(3, q) is the same as the stabilizer group ΓS of S in PΓL(3, q), then an
orbit of PΓL(3, q) is the union of multiple orbits of PGL(3, q) (see also Section 4).
This means that fewer arcs need to be considered during the course of the algorithm
when using PΓL-equivalence, making the program significantly faster.

Note however that the program is still fast enough without the latter modification
(it then takes approximately 100 days of CPU time instead of 33). We ran both
versions of the program, and the fact that for each k they resulted in the same
number of PGL-equivalent arcs is an additional indication that our programs work
correctly.

We have also run a consistency check based on the principle of ‘double counting’,
somewhat similar to the method used by Österg̊ard and Pottonen in their generation
of perfect binary one-error-correcting codes [16].

Let Ak denote the number of pairs (S, p) where S is an arc of size k and p is a
point of S. We shall count Ak in two different ways. Clearly, Ak is k times the total
number of arcs of size k. By the orbit-stabilizer theorem, we have

Ak = k
∑
S∈Sk

|Γ|
|ΓS|

,

where Sk contains one representative for each equivalence class of arcs of size k.

We can also compute Ak in a different way, by counting all pairs (T, p) where S =
T ∪ {p}. This yields

Ak =
∑

T∈Sk−1

n(T )
|Γ|
|ΓT |

,

where n(T ) denotes the number of points of the plane that can be added to T to
create a new arc. Both formulas should yield the same result.
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In order to compute the values of these formulas, we need to know the size of the
stablizer group ΓS and the number n(S) for each arc S generated by our program.
These are not so difficult to compute.

Both formulas did indeed yield the same results. For q = 27, the values of Ak/k (i.e.
the total number of flags of that size) are the following :

k Ak/k k Ak/k k Ak/k
4 3917052594 13 1169034571740840255360 22 1808559140544
5 470046311280 14 691584387197093703612 23 470046311280
6 39718913303160 15 133307342955312766344 24 97926314850
7 2299990320671472 16 6989572944968438916 25 15668210376
8 87525520660097676 17 81563752062977184 26 1807870428
9 2071641098183444424 18 323122891215852 27 133916328

10 28492327671983422884 19 43797870737712 28 4782726
11 209860860998677307328 20 16416367421454
12 751659456980684459844 21 5810667733728

We ran the same test for all smaller values of q. For q = 29 this would have taken
too long (two or three years of CPU-time).

3 Some arcs with automorphism group S4

Before we proceed to the specific results for the cases q = 27, 29, we shall first
describe two types of arc that we discovered as a result of the computer searches
and that also exist for values of q other than 27 or 29. There are two types of arc,
one of size 12 and one of size 18. Both accept the symmetric group S4 as a group
of automorphisms.

The arc of size 12 was already discovered by Marcugini et al. [14], for the special
case q = 27 (see also Section 4.2). However, they did not provide a description for
general q.

Theorem 1 Let a ∈ GF(q), q odd. Let S∗(a) denote the set of points of PG(2, q)
with coordinates of the form (a,±1,±1), (±1, a,±1) or (±1,±1, a), with independent
choices of sign.

Then S∗(a) (= S∗(−a)) is a 12-arc of PG(2, q) if and only if

a /∈ {0,±1,±2,±
√
−1,±

√
−3,

1

2
(±1±

√
−7)}. (1)

If these conditions hold, then

• If a2 = −2, the points of S∗(a) lie on the conic C with equation

C : x2
0 + x2

1 + x2
2 = 0,
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• Otherwise, S∗(a) is the disjoint union of three sets C0∩C1, C1∩C2, C2∩C0 of
size 4 which are the pairwise intersections of the three conics C0, C1, C2 with
equations

C0 : (a2 + 1)x2
0 = x2

1 + x2
2,

C1 : (a2 + 1)x2
1 = x2

2 + x2
0,

C2 : (a2 + 1)x2
2 = x2

0 + x2
1.

Proof : We leave it to the reader to verify that |S∗(a)| = 12 if and only if a 6= 0, 1
or −1.

We first consider the case a2 = −1. Note that in that case the four points with
coordinates (a, 1,±1) and (−1, a,±1) lie on the line with equation x0 = ax1, and
then S∗(a) is not an arc.

If a2 6= −1, the conics C0, C1, C2 are nondegenerate. It is easily seen that any point
with coordinates of the form (a,±1,±1) lies on the conic C1 and C2. Similarly
(±1, a,±1) ∈ C2 ∩ C0 and (±1,±1, a) ∈ C0 ∩ C1. It also follows that C0 ∩ C1 ∩ C2

will be nonempty if and only if a2 = 1 or a2 = −2. In the first case |S∗(a)| < 12, in
the second case we have C0 = C1 = C2 = C.

