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ABSTRACT. This paper studies an infinite-server queue in a Markov environment, that is, an infinite-
server queue with arrival rates and service times depending on the state of a Markovian background
process. We focus on the probability that the number of jobs in the system attains an unusually high
value. Scaling the arrival rates λi by a factor N and the transition rates νij of the background process
as well, a large-deviations based approach is used to examine such tail probabilities (where N tends
to ∞). The paper also presents qualitative properties of the system’s behavior conditional on the rare
event under consideration happening.
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1. INTRODUCTION

Queues with infinitely many servers have found widespread use in various application domains,
often as an approximation for models with many servers. In these systems jobs arrive, are served in
parallel, to leave when their service is completed. While rooted in communication networks, where
the so-called Erlang model describes the dynamics of the number of calls in progress, applications
in various other domains have been explored, such as road traffic [19] and biology [16, 17].
In the standard infinite-server model, referred to as M/G/∞, jobs arrive according to a Poisson
process with rate λ, where their service times form a sequence of independent and identically
distributed (i.i.d.) random variables (distributed as a random variable B with finite first moment),
independent of the call arrival process. In such M/G/∞ systems, a key result states that the
stationary number of jobs in the system obeys a Poisson distribution with mean λEB (irrespective
of the precise distribution of the service times). This basic infinite-server system may be considered
somewhat restrictive, though: in many practical situations the assumptions of a constant arrival
rate and the jobs stemming from a single distribution are not realistic. A model that allows the
input process to exhibit some sort of ‘burstiness’ is the so-called Markov-modulated infinite-server
queue. In this model, a finite-state irreducible continuous-time Markov process (often referred to
as the background process, or modulating process) modulates the input process: if the background
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process is in state i, the arrival process is a Poisson process with rate, say, λi, while the service
times are distributed as a random variable, say, Bi (while the obvious independence conditions
are imposed).
The Markov-modulated infinite-server queue has attracted some attention in recent years (but
substantially less than the corresponding Markov-modulated single-server queue). The main focus
in the literature so far has been on characterizing (through the derivation of moments, or even
the full probability generating function) the steady-state number of jobs in the system. The most
striking feature is that the number of jobs in the system still has a Poisson distribution, but now
with a random parameter; a few key references are [5, 8, 11, 15]. Interestingly, under an appropriate
time-scaling [2, 9] in which the transitions of the background process occur at a faster rate than
the Poisson arrivals, we retrieve the Poisson distribution (with a deterministic parameter, that is)
for the steady-state number of jobs in the system. Recently, transient results have been obtained
as well, under specific scalings of the arrival rates and transition times of the modulating Markov
chain [2, 3].

Contribution. In this paper we focus on Markov-modulated infinite-server queues in a large-
deviations setting. More precisely, we study the probability that the number of jobs present in
the system at some time t attains some unusually high value. In the past in two short papers we
have identified the corresponding tail asymptotics in two specific regimes: (i) one in which the
transitions of the background process occur at a considerably slower rate than the job arrivals [1],
and (ii) one in which the transitions of the background process occur at a considerably faster rate
than the job arrivals [4]. In both cases the large deviations are those of a Poisson random vari-
able; in the former case the (non-trivial) parameter value corresponds to the background process’
‘worst-case behavior’ (constructed so as to build up as many jobs as possible), whereas in the lat-
ter case the system essentially behaves as a standard M/G/∞ queue with appropriately chosen
arrival rate and service times (e.g., this arrival rate is a weighted sum of the λi, where the weights
follow from the equilibrium distribution of the background process). These papers, however, do
not cover the (technically challenging) case in which the timescale of the jumps of the background
process and the timescale of the arrival process grow in a proportional manner, and it is a large
deviations analysis of this linear regime that we present in this paper.
More formally, in our analysis we replace the arrival rates λi byNλi, whereas the transition rates of
the background process νij are replaced by Nνij ; the service time distributions are left unchanged.
With M (N)(t) denoting the number of jobs in the system (starting empty) at time 0, the decay rate
of P(M (N)(t) ≥ Na) is identified, for a > EM (N)(t)/N , in the regime that N → ∞. As it turns
out, this decay rate can be expressed in terms of the solution to a variational problem. In the paper
we specialize to the case that the dimension d of the background process equals 2; it is indicated,
though, how the analysis should be adapted for d ∈ {3, 4, . . .}.

