
PHYSICAL REVIEW C 89, 014612 (2014)

Final-state interactions in inclusive deep-inelastic scattering from the deuteron
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We explore the role of final-state interactions (FSIs) in inclusive deep-inelastic scattering from the deuteron.
Relating the inclusive cross section to the deuteron forward virtual Compton scattering amplitude, a general
formula for the FSI contribution is derived in the generalized eikonal approximation, utilizing the diffractive
nature of the effective hadron-nucleon interaction. The calculation uses a factorized model with a basis of three
resonances with mass W < 2 GeV and a continuum contribution for larger W as the relevant set of effective
hadron states entering the final-state interaction amplitude. The results show sizeable on-shell FSI contributions
for Bjorken x � 0.6 and Q2 � 10 GeV2, increasing in magnitude for lower Q2, but vanishing in the high-Q2

limit because of phase-space constraints. The off-shell rescattering contributes at x � 0.8 and is taken as an
uncertainty on the on-shell result.
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I. INTRODUCTION

Inclusive deep-inelastic scattering (DIS) from the deuteron
has for a considerable time been the main source of information
on the partonic structure of the neutron [1–5]. Recently, there
has been growing emphasis placed on such extractions at large
values of the momentum fraction x carried by the partons
[6–11]. When combined with the more readily available proton
data, and assuming charge symmetry of the nucleon’s parton
distribution functions (PDFs), one can directly reconstruct the
individual u and d quark PDFs that dominate nucleon structure
at large values of x.

At high x (x � 0.5) the difference between the parton
structure of the proton and neutron grows and becomes
rather sensitive to the underlying QCD dynamics generating
high-momentum partons in the nucleon. Unfortunately, in this
region the extraction of parton distributions in the neutron from
inclusive deuteron DIS data becomes increasingly complicated
by the effects of nuclear corrections. Within the nuclear
impulse approximation, in which the scattering takes place
incoherently from individual nucleons bound in the nucleus,
these effects include nuclear Fermi motion and binding,
relativistic and off-shell corrections, and non-nucleonic com-
ponents of the deuteron wave function. Considerable effort
has been made over the years to understand these effects
quantitatively (see, e.g., Refs. [12–20]).

Beyond the impulse approximation, rescattering effects can
also play an important role in the DIS process; for example,
multiple scattering of the beam from two (or more, for larger
nuclei) nucleons can give rise to nuclear shadowing corrections
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at small x [21–26]. The interaction of the hadronic debris of
the struck nucleon with the spectator nucleon in the final state,
however, can give contributions also at higher x values. These
final-state interaction (FSI) effects are generally considered to
be small in inclusive DIS at moderate to small values of x,
where, for large invariant mass W produced in a high-energy
collision, the quantum phase space in the final state of the
reaction is unrestricted. As a result, the closure relation can
be applied to the sum over the final states, enabling these
to be represented through quark degrees of freedom or, in
other words, quark-hadron duality is expected to hold in
these kinematics [27]. Dynamically, this is consistent with
the picture in which the struck quark hadronizes well after
leaving the target, so that the final-state rearrangement does
not influence the initial-state probability distribution of the
interacting partons [28].

The situation can be quite different for large-x and
finite-W kinematics, in which the condition for the closure
approximation (or duality) is not fully satisfied. However,
even if finite FSI effects are expected here, estimating their
contribution requires knowledge about the composition and
internal distribution of momentum of the final hadronic state
in the DIS process, a problem which remains very challenging.
The structure of the DIS final state can be examined by
considering the production of specific hadrons in coincidence
with the scattered electron [29–33]. In particular, a promising
avenue has been the study of the distribution of slow tagged
protons (with momentum up to ∼500 MeV) in semi-inclusive
DIS (SIDIS) from the deuteron [34,35].

Recently, an approach was developed [32,33] for calcu-
lating the SIDIS reaction from the deuteron that accounted
for FSI effects based on general properties of high-energy
diffractive scattering. The underlying assumption was that,
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because of restricted phase space (finite values of W and Q2),
the minimal Fock-state component of the wave function can
be used to describe DIS from the bound nucleon. In this case
the scattered state consists of three outgoing valence quarks
whose rescattering from the spectator nucleon is parametrized
in the form of a Q2- and W -dependent diffractive amplitude.
The results of this approach showed good agreement with the
most recent SIDIS data from Hall B at Jefferson Lab [34],
especially in the description of the rise of the FSI effects in the
forward direction of the spectator nucleon production. Com-
parison with the data also allowed one to extract the parametric
dependence of the diffractive rescattering amplitudes, which
increase with W and decrease with Q2.

A related calculation was performed in Refs. [29,31],
also using an eikonal approximation to estimate the FSI
amplitude. Here a Glauber model was employed with a
time-dependent debris-nucleon cross section, including, in
addition, the contribution from the target fragmentation region
to the SIDIS cross section, and calculations for SIDIS off
12C were also presented. Good agreement with the deuteron
SIDIS data [34] was found in a wide region of backward
nucleon emission, whereas, as expected, a traditional Glauber
approach was difficult to accommodate at forward spectator
nucleon kinematics. The kinematical region of slow spectator
protons in the backward hemisphere was found to have small
FSI contributions, making it useful for neutron structure
function extraction. Fast protons in perpendicular kinematics,
however, yielded large FSI effects, making this region suited
for the study of hadronization mechanisms. For fast spectator
protons the contribution from the target fragmentation region
was found to become significant, especially in the forward
hemisphere.

Building on the knowledge gained from the semi-inclusive
analyses, in this paper we extend the approach of Refs. [32,33]
to inclusive DIS from the deuteron, over a similar range of Q2

and W that was covered in the SIDIS kinematics. The obser-
vation from the SIDIS studies [32,33] that the FSI structure
is consistent with diffractive scattering allows the generalized
eikonal approximation (GEA) model to be extended [32,36,37]
to the inclusive DIS reaction through the optical theorem,
relating the inclusive cross section to the imaginary part of
the forward γ ∗D Compton scattering amplitude. The general
correspondence between the inclusive DIS cross section and
the forward Compton is derived in Sec. II. The Compton
scattering amplitude is then computed, first in the plane-wave
Born approximation and then in the presence of final-state
hadronic interactions, taking into account both on-shell and
off-shell contributions in the rescattering amplitude. The
results presented in Sec. II are rather general, relying only
on the diffractive nature of the FSI. The specific model used
to obtain the numerical estimates of FSI effects is introduced
in Sec. III, where its main assumptions and approximations
are highlighted. These include a factorized approach for the
hadronic currents in the FSI amplitude and a three-resonance
model combined with a DIS continuum region distribution
at large W for the states that contribute to the FSI. The
numerical results for the FSI effects are presented in Sec. IV,
and conclusions are drawn in Sec. V.