Because different (nondegenerate) conics can intersect in at most 4 points, this
proves our claim that S∗(a) is the disjoint union of these three intersections, when
(1) holds and a2 6= −2.

The set S∗(a) is not an arc if and only if there exist three different points of S∗(a) that
are collinear. Note that for any pair of points in S∗(a) there is a conic Ci, i = 0, 1, 2
that contains this pair. Because conics are arcs, a third point of S∗(a) collinear to
this pair cannot lie on that same conic. It follows that any collinear triple must
consist of one point with coordinates of the form (a,±1,±1), one with coordinates
of the form (±1, a,±1) and one with coordinates of the form (±1,±1, a).

In other words, S∗(a) is not an arc if and only if∣∣∣∣∣∣∣
a ±1 ±1
±1 a ±1
±1 ±1 a

∣∣∣∣∣∣∣ = 0,

for at least one of the 64 different sign combinations in this determinant.

By multiplying the second and third rows and columns of this determinant by −1
if necessary, we may reduce this condition to∣∣∣∣∣∣∣

a 1 1
1 ±a ±1
1 ±1 ±a

∣∣∣∣∣∣∣ = 0,
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which, after multiplying the second and third row by a and subtracting the first
row, reduces to

(1± a2)(1± a2) = (1± a)(1± a),

with 16 different combinations of signs. Note however that the left hand side of this
equation can only take three different values and the same holds for right hand side.
This leaves us 9 conditions in all. The following table lists the 9 differences between
the possible values of the left hand sides (rows) and right hand sides (columns):

(1 + a)2 (1− a)2 1− a2

(1 + a2)2 a(a− 1)(a2 + a+ 2) a(a+ 1)(a2 − a+ 2) a2(a2 + 3)
(1− a2)2 a(a− 2)(a+ 1)2 a(a+ 2)(a− 1)2 a2(a− 1)(a+ 1)

1− a4 −a(a+ 1)(a2 − a+ 2) −a(a− 1)(a2 + a+ 2) −a2(a− 1)(a+ 1)

(Note that the second column can be obtained from the first by substituting −a for
a. This is a consequence of the fact that S∗(a) = S∗(−a).)

The set S∗(a) is not an arc if and only if any of the 9 entries in this table becomes
zero, or equivalently, if and only if at least one of the factors of one of these entries
becomes zero. These factors are

a, a− 1, a+ 1, a− 2, a+ 2, a2 + 3, a2 − a+ 2, a2 + a+ 2,

whence the values of a listed in (1).

Clearly any permutation of the three coordinates fixes S∗(a). Also, changing the
sign of one or more of the coordinates fixes S∗(a). The group generated by these
transformations is therefore a group of automorphisms of S∗(a). This group is
isomorphic to the symmetric group S4.

The arc S∗(a) is the same as the arc S(2/a) which was already described in [4,
Proposition 3] (the three conics C0, C1, C2 were however not mentioned there). In
that paper a different representation is used: the arc is embedded in the hyper-
plane of PG(3, q) with equation x0 + x1 + x2 + x3 = 0 and consists of the points
whose coordinates are the permutations of (a, a,−a − 2,−a + 2). The group S4 of
automorphisms acts on this representation by permuting the four coordinates.

In general the arc S∗(a) is not complete. The following theorem shows that for
q = 1 mod 4 and for certain values of a, (at least) six additional points can be
added.

Theorem 2 Let q = 1 mod 4. Let a, i ∈ GF(q), such that i2 = −1. Let S∗(a) be
defined as in Theorem 1. Let I denote the set of six points whose coordinates are
permutations of (1, i, 0). (I is a subset of the conic C : x2

0 + x2
1 + x2

2 = 0.)

Then S∗(a) ∪ I is an 18-arc of PG(2, q) if and only if

a /∈ {0,±1,±2,±i,±2i,±i
√

3,±i± 1,
1

2
(±1± i

√
7),

1

2
(±i±

√
−5± 4i)}. (2)
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Proof : For S∗(a)∪I to be an arc S∗(a) must be an arc, and therefore all conditions
of Theorem 1 must be fullfilled. Also I must be an arc, but this is trivially true, as
I is a subset of a conic.

Therefore, if S∗(a) is an arc then S∗(a)∪ I will not be an arc if and only it contains
a collinear triple that intersects both S∗(a) and I.

Because of the automorphisms of S∗(a) we may without loss of generality assume
that the collinear triple contains the point P with coordinates (a, 1, 1). The following
table lists all lines through P and through one of the points Q1, . . . , Q6 of I.