Organization. The organization of the rest of this paper is as follows. In Section 2, we provide a
detailed model description and introduce some notation. Section 3 states and proves the main re-
sult of this paper, viz. an expression for the decay rate under study as the solution to a variational
problem. Next, in Section 4, we discuss techniques for numerically solving this variational prob-
lem. Next, Section 5, contains some discussion of the results as well as a number of concluding
remarks. Finally, numerical results are provided in Section 6.
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2. MODEL DESCRIPTION

As mentioned above, this paper studies an infinite-server queue with Markov-modulated Poisson
arrivals and general service times. In full detail, the model can be described as follows.
Consider an irreducible continuous-time Markov process (J(t))t∈R on a finite state space {1, . . . , d},
with d ∈ N. Its rate matrix is given by (νij)

d
i,j=1. Let πi the stationary probability that the back-

ground process is in state i, for i = 1, . . . , d. The time spent in state i (often referred to as the
transition time) has an exponential distribution with mean 1/νi, where νi := −νii.
While the process (J(t))t∈R, also called the background process or modulating process, is in state i,
jobs arrive according to a Poisson process with rate λi ≥ 0. The queueing model is an infinite-server
queue: jobs are served in parallel – in other words: the sojourn time of a job equals its service time.
The service times are assumed to be i.i.d. samples distributed as a random variable Bi if the job
was generated when the background process was in state i. The usual independence assumptions
apply. It is noted that we exclude the case that all λi as well as the distributions of the Bi coincide
(as otherwise the queue is just an ordinary M/G/∞).
In the sequel, we specialize to the case of a two-state background process (d = 2), and the random
variableBi corresponding to an exponential distribution with mean µ−1

i . In the discussion section,
we indicate how these assumptions can be relaxed.

3. MAIN RESULT

In this paper, we consider the scaling νi 7→ Nνi, for i = 1, 2. We call the resulting background
process (J (N)(s))s∈R; in this scaling the background process jumps N times as fast. In addition,
the arrival rates are scaled by N as well: λi 7→ Nλi. The objective of the section is to identify the
tail asymptotics of the number of jobs present in our Markov-modulated infinite server at time
t under this scaling. We let M (N)(t) denote the number of jobs in the system at time t, in the
N -scaled model, where it is assumed that the system starts empty at time 0.
Let

F := {f : [0, t]→ [0, 1]};

the set F should be interpreted as trajectories of the empirical process associated to the back-
ground process, in that f(t) = x informally means that around time t the process spends a fraction
of time x in state 1 (and hence a fraction 1− x in state 2).
Let L(N)(0, s) denote the fraction of time theN -scaled background process spends in state 1 during
the interval [0, s]. It is known that L(N)(0, 1) satisfies a large deviations principle [6, 12] with rate
function

I(x) =
(√

ν1x−
√
ν2(1− x)

)2

.

We denote by L(0, s) the fraction of time spent in state 1 by the non-timechanged process.
Then define

κ(f) :=

∫ t

0

(
f(s)λ1e

−µ1(t−s) + (1− f(s))λ2e
−µ2(t−s)

)
ds,

as well as

Ip(λ, x) = λ− x+ x log
x

λ
,

which is the large-deviations rate function of a Poisson random variable with parameter λ.
In the following theorem, we claim thatM (N)(t) decays exponentially, with a decay rate that results
from a variational problem.
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Theorem 1. Let a be larger than

%t :=
EM (N)(t)

N
=

1

ν1 + ν2

(
ν2λ1

µ1
(1− e−µ1t) +

ν1λ2

µ2
(1− e−µ2t)

)
.

Then

(1) lim
N→∞

1

N
logP

(
M (N)(t) ≥ Na

)
= − inf

f∈F

(
Ip(κ(f), a) +

∫ t

0

I(f(s))ds

)
.