II. THEORETICAL FRAMEWORK

In this section we present the definitions for cross sections
and the nuclear hadronic tensor corresponding to the inclusive
scattering of an electron e from a nucleus A,

e(ki) + A(pA) → e′(kf ) + X(pX), (1)

where ki and kf are the four-momenta of the initial- and
final-state electrons, and pA and pX are the four-momenta
of the target nucleus and the produced hadronic system X,
respectively. While the formal results derived here will be valid
for any nucleus A, in the actual calculations we specialize to
the case of the deuteron.

We base our derivations on the relationship between the
inclusive electroproduction cross section and the imaginary
part of the amplitude of forward virtual Compton scatter-
ing off the nucleus. The advantage of such an approach
is that the amplitudes accounting for the FSI effects will
self-consistently satisfy the unitarity conditions for inelastic
rescattering. An alternative approach would be to introduce
FSI effects in the γ ∗D → X scattering amplitude and apply
Abramovsky, Gribov, Kancheli (AGK)-type cutting rules [38]
in the calculation of the cross section to restore unitarity. In
our approach we explicitly identify the Born and FSI terms of
the inclusive electroproduction cross section with the impulse
approximation and FSI contribution in the forward Compton
scattering amplitude, with the latter calculated in the GEA.

A. Inclusive cross section and forward nuclear
virtual Compton scattering

Neglecting electron masses, we define the differential DIS
cross section as

dσ = 1

4
√

(kipA)2

∑
X

∑
i,f

|M|2 (2π )4 δ(4)(q + pA − pX)

× d3kf

(2π )3 2εf

d3 pX

(2π )3 2EX

, (2)

where εf and EX are the energies of the final electron
and hadronic state X, q = pX − pA = ki − kf is the four-
momentum transfer to the target, and we average the square
of the scattering amplitude M over the initial spins of the
electron and nucleus and sum over the scattered electron spins.
The formal sum

∑
X includes all possible final states |X〉 and

integrates over the distributions of their internal momenta.
Using the phase-space identity for pX,

d3 pX

2EX

= d4pX δ
(
p2

X − W 2
X

)
θ (EX), (3)

we can eliminate the four-dimensional δ function with d4pX

and express the differential cross section as

dσ

dεf d�f

= 1

(4π )2

1

2MA

εf

εi

×
∑
X

∑
i,f

|M|2 δ
[
(pA + q)2 − W 2

X

]
θ (EX). (4)
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Here W 2
X ≡ p2

X is the invariant mass of the produced hadronic
state X and εi is the incoming electron energy. Introducing
the DIS interaction vertex 	

μ
AX between initial nuclear ground

sate |
A〉 and final state |�X〉, one can represent the matrix
element M of the scattering as the product of leptonic (J e

μ)
and nuclear (Jμ

AX) currents,

−iM = − ie2

q2
J e

μ(kf ,se′ ; ki,se) J
μ
AX(pA,sA; pX,sX), (5)

where J e
μ = ū(kf ,se′ )γμu(ki,se) and J

μ
AX(pA,sA; pX,sX) =

〈�(pX,sX)|	μ
AX|
A(pA,sA)〉. Here se (se′), sX, and sA are the

spins of the incoming (final) electron, hadronic state X, and
nucleus A, respectively. In terms of the currents, the differential
cross section in Eq. (4) can be written in terms of leptonic (Lμν)
and hadronic (Wμν

A ) tensors,

dσ

dεf �f

= α2

Q4

εf

εi

LμνW
μν
A , (6)

where α is the electromagnetic coupling. The leptonic tensor
is given by

Lμν = 1

2

∑
se,se′

J e†
μ J e

ν = 2

(
kiμkf ν + kf μkiν + q2

2
gμν

)
, (7)

while the hadronic tensor can be formally written as

W
μν
A = 1

2MA

1

(2jA + 1)

×
∑
X

∑
sA,sX

J
μ†
AX(pA,sA; pX,sX) J ν

AX(pA,sA; pX,sX)

× δ
[
(pA + q)2 − W 2

X

]
θ (EX), (8)

where jA is the total spin of the nucleus A.
Expressing the DIS differential cross section through

the nuclear hadronic tensor makes the application of
the optical theorem rather straightforward. From the nu-
clear virtual Compton scattering amplitude shown in
Fig. 1 one observes that the imaginary part of the
intermediate-state propagator, with the condition EX > 0,
corresponds to πδ[(pA + q)2 − W 2

X]. This gives for the
imaginary part of the Compton amplitude in the forward

FIG. 1. Forward virtual Compton scattering amplitude from a
nucleus A, with q and pA the photon and target four-momenta and
pX the four-momentum of the produced state X.

direction (t = 0),

ImAμν
γ ∗A(t = 0)

=
∑
X

J
μ†
AX(pA,sA; pX,sX)J ν

AX(pA,sA; pX,sX)

×πδ
[
(pA + q)2 − W 2

X

]
θ (EX), (9)

where sA = sA′ from the forward elastic scattering condition.
Comparing Eqs. (8) and (9) one obtains the optical theorem
relation between the nuclear hadronic tensor and the forward
nuclear Compton scattering amplitude,

W
μν
A = 1

2πMA

1

(2jA + 1)

∑
sA

ImAμν
γ ∗A(t = 0). (10)

Although the above discussion holds for an arbitrary
nucleus A, we shall now focus on the specific case of the
deuteron. At large Q2 and for deuteron internal momenta
up to 700 MeV (see, e.g., Ref. [39]) one expects the virtual
photon scattering from the deuteron target to take place from
an individual nucleon bound in the nucleus. This allows
us to express the Compton scatting amplitude as a sum of
two terms, as illustrated in Fig. 2. The first (Born) term
represents the propagation of the state X′ resulting from
the γ ∗-bound nucleon scattering, without interacting with the
spectator nucleon [Fig. 2(a)]. The second (rescattering) term
corresponds to the produced hadronic state (X1) interacting
with the spectator nucleon (S1) in the intermediate state of
the Compton scattering [Fig. 2(b)]. The latter diagram is
responsible for the FSI contribution to inclusive DIS.