Q1 = (1, i, 0) x0 + ix1 − (a+ i)x2 = 0
Q2 = (1,−i, 0) x0 − ix1 − (a− i)x2 = 0
Q3 = (1, 0, i) x0 − (a+ i)x1 + ix2 = 0
Q4 = (1, 0,−i) x0 − (a− i)x1 − ix2 = 0
Q5 = (0, 1, i) (i− 1)x0 − aix1 + ax2 = 0
Q6 = (0, 1,−i) (−i− 1)x0 + aix1 + ax2 = 0

Note that the equation for Q2 can be obtained from that for Q1 by substituing −i
for i. The equations for Q3 and Q4 then result from interchanging x1 and x2.

We shall denote the equation for the line PQj as fj(x0, x1, x2) = 0, j = 1, . . . , 6.
For ease of computation we introduce the products

f1f2 = (x0 − ax2)2 + (x1 − x2)2,

f3f4 = (x0 − ax1)2 + (x1 − x2)2,

f5f6 = (x0 − ax1)2 + (x0 − ax2)2.

To check whether S∗(a) ∪ I is an arc, we need to check whether any of the points
(x0, x1, x2) of S∗(a) ∪ I yields a value zero for any of the linear functions fj. This
is equivalent to checking whether any of the products f1f2, f3f4, f5f6 yields a zero
value. Moreover, because of symmetry, we need not check (x0, x2, x1) when we
have already checked (x0, x1, x2). Similarly, the conditions remain invariant under
the simultaneous substitution of x0 by −x0 and a by −a. This will reduce the
computations somewhat.

The results are listed in the following table

(x0, x1, x2) f1f2 f3f4 f5f6

(1, i, 0) 0 −a(a+ 2i) −(a+ i+ 1)(a+ i− 1)

(0, 1, i) −(a+ i− 1) · −(a− i− 1)(a+ i+ 1) 0

(a− i+ 1)

(a,−1,−1) 4a2 4a2 8a2

(a, 1,−1) 4(a− i)(a+ i) 4 4a2

(1, a, 1) 2(a− 1)2 (a+ 1 + i)(a+ 1− i) · (a+ 1 + i)(a+ 1− i) ·
(a− 1)2 (a− 1)2

(−1, a, 1) 2(a− i)(a+ i) (a2 − ai+ 1− i) · (a2 + ai+ 1− i) ·
(a2 − ai+ 1 + i) (a2 + ai+ 1 + i)
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The zero entries in this table were to be expected, as they correspond to the points
we used to define the six lines. For these cases we need to check the linear functions
separately: we obtain f2(1, i, 0) = 2 and f6(0, 1, i) = 2ai, yielding no new conditions
on a.

From the above it now follows that apart from the conditions of Theorem 1, a also
needs to satisfy a 6= ±2i,±i± 1 and a2 ± ai+ (1± i) 6= 0.

(Note that q = 1 mod 4 if and only an element i exists in GF(q) that satisfies
i2 = −1.)

It is easily checked that the symmetric group S4 leaves the arc S∗(a) ∪ I invariant.
When a2 = −2 all points of this arc lie on the conic C. When a2 6= −2 each of the
conics C0, C1, C2 (cf. Theorem 1) contains two points of I.

4 Results: the complete arcs of PG(2,27)

In Table 1 we present a full classification of the complete k-arcs in PG(2, 27), up to
PΓL-equivalence. For each of these arcs S we have determined both the stabilizer GS

for the group G = PGL(3, 27) and the stabilizer ΓS for the group Γ = PΓL(3, 27).
Each column in this table corresponds to a different arc size k. Nk denotes the
number of inequivalent complete arcs of size k (using PΓL-equivalence). There are
no complete k-arcs when k < 12, k = 20, k = 21, 23 ≤ k ≤ 27 or k > 28.

For each k we specify a list of possible automorphism groups ΓS and GS and the cor-
responding number of k-arcs that have automorphism groups of that type. (We use
the ‘Atlas’-notation for the groups [3].) The numbers listed refer to PΓL-inequivalent
arcs and not to PGL-inequivalent arcs. There are essentially two cases:

1. If GS = ΓS, the orbit of S in Γ is the union of three disjoint orbits of G. The
first one is SG, a second one is of the form SσG for some σ ∈ Γ \G, which we
may assume to be the Frobenius automorphism of the field GF(27), and a last
one is Sσ

2G.

The arcs S, Sσ and Sσ
2

are therefore PΓL-equivalent but PGL-inequivalent.
Hence the number of PGL-inequivalent k-arcs with a group of that type is
three times the number listed.

2. If GS 6= ΓS, then [ΓS : GS] = 3 and SG = SΓ (and hence S, Sσ and Sσ
2

are
PGL-equivalent). In that case the number of inequivalent arcs of the given
type is the same whether we regard PGL(3, 27) or PΓL(3, 27) as the group
defining equivalence.