In the sequel, we denote by f?(·) the optimizing path in the right-hand side of (1). Later we
establish the claim that it solves the equation

A(s) +
aA(s)

B
= ν1 − ν2 +

1− 2f(s)√
f(s)(1− f(s))

√
ν1ν2,

where

A(s) := λ1e
−µ1(t−s) − λ2e

−µ2(t−s), B :=

∫ t

0

(
f(r)λ1e

−µ1(t−r) + (1− f(r))λ2e
−µ2(t−r)

)
dr.

As f(·) also appears in the expression for B, this is an implicit equation for f?(·), which is not
directly solvable. We mention that in 4 we discuss a numerical method to evaluate f?(·), as well as
a perturbation approach which yields closed-form expressions for the first few expansion terms.
Owing to its intuitive interpretation, the path f?(·) is often referred to as the optimal path or most
likely path; this in means that, conditional on the rare event under consideration, the state frequen-
cies follow, with overwhelming probability, a path close to f?(·). This intuition is made more
explicit in the proof below.

Proof. of Thm. 1. The starting point of the proof is the insight thatM (N)(t) has a Poisson distribution
with random mean, cf. [2, 5]. More specifically, it holds that

P
(
M (N)(t) ≥ Na

)
= P

(
P (N)

(
ϕ
(
J (N)

))
≥ Na

)
,

with

ϕ(f) :=

∫ t

0

λf(s)e
−µf(s)·(t−s)ds;

here P (N)(λ) is a Poisson random variable with mean Nλ.

Lower bound. Let x be an arbitrary vector in [0, 1]
√
N . Pick an arbitrary δ > 0. Define the event,

with ∆(xi) := (xi − δ, xi + δ),

E (x, N) :=

{
L(N)

(
0,

t√
N

)
∈ ∆(x1), . . . , L(N)

(
t− t√

N
, t

)
∈ ∆(x√N )

}
.

(For notational convenience we here assume that t is a multiple of 1/
√
N and that

√
N is an integer;

it is readily checked, though, that these assumptions have no impact on the validity of the claims.)
We obtain the obvious lower bound

P
(
P (N)

(
ϕ
(
J (N)

))
≥ Na

∣∣∣ E (x, N)
)
P (E (x, N)) ,



MARKOV-MODULATED INFINITE-SERVER QUEUES 5

for any x ∈ [0, 1]
√
N . Let us first consider the decay rate of P (E (x, N)). It is clear that

P (E (x, N)) ≥

√
N∏

i=1

max
ji∈{1,2}

P
(
L(N)

(
0,

t√
N

)
∈ ∆(xi)

∣∣∣∣ J (N)(0) = ji

)

=

√
N∏

i=1

max
ji∈{1,2}

P
(
L
(

0, t
√
N
)
∈ ∆(xi)

∣∣∣ J(0) = ji

)
.

Because of Prop. 1 (use the uniformity!), we have that N large enough, there is a sequence (Ci)i,
bounded away from 0, such that for all i = 1, . . . ,

√
N ,

max
ji∈{1,2}

P
(
L
(

0, t
√
N
)
∈ ∆(xi)

∣∣∣ J(0) = ji

)
≥ Ci

t
√
N
e−t
√
N max{I(xi−δ),I(xi+δ)}.

It follows that

lim inf
N→∞

1

N
logP (E (x, N)) ≥ lim inf

N→∞

√
N∑

i=1

(
1

N
log

(
Ci

t
√
N

)
− t√

N
max{I(xi − δ), I(xi + δ)}

)

= lim inf
N→∞

√
N∑

i=1

(
− t√

N
max{I(xi − δ), I(xi + δ)}

)
.

Realize that this lower bound holds for any xi; letting xi := f?(it/
√
N), we obtain the lower bound,

after letting δ ↓ 0,

lim inf
N→∞

1

N
logP (E (x, N)) ≥ −

∫ t

0

I(f?(s))ds.