B. Born term

For the Born diagram of the forward Compton scattering
amplitude from the deuteron, following the prescription of the
effective Feynman diagram rules for inelastic scattering [32],

1

1

1 2

2

2

FIG. 2. Forward virtual Compton scattering amplitude for the
deuteron, composed of (a) the Born diagram and (b) the rescattering
contribution. The gray blob in the intermediate state represents the
effective rescattering interaction of the hadronic debris (X1) and the
spectator nucleon (S1) to the final hadronic state (X2) and nucleon
(S2). The deuteron momentum in the Born diagram is given by pD =
pi + ps and in the FSI diagram by pD = pi1 + ps1 = pi2 + ps2 .
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the plane-wave (pw) amplitude can be written as

Aμν
pw =

∑
N,X′

∫
d4ps

i(2π )4
(χsD )† 	

†
DNN

/
pi + m

p2
i − m2 + iε

	
μ†
γNX′

× G(pX′)

p2
X′ − m2

X′ + iε

×
/
ps + m

p2
s − m2 + iε

	ν
γNX′

/
pi + m

p2
i − m2 + iε

	DNN χsD ,

(11)

where pi is the four-momentum of the initial, off-shell nucleon
and ps is the four-momentum of the spectator nucleon, both
with mass m. The sum runs over all possible intermediate
states X′ and the proton and neutron contribution. The inelastic
intermediate state is characterized by the momentum pX′ =
pD + q − ps and mass mX′ . The function G(pX′) describes
the Green’s function of the intermediate state X′, 	

μ
γNX′ is the

photon-nucleon vertex, and 	DNN denotes the DNN vertex
function, with χsD the deuteron spin-wave function for spin
projection sD . In the virtual nucleon approximation (VNA)
[32,40], the loop integration over dp0

s is performed by retaining
only the positive energy, on-mass-shell contribution of the
spectator nucleon propagator,

∫
dp0

s

p2
s − m2 + iε

−→ −i
π

Es

, (12)

where Es = √
m2 + p2

s is the spectator nucleon energy. Con-
servation of energy requires that the energy of the interacting,
off-shell nucleon is then equal to Ei = MD − Es .

It is convenient in the VNA to introduce the deuteron wave
function 


sD

D (p1,s1; p2,s2) for the case of one nucleon (p1)
being off shell and one nucleon (p2) on shell [32,40–43],



sD

D (p1,s1; p2,s2) = − ū(p1,s1) ū(p2,s2) 	DNN χsD(
p2

1 − m2
)√

2
√

(2π )32E2

, (13)

where E2 =
√

m2 + p2
2, and we take the masses of the two

nucleons to be equal, m1 = m2 = m. This then allows the pw
amplitude to be expressed as

Aμν
pw = −2

∑
N,X′

∑
si ,s

′
i ,ss

∫
d3 ps 


sD†
D (pi,s

′
i ; ps,ss) ū(pi,s

′
i) 	

μ†
γNX′

× G(pX′)

p2
X′ − m2

X′ + iε
	ν

γNX′ u(pi,si) 

sD

D (pi,si ; ps,ss),

(14)

where si,s
′
i are the spins of the off-shell nucleons and ss

is the spin of the spectator on-shell nucleon. In general,
the propagator of the inelastic intermediate state X′ can be
represented as a sum of on-shell and off-shell contributions

[32],

G(pX′)

p2
X′ − m2

X′ + iε

≈
∑

sX′ |pX′ ,sX′ 〉〈pX′ ,sX′ |
p2

X′ − m2
X′ + iε

= −iπ
∑
sX′

|pX′ ,sX′ 〉〈pX′ ,sX′ | δ(p2
X′ − m2

X′
)
θ (EX′)

+P
∑

sX′ |pX′ ,sX′ 〉〈pX′ ,sX′ |
p2

X′ − m2
X′

, (15)

where in the off-shell term the symbol P denotes the Cauchy
principal value integration. Because the imaginary part of the
Compton scattering amplitude is defined by the on-shell part
of the inelastic state X′ propagator, substituting Eq. (15) into
Eq. (14) and averaging over the deuteron polarizations, one
obtains

1

3

∑
sD

ImAμν
pw

= π

∫
d3 ps

∑
N,X′

∑
si ,sX′

J
μ†
γNX′ (pi,si ; pX′ ,sX′)

× J ν
γNX′ (pi,si ; pX′ ,sX′) δ

(
p2

X′ − m2
X′

)
θ (EX′) S(ps), (16)

where the deuteron momentum distribution is defined as

S(ps) = 1

3

∑
sD,ss ,si

∣∣
sD

D (pi,si ; ps,ss)
∣∣2

. (17)

Introducing the nucleon hadronic tensor in analogy with
Eq. (8),

W
μν
N = 1

2m

1

2

∑
X′

∑
si ,sX′

J
μ†
γNX′ (pi,si ; pX′ ,sX′ )

× J ν
γNX′ (pi,si ; pX′ ,sX′ ) δ

(
p2

X′ − m2
X′

)
θ (EX′), (18)

and using it in Eq. (16), from the optical theorem relation in
Eq. (10) one obtains for the deuteron hadronic tensor,

W
μν
D = 2m

MD

∑
N

∫
d3 ps W

μν
N S(ps), (19)

where the sum is over the nucleons N = p,n. This corresponds
to the usual convolution model of inclusive DIS from the
deuteron [13,17,18,44].

C. Final-state interaction contribution

Having outlined the basic derivation of the Born contribu-
tion to DIS from the deuteron, we are now able to proceed
with the calculation of the FSI corrections to the inclusive
deuteron structure functions. The strategy is to use the GEA
to compute the rescattering contribution in Fig. 2(b) to the
forward Compton scattering amplitude and relate it to the
inclusive DIS process via the optical theorem [Eq. (10)]. Note
that in the eikonal approximation the hadronic rescattering
vertex is an effective vertex related to the hadronic scattering
amplitude. Consequently, only the FSI amplitude in Fig. 2(b)
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FIG. 3. (Color online) Maximum value of Bjorken x allowed for
the application of the eikonal approximation as a function of the
invariant mass W of the state X′.

needs to be considered, where a sum over all intermediate
states X1 and X2 is taken, and higher order rescattering
contributions are included in the effective rescattering vertex.
Two conditions, however, must be satisfied for the GEA to be
valid in the calculation of the FSI contribution.

(1) The intermediate state can be characterized as an effec-
tive hadronic state whose interaction with the spectator
nucleon can have attributes of the hN interaction. Such
states comprise any intermediate-state resonances that
can be generated at the first γ ∗N vertex in Fig. 2(b).

(2) The produced state X1 is energetic enough for the
eikonal approximation to be valid for X1N rescattering,
and it can be described by a diffractive amplitude.

For the second condition we can use the empirical
observation that in hadron-nucleon scattering the eikonal
approximation holds for hadron momenta �500 MeV [45–47]
in a frame where the nucleon is at rest. This can be used to
define the quantity xlim as the maximum value of the Bjorken
scaling variable x = Q2/2mq0 at a given Q2 for which the
state X′ in the rescattering system has a momentum of at least
500 MeV. This value of xlim can be found from the relation

sX′N = (pD + q)2 = m2 + m2
X′ + 2mEX′ , (20)

where EX′ is the energy of the state X′ in a frame where the
“spectator” nucleon [S1 in Fig. 2(b)] is at rest. In Fig. 3 we
show xlim as a function of the invariant mass W of X′ taking
part in the rescattering for several values of Q2. For values of
Q2 up to 5 GeV2 care should be taken when x > 0.5 for values
of W higher than 2 GeV entering in the rescattering amplitude.