Below we give geometric descriptions of the arcs whose automorphism groups are
underlined in Table 1.
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k = 12 k = 13 k = 14 k = 15

Nk = 7 Nk = 221429 Nk = 106320273 Nk = 198631499

ΓS GS # ΓS GS # ΓS GS # ΓS GS #

S3 S3 6 1 1 221342 1 1 106238792 1 1 198614859

S4 S4 1 2 2 14 2 2 81129 2 2 15506

3 1 31 3 1 15 3 1 192

3 3 42 22 22 224 3 3 936

4 4 101 6 2 2

6 2 7 S3 S3 4

12 4 3

D14 D14 2

k = 16 k = 17 k = 18

Nk = 20335114 Nk = 276112 Nk = 950

ΓS GS # ΓS GS # ΓS GS #

1 1 20291521 1 1 274230 1 1 534

2 2 42834 2 2 1861 2 2 333

3 1 223 3 1 21 3 1 3

3 3 159 3 3 19

22 22 235 22 22 30

4 4 19 4 4 3

6 2 49 S3 S3 25

S3 S3 42 9 3 1

D8 D8 12 A4 A4 1

32 3 1 32: 2 32: 2 1

12 4 2

6× 2 22 12

A4 22 3

SL(2, 3) Q8 1

13 : 6 D26 1

k = 19 k = 22 k = 28

Nk = 5 Nk = 1 Nk = 1

ΓS GS # ΓS GS # ΓS GS #

2 2 2 7: 6 D14 1 PΓL(2, 27) PGL(2, 27) 1

6 2 1

S3 S3 2

Table 1: Numbers of complete k-arcs in PG(2, 27) listed according to size and au-
tomorphism group types
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Many constructions of arcs have been described in the literature: some arcs are
constructed by adding a small number of points to a subset of a conic [11, 13], some
can be obtained as unions of subsets of two distinct conics [7] and others as subsets
of points of cubic curves [8, 17, 19, 20]. For this reason we enumerate the complete
arcs in Table 2 according to their size (rows) and to the type of algebraic curve into
which they can be embedded (columns). Each arc is listed with its most specific
type. For example, an arc all of whose points belong to an irreducible cubic can also
be embedded on a quartic, but will only be listed in the row labelled ‘irr. cubic’.

k conic irr. cubic conic + 1 conic + 2 conic + 3 cubic + 1
12
13 1 7 61 136
14 31 527 8792 4435
15 6 79 561 4689 2261
16 3 69 96 202 270
17 1 24
18 4 1
19 1
22
28 1

total 1 46 148 1191 13746 7126

k conic + 4 cubic + 2 2 conics irr. quartic other
12 2 5
13 1667 17104 48557 153896
14 123432 387014 3713947 102082095
15 43818 65361 1087165 7159569 190267990
16 1255 2272 21750 30705 20278492
17 3 48 104 61 275871
18 2 8 14 921
19 2 2
22 1
28

total 170177 471806 4871531 109426342 210823277

Table 2: Algebraic classification of the complete k-arcs in PG(2, 27)

Note that any set of 5 (resp. 9, 14, 20) points always lies on a curve of degree 2
(resp. 3, 4, 5), and hence we have restricted ourselves to conics, cubics and quartics.
Clearly the only complete arc which lies on a conic is the conic itself.

In what follows let α denote a primitive element of GF(27) which satisfies α3−α2 +
1 = 0. We have α13 = −1. The Frobenius automorphism of the field corresponds to
k 7→ k3.
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4.1 Standard constructions

Two of the listed arcs have well-known constructions. First there is, of course,
the conic, the unique (complete) arc of size 28, with GS ' PGL(2, 27) and ΓS '
PΓL(2, 27).

Secondly, the unique complete arc of size 16 with GS ' D26 is also well-known, see
[13]. (The full automorphism group ΓS of the arc is isomorphic to the semidirect
product 13: 6.)

This arc S can be constructed as follows: the elements of S are the points e1, e2

with coordinates e1(0, 1, 0), e2(0, 0, 1) and the 14 points with coordinates (1, t, t2)
where t is a square in GF(27). All points except e1 belong to the conic C with
equation x0x2 = x2

1, and e1 is an external point of C. The automorphism group GS

of S is generated by the element φ1 : t 7→ α2 · t, together with the involution φ2 that
interchanges the first and last coordinates, i.e., maps t onto 1/t and interchanges
(1, 0, 0) and (0, 0, 1). The stabilizer group ΓS is generated by φ1 and φ3 : t 7→ t−3.
Note that φ2 = φ3

3 and φφ31 = φ−3
1 . The stabilizer group GS (resp. ΓS) of S is

a subgroup of index 2 of the subgroup of PGL(3, 27) (resp. PΓL(3, 27)) that fixes
both C and e1.