Let us now determine a lower bound on the decay rate of

(2) P
(
P (N)

(
ϕ
(
J (N)

))
≥ Na

∣∣∣ E (x, N)
)
.

Recall the stochastic monotonicity of the Poisson random variable with respect to its mean value:

P (N)(η1) ≥st P
(N)(η2) if η1 ≥ η2.

We therefore need to find a lower bound on ϕ(J (N)) conditional on E (x, N); it is immediate that
the following lower bound applies:

√
N∑

i=1

∫ it/
√
N

(i−1)t/
√
N

NλJ(N)(s)e
−µ

J(N)(s)
·(t−s)

ds ≥ t
√
N ψδ(x, N),

where ψδ(x, N) is defined by
√
N∑

i=1

(
(xi − δ)λ1 exp

(
−µ1t

(
1− i− 1√

N

))
+ (1− xi − δ)λ2 exp

(
−µ2t

(
1− i− 1√

N

)))
.

It follows that the decay rate of (2) is bounded from below by

− t√
N
ψδ(x, N) + a lim inf

N→∞
log
(
t
√
Nψδ(x, N)

)
− lim sup

N→∞

1

N
log dNae!.

By a straightforward application of ‘Stirling’, plugging in xi := f?(it/
√
N), and letting δ ↓ 0, we

have that this converges to

a− κ(f?)− a log
a

κ(f?)
,

as desired. This completes the lower bound.
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Upper bound. Partition [0, 1] into [0, δ), [δ, 2δ), . . . , [1−δ, 1] (assuming 1 is a multiple of δ). In this way
we can partition [0, 1]

√
N into (1/δ)

√
N ‘cubes’, which we denote by Si, with i = 1, . . . , (1/δ)

√
N .

Define

F (i,N) :=

{(
L(N)

(
0,

t√
N

)
, . . . , L(N)

(
t− t√

N
, t

))
∈ Si

}
.

We thus obtain the upper bound

(1/δ)
√

N∑
i=1

P
(
P (N)

(
ϕ
(
J (N)

))
≥ Na

∣∣∣ F (i,N)
)
P (F (i,N)) .

The decay rate of this expression is bounded from above by

lim sup
N→∞

1

N
log

1

δ
√
N

+ lim sup
N→∞

1

N

(1/δ)
√

N

max
i=1

logP
(
P (N)

(
ϕ
(
J (N)

))
≥ Na

∣∣∣ F (i,N)
)
P (F (i,N)),

where the first lim sup obviously vanishes.
We first find an upper bound on ϕ(J (N)) for x ∈ Si. Similar to what we did above in the lower
bound, we obtain the upper bound t

√
Nψ̄δ(x,

√
N), with ψ̄δ(x, N) defined as

N∑
i=1

(
(xi + δ)λ1 exp

(
−µ1t

(
1− i+ 1

N

))
+ (1− xi + δ)λ2 exp

(
−µ2t

(
1− i+ 1

N

)))
.

As a result, due to the Chernoff bound,

logP
(
P (N)

(
ϕ
(
J (N)

))
≥ Na

∣∣∣ F (i,N)
)
≤ Na− t

√
Nψ̄δ(x,

√
N)− aN log

a
√
N

tψ̄δ(x,
√
N)

.

In addition, define

Ī(x, N) :=

N∑
i=1

I(xi).

Combining the above, the decay rate of interest is bounded from above by

lim sup
N→∞

(1/δ)
√

N

max
i=1

max
x∈Si

(
a− a log a− tψ̄δ(x,

√
N)√

N
+ a log

tψ̄δ(x,
√
N)√

N
− t̄I(x,

√
N)√

N

)
.

Letting δ ↓ 0, we obtain the upper bound

lim sup
N→∞

max
x∈[0,1]

√
N

(
a− a log a− tψ̄0(x,

√
N)√

N
+ a log

tψ̄0(x,
√
N)√

N
− t̄I(x,

√
N)√

N

)
.