Assuming now that the chosen kinematics is appropriate
for the application of the eikonal approximation and that
the intermediate states X are identified, one can apply the
effective Feynman diagram rules for the rescattering diagram
of Fig. 2(b) to obtain the FSI contribution to the virtual
Compton amplitude,

Aμν
FSI =

∑
N,X1,X2

∫
d4ps1

i(2π )4

d4ps2

i(2π )4
(χsD )†	†

DNN

/
pi2 + m

p2
i2

− m2 + iε
	

μ†
γNX2

G(pX2 )(
p2

X2
− m2

X2
+ iε

)
×

/
ps2 + m

p2
s2

− m2 + iε
FNX1,NX2

G(pX1 )(
p2

X1
− m2

X1
+ iε

) /
ps1 + m

p2
s1

− m2 + iε
	ν

γNX1

/
pi1 + m

p2
i1

− m2 + iε
	DNNχsD , (21)

where FNX1,NX2 is the NX1 → NX2 effective scattering amplitude. To evaluate the FSI amplitude, we first integrate over p0
s1

and
p0

s2
through the positive energy poles, as in Eq. (12). According to the VNA, we can then use the on-mass-shell decomposition

of the virtual nucleon propagators, with their off-shell four-momenta pi1 and pi2 defined through four-momentum conservation
at the DNN vertices, to introduce the deuteron wave functions of Eq. (13) into the amplitude in Eq. (21). Finally, because of the
large momenta involved in the propagators of the intermediate states Xj (j = 1,2), an on-shell relation for the Green’s function
G(pXj

) = ∑
sXj

|pXj
,sXj

〉〈pXj
,sXj

| can be used, which allows the FSI amplitude to be written as

Aμν
FSI = 2(2π )3

∑
N,X1,X2

∑
si1 ,ss1 ,sX1

si2 ,ss2 ,sX2

∫
d3 ps1

(2π )3

d3 ps2

(2π )3



sD†
D (pi2,si2 ; ps2 ,ss2 )√

2Es2

J
μ†
γNX2

(pi2,si2 ; pX2 ,sX2 )

p2
X2

− m2
X2

+ iε

×〈pX2 ,sX2 ; ps2 ,ss2 |FNX1,NX2 |pX1 ,sX1 ; ps1 ,ss1〉
J ν

γNX1
(pi1,si1 ; pX1 ,sX1 )

p2
X1

− m2
X1

+ iε



sD

D (pi1 ,si1 ; ps1 ,ss1 )√
2Es1

. (22)

In the following it is useful to write the product of the denominators of the intermediate inelastic-state propagators as

1(
p2

X2
− m2

X2
+ iε

) 1(
p2

X1
− m2

X1
+ iε

) =
[
−iπδ

(
p2

X2
− m2

X2

) + P
p2

X2
− m2

X2

] [
−iπδ

(
p2

X1
− m2

X1

) + P
p2

X1
− m2

X1

]

= −π2δ
(
p2

X1
− m2

X1

)
δ
(
p2

X2
− m2

X2

) + P
p2

X1
− m2

X1

P
p2

X2
− m2

X2

, (23)
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where the imaginary cross terms cancel exactly because of energy-momentum conservation at the rescattering vertices in the
diagram of Fig. 2(b). This decomposition allows the amplitude in Eq. (22) to be separated into two terms containing on-shell and
off-shell contributions to the rescattering amplitude FNX1,NX2 . It is also worth mentioning that the first part contains half-off-shell
inelastic electromagnetic currents, while in the second part these are fully off shell. The first part of the decomposition (23) yields
the “on-shell” component of the FSI contribution to the deuteron hadronic tensor,

W
μν(on)
FSI = −π (2π )3

3MD

∑
N,X1,X2

∑
spins

Im
∫

d3 ps1

(2π )3

d3 ps2

(2π )3



sD†
D (pi2,si2 ; ps2 ,ss2 )
sD

D (pi1 ,si1 ; ps1 ,ss1 )

2
√

Es2Es1

×〈pX2 ,sX2 ; ps2 ,ss2 |F (on)
NX1,NX2

|pX1 ,sX1 ; ps1 ,ss1〉Jμ†
γNX2

(pi2 ,si2 ; pX2 ,sX2 )J ν
γNX1

(
pi1 ,si1 ; pX1 ,sX1

)
× δ

(
p2

X1
− m2

X1

)
δ
(
p2

X2
− m2

X2

)
, (24)

where the spin summation includes the sum over si1 , ss1 , sX1 , si2 , ss2 , sX2 , and sD . Finally, the second term in Eq. (23) enters with
opposite sign and represents the contribution of the off-shell part of the FSI contribution to the deuteron hadronic tensor,

W
μν(off)
FSI = (2π )3

3πMD

∑
N,X1,X2

∑
spins

Im
∫
P

d3 ps1

(2π )3

d3 ps2

(2π )3



sD†
D (pi2 ,si2 ; ps2 ,ss2 )
sD

D (pi1 ,si1 ; ps1 ,ss)

2
√

Es2Es1

×〈pX2 ,sX2 ; ps2 ,ss2 |F (off)
NX1,NX2

|pX1 ,sX1 ; ps1 ,ss1〉Jμ†
γNX2

(pi2,si2 ; pX2 ,sX2 )J ν
γNX1

(pi1,si1 ; pX1 ,sX1 )
1

p2
X1

− m2
X1

1

p2
X2

− m2
X2

,

(25)

where
∫
P indicates Cauchy principal value integration. The

total FSI contribution to the deuteron hadronic tensor is then
given by the sum W

μν
FSI = W

μν(on)
FSI + W

μν(off)
FSI . The results in

Eqs. (24) and (25) form the general expression for the FSI
contribution to the deuteron hadronic tensor within the eikonal
approximation. To evaluate these expressions in practice
requires modeling of the matrix elements of FNX1,NX2 and
a truncation of the set of states comprising the inelastic
intermediate states in Fig. 2, to which we turn in the next
section.

III. FACTORIZED EFFECTIVE RESONANCE MODEL

Considerable experience has been developed over the years
with the computation of the Born approximation contribution
[Eq. (19)] to the deuteron hadronic tensor, especially since the
observation of the nuclear EMC effect, or deviation from unity
of the ratio of nuclear to deuterium structure functions, some
three decades ago [48]. For the deuteron, the input required
in these calculations is the nucleon momentum distribution in
the deuteron and the bound nucleon structure functions in the
nucleon hadronic tensor W

μν
N . In the VNA the latter is ap-

proximated by the on-shell hadronic tensor, with the off-shell
nucleon momentum defined through the on-shell momentum
of the deuteron and spectator nucleon. Some attempts have
been made, however, to account for the possible effects on the
bound nucleon structure of nuclear medium modification, or
off-shell corrections (see, e.g., Refs. [7,13,18,44,49–52].