4.2 The unique complete arc of size 12 with GS = ΓS ' S4

If we apply Theorem 1 to q = 27, there are 24 values of a which lead to an arc S∗(a)
of size 12 with an automorphism group isomorphic to the symmetric group on 4
elements. Only in the cases a = ±α7,±α8,±α11 this arc turns out to be complete.
(And these six cases yield equal or PΓL-equivalent arcs.) This example is of special
significance because 12 is the smallest size for a complete arc in PG(2, 27).

Coordinates for the points of this arc in PG(2, 27) were already given by Marcugini
et al. [14], where it is also mentioned that the arc consists of a single orbit of its
group S4 of automorphisms. They also report that there are three conics that each
intersect the arc in 8 points.

4.3 The two complete arcs of size 14 with GS = ΓS ' D14

The projective plane PG(2, 27) has two inequivalent complete arcs of size 14 with the
dihedral group of order 14 as group of automorphisms. Both arcs can be partitioned
into two sets of size 7 and each of these sets is contained in a conic. If we take one of
the conics of each arc to be the conic C with equation x0x2 = x2

1, then we find the
following representatives for the arcs: both arcs contain the points with coordinates
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(1, t, t2) with t one of the elements in the following list:

α, α2,−α5,∞, α5,−α2,−α,

where t =∞ corresponds to the point (0, 0, 1).

The remaining points of the first arc S1 lie on the conic C1 with equation x2
0 −

α11x2
1 − α11x2

2 + α9x0x2 = 0. These 7 arc points are

(1,−α10, α6), (1, α7, α3), (1, α3, 1), (1, 0, α12), (1,−α3, 1), (1,−α7, α3), (1, α10, α6).

The remaining points of the second arc S2 lie on the conic C2 with equation x2
0 −

α8x2
1 − α11x2

2 + α5x0x2 = 0. These 7 arc points are

(1, α9, 0), (1, α3, α8), (1,−α4,−α12), (1, 0,−1), (1, α4,−α12), (1,−α3, α8), (1,−α9, 0).

The automorphism group of both arcs is the same, and can be generated by

φ1 : (x0 x1 x2) 7→ (x0 − x1 x2),

φ2 : (x0 x1 x2) 7→ (x0 x1 x2)

 1 −α9 −α5

α8 −α10 α9

−α3 −α8 1

 .
The transformation φ1 fixes the points (0, 0, 1), (1, 0, α12) and (1, 0,−1), and reverses
the order of the points of S1 and S2 as listed above. φ2 has order 7 and permutes
the 7 arc points of each conic.

4.4 The unique complete arc of size 22 with GS ' D14 and
ΓS ' 7: 6

PG(2, 27) has a unique complete arc of size 22 with D14 as automorphism group GS

and 7: 6 as ΓS. This arc was already described by Chao and Kaneta [2]. It consists
of 14 points of a conic, 7 external points to this conic and 1 internal point. This last
point is a fixed point of the automorphism group.

4.5 The unique complete arc of size 16 with GS ' Q8 and
ΓS ' SL(2, 3)

PG(2, 27) also has a unique complete arc of size 16 with GS isomorphic to the
quaternion group of order 8. We list coordinates for the points of one representative
of the arc below.

(0, 1,±1) (α2, α,±1)
(1, 0,±1) (α,−α2,±1)

(α9, α12,±1) (α5, α7,±1)
(α12,−α9,±1) (α7,−α5,±1)

(3)
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All points of this arc lie on the quartic with equation x4
0+x4

1−x4
2−α7x3

0x1+α7x0x
3
1 =

0. The group GS is generated by the following eight linear transformations:

±1 : (x0 x1 x2) 7→ (x0 x1 x2)

 1 0 0
0 1 0
0 0 ±1



±i : (x0 x1 x2) 7→ (x0 x1 x2)

 0 1 0
−1 0 0
0 0 ±1

 ,

±j : (x0 x1 x2) 7→ (x0 x1 x2)

 α9 α12 0
α12 −α9 0
0 0 ±1

 ,

±k : (x0 x1 x2) 7→ (x0 x1 x2)

 −α
12 α9 0

α9 α12 0
0 0 ±1

 ,
such that i2 = j2 = k2 = ijk = −1. To obtain ΓS we need to add the automorphism
φ′ : (x0, x1, x2) 7→ (α12x3

0, x
3
1 − α9x3

0, x
3
2) which belongs to PΓL(3, 27) \ PGL(3, 27).

The group ΓS is isomorphic to SL(2, 3).

4.6 A complete arc of size 18 with GS = ΓS ' S3

There are 25 inequivalent complete arcs of size 18 with GS = ΓS ' S3, but only one
of them consists of 15 (=(q+ 3)/2) points of a conic together with 3 points external
to this conic. This arc was already described by Davydov et al. [5].