It is straightforward to see that this expression coincides with

lim sup
N→∞

max
x∈[0,1]N

ξ(x, N), where ξ(x, N) := a− a log a− tψ̌0(x, N)

N
+ a log

tψ̌0(x, N)

N
− t̄I(x, N)

N
,

and

ψ̌0(x, N) :=

N∑
i=1

(
xiλ1 exp

(
−µ1t

(
1− i

N

))
+ (1− xi)λ2 exp

(
−µ2t

(
1− i

N

)))
.

Now optimize this expression with respect to xi, with x1, . . . , xi−1, xi+1, . . . , xN given. To this end,
we first define

Ai := λ1 exp

(
−µ1t

(
1− i

N

))
− λ2 exp

(
−µ2t

(
1− i

N

))
,
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and

Bi ≡ Bi(x1, . . . , xi−1, xi+1, . . . , xN ) := ψ̌0(x, N)−
N∑
i=1

Aixi,

which does not depend on xi. It is seen that ξ(x, N) can be written in an alternative fashion as

ξ(x, N) =

N∑
i=1

(
a− a log a+Aixi ·

t

N
+Bi ·

t

N
+ a log

(
Aixi ·

t

N
+Bi ·

t

N

)
− t̄I(x, N)

N

)
,

such that

∂ξ

∂xi
=

t

N

(
Ai +

aAi
Aixi +Bi

− I′(xi)
)
,

∂2ξ

∂x2
i

=
t

N

(
−aA2

i

(Aixi +Bi)2
− I′′(xi)

)
.

Conclude that, owing to the convexity of I(x), the function ξ(x, N) is concave in xi ∈ [0, 1]. The
maximum is attained in the open interval (0, 1), as the derivative of ξ is −∞ in 0 and∞ in 1. The
optimizer x̄(N)

i necessarily solves the first-order condition

Ai +
aAi

t/N(Aixi +Bi)
= ν1 − ν2 −

1− 2xi√
xi(1− xi)

√
ν1ν2,

and is the unique solution in (0, 1). It follows that x̄(N)
sN/t converges, as N →∞ to f?(s); realize that

f?(s) solves

A(s)
(

1 +
a

B

)
= ν1 − ν2 −

1− 2f(s)√
f(s)(1− f(s))

√
ν1ν2,

where

A(s) := λ1e
−µ1(t−s) − λ2e

−µ2(t−s), B :=

∫ t

0

(
f(r)λ1e

−µ1(t−r) + (1− f(r))λ2e
−µ2(t−r)

)
dr.

In fact, this convergence is uniform on s ∈ [0, t], due to the regularity of the functions involved;
additional support for this claim can be found in Section 4.1.
We thus get that

lim sup
N→∞

ξ(x̄(N), N) = lim sup
N→∞

(
a− a log a− tψ̌0(x̄(N), N)

N
+ a log

tψ̌0(x̄(N), N)

N
− t̄I(x̄(N), N)

N

)
,

which converges to

a− κ(f?)− a log
a

κ(f?)
+

∫ t

0

I(f?(s))ds,

as desired.

4. COMPUTATION OF THE MOST LIKELY PATH

In this section we first present a numerical scheme for identifying the optimal path f?(·). Then we
consider the situation in which the arrival and service rates are just slightly non-uniform (that is,
λ1 := λ+ γε, µ1 := µ+ δε, λ2 := λ, and µ2 := µ for ε small); for this situation we expand the decay
rate in ε.
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4.1. Numerical procedure. We first demonstrate how the most likely path f?(·) can be evaluated.
To this end, write B = I + g, with

I =

∫ t

0

f(r)A(r)dr, g :=
λ2

µ2
(1− e−µ2t).

Also, write the first-order condition as V (s) = h(f?(s)), with

V (s) :=
1

√
ν1ν2

(
ν1 − ν2 −A(s)

(
1− a

I + g

))
, h(x) =

1− 2x√
x(1− x)

.

It is readily verified that

h′(x) = − 1

2(x(1− x))3/2
< 0,

and hence h(·) decreases from∞ to −∞ in the interval (0, 1). We conclude that there is a unique
solution to the first order equation. It takes some calculus to verify that

f?(s) =
1

2

(
1− V (s)√

4 + V 2(s)

)
=

1

2
+

1

2

A(s) (1 + a/(I + g))− ν1 + ν2√
(A(s)(1 + a/(I + g))− ν1 + ν2)2 + 4ν1ν2

.