Much less is understood about the FSI corrections [Eqs. (24)
and (25)], however, which require knowledge of the inelastic
currents and rescattering amplitude for the interaction between
the hadronic debris of the (off-shell) scattered nucleon and the
(on-shell) spectator nucleon. The complexity of describing
this interaction is formidable, however, and as an exploratory

attempt to estimate the FSI effects numerically we use several
additional assumptions to make the calculation feasible.

A. Factorized approximation for FSI

In the factorized approximation [also referred to as the
distorted wave impulse approximation (DWIA)], the inelastic
electromagnetic currents in both Eqs. (24) and (25) are
diagonalized by factoring out the current Jμ†

γNX2
from the d3ps2

integration evaluating it at pi2 = pi1 , si2 = si1 , pX2 = pX1 ,
and sX2 = sX1 (and hence mX1 ≈ mX2 ). This approximation
is well known in quasielastic nuclear processes, where it
allows meaningful bound nucleon electromagnetic structure
functions to be identified when considering FSI effects (see,
e.g., Ref. [53]). In the following, we proceed with the DWIA
derivations of on-shell [Eq. (24)] and off-shell [Eq. (25)]
hadronic tensors separately. We note also that the factorization
approximation breaks the explicit symmetry of Eqs. (24) and
(25) with respect to the “1” and “2” indices. However, in
numerical calculations this symmetry can be restored by taking
the average of results for the above factorization and one
following from the factorization of the J ν

γNX1
current from

the d3ps2 integration.
For the on-shell hadronic tensor we first express the

X1N → X2N invariant scattering amplitude through the
diffractive amplitude, imposing the condition for helicity
conservation in the form

〈pX2 ,sX2 ; ps2 ,ss2 |FNX1,NX2 (sXN,tXN )|pX1 ,sX1 ; ps1 ,ss1〉
= η(sXN,mX1 ) 〈pX2 ,ps2 |fNX1,NX2 (sXN,tXN )|pX1 ,ps1〉

× δss1 ,ss2
δsX1 ,sX2

, (26)

where η(sXN,mX1 ) =√
[sXN−(m−mX1 )2][sXN−(m+mX1 )2], with the

Mandelstam variables sXN = (pX1 + ps1 )2 = (pX2 + ps2 )2
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and tXN = (pX1 − pX2 )2 = (ps1 − ps2 )2. The amplitude
fNX1,NX2 is defined in the eikonal approximation,

fNX1,NX2 (tXN ) = σtot(i + ε) exp(βtXN/2), (27)

where σtot represents the total cross section of the scattering of
the produced X′ system from the spectator nucleon, β is the
slope factor, and ε represents the ratio of the real to imaginary
parts of the amplitude.

The approximation of helicity conservation allows the spin
summations in the electromagnetic current to be factorized
from the FSI. Combining then the factorized current J

μ†
γNX1

with J ν
γNX1

and δ(p2
X1

− m2
X1

), one obtains the hadronic tensor
of the bound nucleon W

μν
N (pi1,Q

2,mX1 ) using Eq. (18). In
the DWIA this tensor is defined by the same kinematical
conditions as the tensor in the Born term of Eq. (19), with the
invariant mass m2

X1
= (pD − ps1 + q)2 determined through

the integration over the spectator momentum ps1 , and the
momentum fraction of the initial struck nucleon is

x1 = Q2

2pi1 · q
= m x

MD − Es1 + ps1,z|q|/q0
< 1. (28)

Note that even though the kinematics entering in
W

μν
N (pi1,Q

2,mX1 ) are the same as for the Born contribution,

we still retain the subscripts “1” to distinguish these from the
kinematics after rescattering.

For the rescattering part of Eq. (24), the integration region
is restricted by the condition on the momentum fraction of the
final nucleon pi2 ,

x2 = Q2

2pi2 · q
< 1. (29)

The ps2,z integration in Eq. (24) is taken using the remaining
δ function,

δ
(
p2

X2
− m2

X2

) = 1

2

∣∣∣∣∣|q| − (MD + q0)
p̃X2

s2,z

Ẽs2

∣∣∣∣∣
−1

δ
(
ps2,z − p̃X2

s2,z

)
,

(30)
where Ẽs2 =√

m2+ p2
s2 ,⊥+(p̃

X2
s2 ,z)2, and p̃X2

s2,z
is obtained from the

solution of

2|q| p̃X2
s2,z

− 2(MD + q0)Ẽs2

= m2
X2

− M2
D + Q2 − 2MDq0 − m2. (31)

The FSI part of the structure function will then be defined
by the integration of the transverse component ps2,⊥ of
the spectator momentum. Combining the factorized inelastic
nucleon structure function with the on-shell part of the FSI
term of Eq. (24), one finally obtains for the on-shell FSI
contribution

W
μν(on)
FSI = −

∑
N

2m

MD

∫
d3 ps1

W
μν
N (pi1 ,q,mX1 )

8
√

Es1

1

3

∑
X2

∑
si ,ss ,sD

∫
d2 ps2,⊥
(2π )2

× Im

⎧⎨⎩ η(sXN,mX1 )f (on)
N{X1},NX2

(tXN )∣∣|q| − (MD + q0) p̃
X2
s2,z

/
Ẽs2

∣∣√Ẽs2

C
(
pi1 ,p̃

X2
i2

,q
)



sD†
D

(
p̃

X2
i2

,si ; p̃
X2
s2

,ss

)



sD

D (pi1,si ; ps1 ,ss)

⎫⎬⎭ , (32)

where the four-vectors p̃X2
s2

= (Ẽs2 ; ps2,⊥,p̃X2
s2,z

) and p̃
X2
i2

= pD − p̃X2
s2

, with {X1} denoting intermediate states that obey p2
X1

=
m2

X1
, and we use the shorthand notation si ≡ si1 = si2 and ss ≡ ss1 = ss2 . The symmetrization factor C(pi1 ,p̃

X2
i2

,q) accounts for
the choice of momenta at which the currents are evaluated in the factorization approximation (see Sec. IV below).

Using the solution of Eq. (31) one obtains the more explicit expression for the momentum fraction x2 entering in the FSI part
of Eq. (24),

x2 = 1

1 + [
m2

X2
− (

p̃
X2
i2

)2]/
Q2

≈ 1

1 + (
m2

X2
− m2

)/
Q2

. (33)

The important feature of this expression is that it shows that for any fixed value of mX2 , the FSI terms are suppressed kinematically
in the Bjorken limit, where x2 → 1.