4.7 The unique complete arc of size 18 with GS = ΓS ' 32: 2

There is a unique complete arc of size 18 with an automorphism group of size 18.
The arc can be partitioned into two sets of size 9 each of which is contained in a
conic. We list coordinates of one representative of the arc below.

(1, 0, 0) (0, 1, 0) (0, 0, 1) (α14, 1, 1) (1, α14, 1) (1, 1, α14)
(α9, α16, 1) (1, α9, α16) (α16, 1, α9) (α11, 1, α8) (α8, α11, 1) (1, α8, α11)
(α9, 1, α16) (α16, α9, 1) (1, α16, α9) (α11, α8, 1) (1, α11, α8) (α8, 1, α11)

(4)

The nine points in the left hand part of (4) lie on the conic with equation xy+xz+
yz = 0, those in the right hand part on the conic with equation α2x2 +α2y2 +α2z2 +
xy + xz + yz = 0.

The group GS = ΓS is generated by the projective transformations φ1, φ2, φ3, repre-
sented as follows:

φ1 : (x0 x1 x2) 7→ (x2 x0 x1),
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φ2 : (x0 x1 x2) 7→ (x0 x2 x1),

φ3 : (x0 x1 x2) 7→ (x0 x1 x2)

 α9 α16 1
1 α9 α16

α16 1 α9

 .
We have φ3

1 = φ2
2 = φ3

3 = 1, φ1φ3 = φ3φ1, φφ21 = φ−1
1 and φφ23 = φ−1

3 .

The transformation φ1 permutes the coordinates cyclicly. This corresponds to a
permutation of the columns in the left hand part and in the right hand part of (4),
leaving the rows invariant. The transformation φ3 has exactly the opposite effect:
it permutes the rows and leaves invariant the columns in (4). The transformation
φ2 interchanges the second and last coordinate of a point.

4.8 The unique complete arc of size 19 lying on an irre-
ducible cubic

There is a unique complete arc of size 19 in PG(2, 27) that can be embedded onto
a non-singular irreducible cubic curve with one rational inflexion point. This curve
has equation x2

2x1 + x3
0 − α5x2

0x1 + α2x3
1 = 0, and is of type (ii)a, as classified in [9,

Theorem 11.54]. The inflexion point has coordinates (0, 0, 1). The abelian group of
the 38 rational non-singular points of the cubic is isomorphic to the cyclic group of
order 38 and can be generated by the element with coordinates (1, α3, 1). The arc
points are the 19 odd multiples of this generator, in other words they correspond to
a coset of a subgroup of index two. It is well known that this construction always
yields an arc [19].

The automorphism group GS is a cyclic group of order 2, while ΓS is a cyclic group
of order 6.

5 Results: the complete arcs of PG(2,29)

The results for q = 29 are summarized in Table 3. Again, for each of these arcs S
we have determined the stabilizer GS for the group G = PGL(3, 29) (which is the
same as Γ = PΓL(3, 29) in this case).

As before, each column in the table corresponds to a different arc size k and Nk

denotes the number of projectively distinct complete arcs of size k. For the arcs
whose automorphism group is underlined, we give a geometric description below.
There are no complete k-arcs when k < 13, k = 22, k = 23, 25 ≤ k ≤ 29 or k > 30.

In Table 4 the arcs are enumerated according to their size (rows) and to the type
of algebraic curve into which they can be embedded (columns). Again, each arc is

15



k = 13 k = 14 k = 15 k = 16

Nk = 708 Nk = 171139332 Nk = 7402140892 Nk = 4776509549

GS # GS # GS # GS #

1 688 1 170929611 1 7402054723 1 4775412456

3 19 2 208889 2 78862 2 1092537

13: 3 1 4 212 3 7266 3 2530

2: 2 612 5 11 4 104

D8 6 S3 29 2: 2 1643

D14 2 D10 1 5 7

S3 210

7 1

D8 39

Q8 1

D10 11

A4 4

D14 5

D30 1

k = 17 k = 18 k = 19 k = 20

Nk = 271929757 Nk = 2457679 Nk = 4190 Nk = 57

GS # GS # GS # GS #

1 271852322 1 2421150 1 3615 1 1

2 77365 2 35080 2 546 2 26

4 68 3 525 3 21 22 18

7 1 22 529 S3 8 4 1

D14 1 4 91 D8 4

S3 263 D10 6

6 1 D20 1

D8 14

Q8 4

A4 13

D12 5

S4 4

k = 21 k = 24 k = 30

Nk = 2 Nk = 1 Nk = 1

GS # GS # GS #

S3 2 PSL(2, 7) 1 PGL(3, 29) 1

Table 3: Numbers of complete k-arcs in PG(2, 29) listed according to size and au-
tomorphism group types
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k conic irr. cubic conic + 1 conic + 2 conic + 3 cubic + 1
13
14 25 266 6518 4218
15 106 3761 64204 20893
16 18 508 2769 17739 8600
17 3 305 249 620 942
18 20 14 12 67
19 2
20 3
21
24
30 1