It remains to identify the unknown I . This can be done by solving

I =
1

2

∫ t

0

A(s)ds+
1

2

∫ t

0

A2(s) (1 + a/(I + g))−A(s)(ν1 − ν2)√
(A(s)(1 + a/(I + g))− ν1 + ν2)2 + 4ν1ν2

ds.

The integral in the right hand side of the previous display cannot be solved explicitly; we have to
resort to a numerical procedure. Bisection can be used; observe that

I ∈
[
−λ2

µ2
(1− e−µ2t),

λ1

µ1
(1− e−µ1t)

]
.

In the pre-limit case, the optimizer x̄(N)
i can be found similarly. Realize that −λ2 ≤ Ai ≤ λ1, so

that x̄(N)
i solves

Ai +
aAi
tBi/N

= ν1 − ν2 +
1− 2xi√
xi(1− xi)

√
ν1ν2 + e(N),

where the error term e(N) is (in absolute value) smaller than a constant multiplied by 1/N , uni-
formly in i. Interpreting tBi/N , with N → ∞, as a Riemann integral, and using the fact that the
functions involved are well-behaved, it follows that

lim
N→∞

x̄
(N)
sN/t → f?(s)

uniformly in s.

4.2. Perturbation. In this subsection we consider the ε-perturbed model:

λ1 := λ+ γε, µ1 := µ+ δε, λ2 := λ, µ2 := µ.

Our objective is to investigate the expansions f?(s) =
∑∞
k=0 ε

k(f?)(k)(s), A(s) =
∑∞
k=0 ε

kA(k)(s),

V (s) =
∑∞
k=0 ε

kV (k)(s), and I =
∑∞
k=0 ε

kI(k). The ultimate goal is to find explicit expressions for
the first terms appearing in the expansion of I .
The zero-th order terms can be found after elementary calculations; as it turns out, (f?)(0)(s) =

ν2/(ν1 + ν2) = π1; A(0)(s) = 0; V (0)(s) = (ν2 − ν1)/
√
ν1ν2 and I(0) = 0. We now seek to quantify

the effect of deviations from the uniform case (i.e., deviations from the situation that ε = 0). More
concretely, we pursue finding the first and second order terms of f?(·) and I .
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Note that

A(k)(s) =
(−1)k

k!
(δ(t− s))k−1(λδ(t− s)− kγ)e−µ(t−s).

In particular, we have that

A(1)(s) := (γ − λδ(t− s))e−µ(t−s), A(2)(s) :=

(
1

2
λδ2(t− s)2 − γδ(t− s)

)
e−µ(t−s).

In the following, we need the following three integrals that can be computed with routine calculus:∫ t

0

A(1)(s)ds =
µγ − δλ
µ2

(
1− e−µt

)
− δλt

µ
e−µt,∫ t

0

A(1)(s)2ds =
1

4µ3

(
2µ2γ2 − 2δλµγ + δ2λ2

− e−2µt
(
2µ2γ2 − 4γδλµ2t+ 2γδλµ+ 2δ2λ2µ2t2 + 2δ2λ2µt+ δ2λ2

))
,∫ t

0

A(2)(s)ds = − δ

µ3
(µγ − δλ)

(
1− e−µt

)
+

δ

2µ3

(
2γµ2t− δλµ2t2 − 2δλµt

)
e−µt;

in the sequel, we refer to these integrals by A1, A1,2, and A2, respectively. From the definition
of I and the fact that A(s) has no zero-th order term in ε, we immediately find the linear terms
corresponding to I :

I(1) =

∫ t

0

A(1)(s)(f?)(0)(s)ds =
ν2

ν1 + ν2

∫ t

0

A(1)(s)ds = π1A1.