For the off-shell part of the FSI amplitude of Eq. (25) one performs a similar factorization of the electromagnetic currents,
using helicity conservation in the rescattering amplitude [as in Eq. (26)]. The principal value integrations can be performed in
Eq. (25) employing the method outlined in Ref. [32], and using the analytic structure of the deuteron wave function one obtains

∫
P

dps,z



sD

D (pi,si ; ps,ss)

ps,z − p̃X
s,z

= −πp̃X
s,z
̃

sD

D

(
p̃X

i ,si ; p̃
X
s ,ss

)
, (34)

with 
̃
sD

D representing the distorted wave function of the deuteron whose explicit form is given in Ref. [32]. After performing
the above factorization and the principal value integrations over dpz

s1
and dpz

s2
for the off-shell part of the FSI of Eq. (25),
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one finds

W
μν(off)
FSI = 1

6MD

∑
N,X1,X2

∑
si ,ss ,sD

∫
d2 ps1,⊥ p̃X1

s1,z

J
μ†
γNX1

(
p̃

X1
i1

,si ; pX1 ,sX

)
J ν

γNX1

(
p̃

X1
i1

,si ; pX1 ,sX

)
8
∣∣|q| − (MD + q0) p̃

X1
s1,z

/
Ẽs1

∣∣√Ẽs1

×
∫

d2 ps2,⊥

(2π )2
p̃X2

s2,z
Im

⎧⎨⎩ η(sXN,mX1 )f (off)
NX1,NX2

(tXN )∣∣|q| − (MD + q0) p̃
X2
s2,z

/
Ẽs2

∣∣√Ẽs2


̃
sD†
D

(
p̃

X1
i1

,si ; p̃
X1
s1

,ss

)

̃

sD

D

(
p̃

X2
i2

,si ; p̃
X2
s2

,ss

)⎫⎬⎭ . (35)

However, to introduce an off-shell nucleon hadronic tensor W
μν(off)
N one needs to add an additional integral,

1 =
∫

dW 2 δ
(
p2

X1
− W 2), (36)

that allows the inelastic electromagnetic currents to be combined to form the hadronic tensor of the nucleon in the form of
Eq. (18). Finally, we obtain for the off-shell tensor

W
μν(off)
FSI =

∑
N,X2

2m

MD

∫
dW W

∫
d2 ps1,⊥ p̃X2

s1,z

W
μν(off)
N

(
p̃

X2
i1

,q,W
)

8
∣∣|q| − (MD + q0) p̃

X2
s1,z

/
Ẽs1

∣∣√Ẽs1

1

3

∑
si ,ss ,sD

∫
d2 ps2,⊥

(2π )2
p̃X2

s2,z

× Im

⎧⎨⎩ η(sXN,W )f (off)
N{X1}W ,NX2

(tXN )∣∣|q| − (MD + q0) p̃
X2
s2,z

/
Ẽs2

∣∣√Ẽs2

C
(
p̃

X2
i1

,p̃
X2
i2

,q
)

̃

sD†
D

(
p̃

X2
i1

,si ; p̃
X2
s1

,ss

)

̃

sD

D

(
p̃

X2
i2

,si ; p̃
X2
s2

,ss

)⎫⎬⎭ , (37)

where {X1}W here are intermediate states with p2
X1

= W 2.
Because the summation over X1 is absorbed in the definition
of the nucleon hadronic tensor in Eq. (18), the longitudinal
component of the initial spectator nucleon momentum p̃X2

s1,z
is

evaluated at mX2 in Eq. (31), because this will minimize tXN

(p̃X2
s1,z

≈ p̃X2
s2,z

). This maximizes the eikonal rescattering ampli-

tude f
(off)
N{X1}W ,NX2

(tXN ), allowing us to provide an estimate for
the maximum possible effect of FSI.

Notice that in Eq. (37) the nucleon hadronic tensor and
rescattering amplitude are computed at the Bjorken scaling
variables x1 and x2, respectively. They can be calculated using
the identity in Eq. (36) and the property of the principal value
integration in Eq. (34), which defines the longitudinal compo-
nent pi2,z through energy-momentum conservation [Eq. (31)].
This yields the approximate expressions

x1 ≈ 1

1 + (W 2 − m2)/Q2
and x2 ≈ 1

1 + (
m2

X2
− m2

)/
Q2

,

(38)

where W is the mass over which the bound nucleon hadronic
tensor is integrated, and mX2 is the mass of the intermediate
inelastic state produced in the rescattering. Similar to the on-
shell case, here too one finds that at large Q2 both x1 and
x2 → 1, suppressing the FSI contribution. We note that the
disappearance of the FSIs in the Bjorken limit is independent
of the factorization approximation, because, in general, the
values of x1 and x2 are defined by mX1 and mX2 [similar to
Eq. (38)]. The observation that in the Bjorken limit the FSIs
disappear follows therefore from the general property of the
eikonal approximation which assumes a rescattering between
effective hadronic states with masses mX1 and mX2 .

B. Constraints from SIDIS

In the earlier studies of FSI effects in SIDIS [32], the mass
produced in the intermediate state by the virtual photon scat-
tering from the moving nucleon was fixed by the kinematics
of the detected spectator nucleon. In the inclusive DIS case,
however, the sum must be taken in Eqs. (32) and (37) over all
possible intermediate inelastic states produced at the γ ∗NX
vertex that can rescatter from the spectator nucleon.

Inclusion of the complete set of states in Fig. 2(b) that
can contribute to the rescattering is, of course, not feasible,
and, in practice, a truncation of the spectrum is necessary,
which inevitably introduces an element of model dependence
into the calculation. From measurements of nucleon inelastic
structure functions at intermediate values of Q2, three clear
resonance structures are seen to dominate the spectrum in
the low-W region, as illustrated in Fig. 4, centered at masses
Wres = 1.232, 1.5, and 1.75 GeV. In the present model we do
not account for any relative phases between the amplitudes
for the different resonance contributions, so that our estimate
provides an upper bound on the size of the FSI effects in
this kinematic region. From Fig. 3 it is clear that for Wres <
1.75 GeV the value of xlim remains unity for Q2 as low as
4 GeV2 and is still reasonably high (xlim � 0.7) for Q2 = 2
GeV2, suggesting that the eikonal approximation for the three-
resonance model should be valid down to these Q2 values.