total 1 177 813 7059 89093 34720

k conic + 4 cubic + 2 2 conics irr. quartic other
13 2 36 140 530
14 117712 486746 4295022 166228825
15 849236 1292115 26135224 251767733 7122007620
16 139307 145957 2873149 5520429 4767801073
17 2755 4327 35581 12258 271872717
18 43 83 471 277 2456692
19 1 4 4 4183
20 4 1 46
21 2
24
30

total 1109055 1929265 33339595 423530057 12164142333

Table 4: Algebraic classification of the complete k-arcs in PG(2, 29)

listed with its most specific type.

5.1 Standard constructions

Two of the listed arcs have well-known constructions. First there is, of course, the
conic, the unique (complete) arc of size 30, with GS ' PGL(2, 29).

There is a second unique complete arc whose construction is fairly well known [11].
It has size 16 and its automorphism group is isomorphic to the dihedral group of
order 30. The arc consists of 15 points of a conic C together with an internal point p
of that conic. An example of an arc S of this type is constructed as follows. We take
C to have equation x0x2 = x2

1 and p to have coordinates (1, 0, 2). The remaining
points of S then have coordinates (1, t, t2) with t one of the elements in the following
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list:
15, 11, 22, 27, 17, 6, 9,∞, 20, 23, 12, 2, 7, 18, 14, (5)

where, as customary, the case t = ∞ should be interpreted to correspond to the
point with coordinates (0, 0, 1). The automorpishm group GS is generated by the
elements φ1 : t → t+26

16t+1
of order 15 and φ2 : t → −t of order 2, both fixing p. The

order of the parameter values in (5) corresponds to consecutive applications of φ1.
This order is reversed by φ2. We have φφ21 = φ−1

1 .

5.2 The unique complete arc of size 13 with GS ' 13: 3

The smallest size for a complete arc in PG(2, 29) is 13. There is a unique complete
arc of that size with an automorphism group of size 39. It can be constructed as the
orbit of the 67th power of a Singer cycle and is therefore a so-called cyclic arc [18].

If we take this Singer cycle to be

φ : (x0 x1 x2) 7→ (x0 x1 x2)

 0 1 0
0 0 1
−3 0 −1

 .
then the arc is the orbit of the point with coordinates (1, 0, 0) of the cyclic group
generated by

φ1 = φ67 : (x0 x1 x2) 7→ (x0 x1 x2)

 0 1 4
−12 0 −3

9 −12 3

 .
(φ1 has order 13.)

The automorphism group of the arc is isomorphic to the semi-direct product 13: 3
and is generated by φ1 and

φ2 : (x0 x1 x2) 7→ (x0 x1 x2)

 1 0 0
−9 14 11
13 −6 14

 ,
of order 3. We have φφ21 = φ3

1.

5.3 The 2 complete arcs of size 14 with GS ' D14

Like PG(2, 27) also PG(2, 29) has two inequivalent complete arcs of size 14 with
the dihedral group of order 14 as automorphism group. Again, both arcs can be
partitioned into two sets of size 7 and each of these sets is contained in a conic. If
we take one of the conics of each arc to be the conic C with equation x2

1 = x0x2,
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then we find the following representatives for the arcs: both arcs contain the points
with coordinates (1, t, t2) with t one of the elements of the following list:

1, 7, 72 = −9, 73 = −5, 74 = −6, 75 = −13, 76 = −4

The remaining points of the first arc S1 lie on the conic C1 with equation x2
1 =

−4x0x2. These are the points (1, t, 7t2) for the same values of t. The remaining
points of the second arc S2 lie on the conic C2 with equation x2

1 = −9x0x2. These
are the points (1, t,−13t2), again for the same values of t. The automorphism group
of both arcs is the same, and can be generated by

φ1 : (x0 x1 x2) 7→ (x0 7x1 72x2),

φ2 : (x0 x1 x2) 7→ (x2 x1 x0).

We have φφ21 = φ−1
1 .

φ1 acts like t 7→ 7t on both arcs. φ2 corresponds to t 7→ 1/t on the conic C, t 7→ −4/t
on S1 \ C and t 7→ −9/t on S2 \ C. It fixes the points (1, 1, 1), (1,−5, 1) of S1 and
(1, 1, 1), (1, 7, 1) of S2.