For larger invariant masses, above the resonance region, the
analysis [32] of deuteron SIDIS data [34] suggests that FSIs
yield sizeable contributions at the highest measured W bins
(W = 2.0 and 2.4 GeV) and should therefore also be included
in our numerical estimates. As discussed in Sec. I, however,
for large invariant masses the phase space for the intermediate
state becomes unrestricted and the closure relation is expected
to hold in inclusive scattering. To include contributions from
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FIG. 4. (Color online) F2 proton (solid lines) and neutron
(dashed lines) structure functions at Q2 = 2 GeV2 for the Alekhin
leading twist [54] (black), SLAC [55] (blue), and Christy and Bosted
(CB) [56] (red) parametrizations of F2.

the W � 2 GeV region, where no clear resonance structure
is visible, we consider specific widths in W and fold the
FSI contributions of Eqs. (32) and (37) with a distribution
in W , normalized to the values extracted from the analysis
of the SIDIS data [32]. This simple approximation allows the
effects of FSIs to be estimated at small x values, in addition
to those at large x which are determined by the resonance
contributions. Note, however, that care must be taken when
including contributions with high W (W � 3.5 GeV), as at
low Q2 values the intermediate states have momenta below the
limit where the eikonal approximation is known to be reliable.

The overall FSI contribution to the deuteron structure
function is therefore obtained by computing the total FSI
hadronic tensor,

W
μν(tot)
FSI =

∫
dmX2

[∑
res

δ(mX2 − Wres) + ρ(mX2 )

]
× (

W
μν(on)
FSI + W

μν(off)
FSI

)
, (39)

where the sum runs over the above-mentioned resonances and
ρ(mX2 ) denotes the spectral function representing the DIS
continuum region (W > 2 GeV). In the following section we
present numerical estimates for the FSI effects on the inclusive
deuteron structure functions.

IV. RESULTS

In this section we examine the effects of including the FSI
contribution to the inclusive DIS cross section of the deuteron
using the approach outlined in Sec. III. We present calculations
for the inclusive structure function FD

2 , which is related to the
semi-inclusive structure functions FD

L and FD
T discussed in

Ref. [32],

FD
2 =

∑
N

∫
d3 ps

(2π )22Es

[
FD

L (Q2,x̃, ps) + x

γ 2
FD

T (Q2,x̃, ps)

]
,

(40)

where γ 2 ≡ q2/q2
0 = 1 + 4x2m2/Q2, and the variable x̃ is

defined according to Eq. (28). Unless noted otherwise, we
use the SLAC parametrization [55] for the proton and neutron

FIG. 5. (Color online) Ratio of the deuteron F D
2 structure func-

tion with FSIs to that computed in the plane-wave (PW) approxima-
tion at Q2 = 5 GeV2, using only the on-shell amplitude in Eq. (32)
(a) and including also the off-shell contribution of Eq. (37) (b). The
results with the resonance region contributions alone (black solid
lines) are compared with those including a continuum component
with a Gaussian distribution (blue dashed lines) and a uniform
distribution (red dotted lines). The arrow along the x axis indicates
the boundary at W = 2 GeV between the resonance and DIS regions
for free nucleon kinematics.

structure functions, which covers a large range of W and Q2,
including the nucleon resonance structure. To parametrize the
W and Q2 dependence of the rescattering parameters entering
in Eq. (27), we use the results of the analysis [32] of the
semi-inclusive DIS data from Ref. [34]. For the ratio of the
real to imaginary parts of the cross section and the slope factor,
we take fixed values ε = −0.2 and β = 8 GeV2, respectively.
In the region of W between the �(1232) resonance and the
highest mass accessed in the experiment [34], W = W0 ≡ 2.4
GeV, the extracted cross section rises linearly with W while
falling with Q2,

σtot(W,Q2) = a + b W

Q2
, (41)

with the constants a = 25.3mb and b = 53mb/GeV fitted
to the analysis of Ref. [32]. At higher W , where the DIS
cross section exhibits scaling, we take σtot(W > W0,Q

2) =
σtot(W0,Q

2). To further account for the off-shell nature of
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FIG. 6. (Color online) Ratio of the deuteron F D
2 structure function including FSIs to that computed in the PW approximation, at several

values of Q2 from 2 to 50 GeV2. The on shell only results from Eq. (32) (blue shaded bands) and those including off-shell contributions from
Eq. (37) (orange shaded bands) span the range of models for the distribution of intermediate-state masses shown in Fig. 5. The arrows along
the x axis indicate the W = 2 GeV point at each Q2 value for free nucleon kinematics.

the inelastic intermediate states in the hadronic currents and
rescattering amplitude in Eq. (37), we introduce a suppression
factor [40] for the off-shell amplitude,

f
(off)
NX1,NX2

(tXN ) = f
(on)
NX1,NX2

(tXN ) exp
(
β

∣∣W 2 − m2
X2

∣∣/2
)
,

(42)

where W is the invariant mass that enters in the nucleon
hadronic tensor. For the nonrelativistic deuteron wave function
we use the parametrization based on the Paris NN potential
[57], but also compare the results with the CD-Bonn [58]
and WCJ-1 [59] wave functions. The symmetrization factor
C(pi1 ,pi2 ,q) introduced in Eqs. (32) and (37) is taken as

C(pi1 ,pi2 ,q) =
√

FN
2 (x2,Q2)

FN
2 (x1,Q2)

, (43)

where FN
2 is the nucleon structure function and ensures that

the kinematical constraints x1,x2 < 1 are taken into account.
The ratio of the FD

2 structure function evaluated including
the effects of FSIs to that with the pw contribution only
is illustrated in Fig. 5 at Q2 = 5 GeV2. The results with
the three resonance contributions alone are compared with
those that account also for the DIS continuum. For the shape
of the continuum spectral function ρ(mX2 ) in Eq. (39) we
consider two different parametrizations, based on Gaussian
and uniform distributions. The Gaussian distributions are
chosen to be centered at mX2 = {2, 2.5, 3.4} GeV, with
corresponding widths of {300, 500, 700} MeV, to correspond
to the values of the two highest W bins in Ref. [34]. The
uniform parametrization uses three distributions limited by

mX2 values of {1.85, 2.2, 2.8,4} GeV. While the two ρ(mX2 )
models exhibit quite different shapes, the difference between
them has only a very modest effect on the FD

2 ratios
in Fig. 5.

The inclusion of the FSI contribution generally suppresses
the FD

2 structure function by several percent, particularly at
high values of x, where the intermediate states have greatest
phase space available. With the resonance contributions only,
and for the on-shell rescattering amplitude, the structure
function is reduced by ≈1%−2% for x ≈ 0.6−0.7 and by
up to ≈3%−4% for x � 0.8. The effect of the continuum
contribution is to reduce FD

2 at lower values of x for
masses below the free nucleon threshold of W = 2 GeV
(corresponding to x � 0.6 at Q2 = 5 GeV2). The addition of
the off-shell FSI scattering amplitude in Eq. (42) curtails some
of the FD

2 suppression, to ≈2% up to x ≈ 0.9, with a strong
enhancement of the ratio above unity for x → 1, which is
largely independent of the details of the distribution of the
intermediate-state masses.