5.4 The 4 complete arcs of size 18 with GS ' S4

Applying Theorem 2 to the case q = 29 yields twelve values of a for which S∗(a)∪ I
is an 18-arc. For eight of these the arc is complete, i.e. when a = ±4,±6,±9 or
±10. This results in four inequivalent complete arcs of size 18 with automorphism
group isomorphic to the symmetric group on 4 elements.

5.5 The unique complete arc of size 20 with GS ' D20

There is a unique complete arc of size 20 with the dihedral group of order 20 as
group of automorphisms. The arc can be partitioned into two sets of size 10 and
each of these sets is contained in a conic.

We may choose coordinates in such way that the first conic C1 has equation x2 +
y2 + 10z2 = 0. The arc points on this conic are the following:

(1, 4, 6) (1, 10, 4) (1,−3, 12) (1, 6, 11) (1,−7,−13)
(1,−4, 6) (1,−10, 4) (1, 3, 12) (1,−6, 11) (1, 7,−13)

(6)

The second conic C2 then has equation −11xz + 5y2 − z2 = 0, the arc points on C2

are:

(1,−7,−14) (1,−9,−5) (0, 1, 11) (1, 10, 8)
(1, 0, 0) (1, 0,−11)

(1, 7,−14) (1, 9,−5) (0,−1, 11) (1,−10, 8)
(7)
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The automorphism group of the arc can be generated by

φ1 : (x0 x1 x2) 7→ (x0 x1 x2)

 4 1 2
−1 −1 −7
−9 12 7

 ,
φ2 : (x0 x1 x2) 7→ (x0 − x1 x2).

φ1 has order 10 and permutes the 10 arc points of each conic in a clockwise order
in (6) and (7). The involution φ2 fixes the points (1, 0, 0) and (1, 0,−11) of C2 and
none of the points of C1. We have φφ21 = φ−1

1 .

5.6 The two complete arcs of size 21 with GS ' S3

The third largest size of a complete arc in PG(2, 29) is 21. There are two arcs of
this size. The first arc consists of the points

(1, 0, 0) (1, 5, 10) (1, 4, 9) (1,−3,−2)
(0, 1, 0) (1, 10, 5) (1, 9, 4) (1,−2,−3)
(0, 0, 1) (5, 1, 10) (4, 1, 9) (−3, 1,−2)

(10, 1, 5) (9, 1, 4) (−2, 1,−3)
(5, 10, 1) (4, 9, 1) (−3,−2, 1)
(10, 5, 1) (9, 4, 1) (−2,−3, 1),

(8)

the second arc consists of the points

(1, 0, 0) (1, 2, 8) (1, 5, 13) (1,−3,−5)
(0, 1, 0) (1, 8, 2) (1, 13, 5) (1,−5,−3)
(0, 0, 1) (2, 1, 8) (5, 1, 13) (−3, 1,−5)

(8, 1, 2) (13, 1, 5) (−5, 1,−3)
(2, 8, 1) (5, 13, 1) (−3,−5, 1)
(8, 2, 1) (13, 5, 1) (−5,−3, 1).

(9)

The automorphism group of these arcs is the symmetric group of degree three, which
is clearly visible in (8) and (9).

5.7 The unique complete arc of size 24

The unique complete arc of size 24 has an interesting structure which can be de-
scribed in various ways. It consists of the points of the well-known Klein quartic
[12] on GF(29). Its automorphism group is PSL(2, 7) ≡ PSL(3, 2), of order 168.

The Klein quartic can be represented by the simple equation

x3
0x1 + x3

1x2 + x3
2x0 = 0.
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The automorphism group of this curve is generated by the following elements:

φ1 : (x0, x1, x2) 7→ (x2, x0, x1),

φ2 : (x0, x1, x2) 7→ (74x0, 7
2x1, 7x2),

φ3 : (x0 x1 x2) 7→ (x0 x1 x2)

 −7 8 −2
8 −2 −7
−2 −7 8


(with φ3

1 = φ7
2 = φ2

3 = 1).

An alternative representation of this curve, in three dimensions, is given by

x4
0 + x4

1 + x4
2 + x4

3 = 19x0x1x2x3, x0 + x1 + x2 + x3 = 0,

which displays the action of the symmetric group S4 (a subgroup of PSL(2, 7)) on the
arc. In this representation, the points of the arc correspond to the 24 permutations
of the coordinates (1, 4, 9, 15).

Chao and Kaneta [2] had already discovered this arc (and the order of its automor-
phism group) by computer. However, they did not give an explicit description of its
points or mention the connection with the Klein quartic.

6 Results: the arcs of PG(2,27) and PG(2,29)

Finally, in Table 5 we list the number of PΓL-inequivalent k-arcs in PG(2, 27) and
PG(2, 29), not necessarily complete. This table supplements the results given in
[10].
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