The Q2 dependence of the FSI contributions is illustrated in
Fig. 6 for FD

2 calculated in terms of on-shell-only amplitudes
and including the off-shell corrections. Here the bands envelop
the range of intermediate-state mass distributions considered in
Fig. 5, including the resonance components and the models for
the DIS continuum. For the on-shell part of the FSI amplitude
in Eq. (32) the largest effect is seen at the lowest Q2 values,
where the invariant masses of the resonances contributing to
the FSI amplitude are attained for x ≈ 0.4−1 and the Q2

suppression of the rescattering amplitude is weakest. The F 2
D

structure function ratio in this case is below unity for all values
of x, with the largest effect seen at x � 0.9, where FD

2 is
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FIG. 7. (Color online) Ratio of the deuteron F D
2 to isoscalar nu-

cleon F N
2 structure functions at Q2 = 2 GeV2 (a) and Q2 = 20 GeV2

(b). The PW results (black solid curves) are compared with those
including FSIs with the on-shell amplitude [Eq. (32)] (blue dashed
curves) and with the addition of the off-shell contribution of [Eq. (37)]
(red dotted curves). The arrows along the x axis indicate the W = 2
GeV boundary for free nucleon kinematics. The nucleon resonance
structures are clearly visible in the ratio at Q2 = 2 GeV2.

reduced by up to 20% at Q2 = 2 GeV2. At larger Q2, the effect
is significantly smaller, with FD

2 suppressed by less than 0.5%
at Q2 = 50 GeV2.

The contribution of the off-shell amplitude has the opposite
effect on FD

2 to that of the on-shell amplitude. The size of
the off-shell contribution is negligible at low x, but becomes
important at high x and low Q2. This behavior can be expected
if one considers a dynamical picture based on the analysis
of the propagation of the virtual particle in the intermediate
state of the reaction [60]. As with the on-shell term, the size
of the off-shell contribution becomes smaller with increasing
Q2, reflecting the suppression of FSI effects at large Q2. In
the high-x region all possible mX2 contributions included in
Eq. (39) are kinematically accessible for the phase space of the
produced X, so that all possible rescattering contributions can
play a role. We should stress, however, that (as noted above)
the curves in Fig. 6 represent the maximum possible effect of
the FSI contribution in our model.

To put the effects of the FSIs in a more familiar context,
in Fig. 7 we show the ratio of the deuteron FD

2 to isoscalar

FIG. 8. (Color online) Ratio of the deuteron F D
2 structure func-

tion with and without FSIs at Q2 = 2 GeV2 (a) and Q2 = 20 GeV2

(b). The results using the Paris deuteron wave function [57] (black
solid curves) are compared with those employing the CD-Bonn [58]
(blue dashed curves) and WCJ-1 [59] (red dotted curves) wave
functions.

nucleon FN
2 structure functions at Q2 = 2 and 20 GeV2 for the

pw calculation and with FSIs using the on-shell and off-shell
amplitudes. At the lower Q2 value the resonance structures are
clearly visible at large x (x � 0.4), with the ratios including
FSIs slightly lower in magnitude compared with the pw results.
With increasing Q2 the resonance peaks migrate to higher x,
revealing a smooth ratio with a trough at moderate x values
(x ∼ 0.6) and a large enhancement due to Fermi motion at
x → 1, typical of the “nuclear EMC effect” [7,13,17,18,44].
By Q2 = 20 GeV2 the impact of the FSIs on the structure
function ratio in the DIS region is negligible.

The sensitivity of these results to the specific model of
the deuteron wave function used in the calculation can be
seen in Fig. 8, where the ratios of the FD

2 structure functions
with and without FSIs are shown for the Paris [57], CD-Bonn
[58], and WCJ-1 [59] NN potential models. For comparison,
we consider here the rescattering model involving only FSI
contributions from the resonance region. This choice of wave
functions spans the maximal range of effects possible using
modern, high-precision NN potentials [7]. Except at very high
x values (x � 0.8), where the FD

2 is most sensitive to the
short-range structure of the deuteron, the effects of the different
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deuteron wave functions is very small, in both the resonance
and DIS kinematics. This result gives us some confidence
that the findings of the FSI calculation are relatively robust
and not strongly dependent on the details of the deuteron
structure.

V. CONCLUSION

In this work we have presented a first quantitative analysis
of the effects of FSIs in inclusive DIS from deuterium.
Using the optical theorem and the properties of high-energy
diffractive rescattering, a general result was derived within
the GEA for the FSI contribution to the inclusive DIS
deuteron cross section. To obtain numerical estimates of the
FSI corrections we introduced a factorized model expressed
through the bound-nucleon inelastic structure functions and
the sum of hadronic rescattering amplitudes. The contributions
to the rescattering amplitudes were modeled in terms of a set
of three resonances with masses W < 2 GeV and a continuum
spectrum for the DIS region at W � 2 GeV. The particular
structure of these intermediate states was motivated by recent
analyses [32] of spectator proton production data in SIDIS
from the deuteron [34].

The formalism developed here includes on-shell and off-
shell contributions to the rescattering amplitude, the latter
of which introduces some degree of model dependence.
Importantly, however, we find that within this framework
the FSI corrections vanish in the limit of large Q2 because
of phase-space constraints, independent of the details of the
intermediate hadronic states. Numerically, we find sizeable
FSI contributions to the inclusive FD

2 structure function at
Q2 � 10 GeV2 and x � 0.4. Generally, the on-shell rescat-
tering amplitude lowers the value of the structure function,
with the effects most prominent at high x and low Q2,
with a decrease of up to 20% found at Q2 = 2 GeV2

as x → 1.

The off-shell contributions to the rescattering generally
enter with the opposite sign relative to the on-shell contri-
butions, and in the x � 0.8 region where their effects are
most important they increase the magnitude of the deuteron
structure function. Estimating the parameters that determine
the off-shell contribution is difficult, however, and in our
calculations we use the difference between the on-shell and
off-shell results as an estimate on the uncertainty of the FSI
corrections. In contrast, the dependence of the results on the
deuteron wave function is found to be significantly smaller
than the typical size of the FSI effects.

Our overall conclusion is that at x � 0.6 and Q2 � 10 GeV2

the FSI effects can contribute to the deuteron FD
2 structure

function at the level of 2%−5% and should be considered in
extractions of the neutron structure function from inclusive
deuteron data at low Q2. At larger Q2 values (Q2 � 10 GeV2)
in the deep-inelastic region the FSI effects are found to be
negligible. Future data on tagged structure functions in SIDIS
from the deuteron over a broader range of Q2 and W would be
very helpful in further constraining the shape and magnitude
of the FSI contributions to inclusive deuteron DIS. In this
respect, the planned “BONuS” experiment [61] at the energy-
upgraded CEBAF accelerator at Jefferson Lab has the potential
to provide new empirical guidance.
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