The second term in the expansion of I is harder to find, though. To this end, we first determine
the linear term in the expansion of f?(·). From the definition of V (·) we directly identify its linear
term:

V (1)(s) = −1 + a/g
√
ν1ν2

A(1)(s).

As a consequence,

(f?)(1)(s) = − 2V (1)(s)

(4 + V (0)(s)2)
3
2

= 2A(1)(s)

(
1 +

a

g

)
2ν1ν2

(ν1 + ν2)3
.

From this, we find that

I(2) =

∫ t

0

(
A(2)(s)(f?)(0)(s) +A(1)(s)(f?)(1)(s)

)
ds = π1A2 + 2

(
1 +

a

g

)
2ν1ν2

(ν1 + ν2)3
A1,2.

The last two coefficients we determine are V (2)(s) and (f?)(2)(s):

V (2)(s) =
1

√
ν1ν2

(
−A(2)(s)

(
1 +

a

g

)
+

a

g2
A(1)(s)I(1)

)
,

(f?)(2)(s) =
2V (0)(s)2V (2)(s) + 8V (2)(s)− 3V (0)(s)V (1)(s)2

(4 + V (0)(s)2)
5
2

.

We have now collected all necessary ingredients to find the first terms in the expansion of the
decay rate of the probability of our interest. We first focus on the ‘Poisson term’, and note that
κ(f) = I + g, so that we have

Ip(κ(f?), a) = I(ε) + g − a+ a log
a

g + I

= g − a+ a log
a

g
+

(
1− a

g

)
I(1)ε+

((
1− a

g

)
I(2) +

a

2g2
(I(1))2

)
ε2 + o(ε2).



10 K.E.E.S. DE TURCK †, M.R.H. MANDJES •,?

As for the ‘Markov term’, recall that (f?)(0)(s) = π1. It follows directly that both I(π1) = 0 and
I′(πi) = 0, whereas

I′′(π1) =
(ν1 + ν2)3

2ν1ν2
.

Elementary algebra now yields∫ t

0

I(f?(s))ds =
1

2

(∫ t

0

ε2
(

(f?)(1)(s)
)2

ds

)
I′′(π1) + o(ε2)

= ε2

(
1 +

a

g

)2
ν1ν2

(ν1 + ν2)3
A1,2.

The expansion can be continued indefinitely. Indeed, from (f?)(n)(s), we find I(n+1) via the defi-
nition of I . In turn, (f?)(n)(s) can be written in terms of V (k)(s), k = 0, . . . , n, which then allows
an expansion in terms of I(k), k = 1, . . . , n − 1. Also, it follows by induction that all integrands
have the form of a polynomial function multiplied by an exponential, and can thus be evaluated
in closed form in terms of incomplete beta functions.

5. DISCUSSION AND RAMIFICATIONS

5.1. Extensions. In this section, we list a number of extensions to the results presented in the
previous sections. Here we do not strive for complete proofs of these statements. Sometimes only
a minor variation of the proof in Section 3 is needed, in other instances the proof requires more
technical work. In all cases, we provide a heuristic justifications for the presented results.

� Theorem 1 characterized the decay rate of ‘overflow’ events, i.e., a > ρt. We can follow
exactly the same reasoning for underflow events, that is

lim
N→∞

1

N
logP

(
M (N)(t) ≤ Na

)
for a < ρt. In particular, we obtain the same expression for the decay rate.

� We can extend the results from exponential service times to general service times by sub-
stituting th expression for κ(f) by

κB(f) :=

∫ t

0

(f(s)λ1(1−B1(t− s)) + (1− f(s))λ2(1−B2(t− s))) ds,

where B1(·), B2(·) denote the cumulative distribution functions of the service times of jobs
corresponding to the first and second background state.

� In case of more than two background states, the behavior of the background Markov chain
is recorded in d functions fi : [0, t]→ [0, 1], i = 1, . . . , d, under the constraint that

∑
i fi(s) =

1,∀s ∈ [0, t]. Regarding the ‘Poisson part’, in this case our ‘twodimensional’ κ(f) needs to
be replaced by its ‘multidimensional counterpart’:

κ(f) :=

∫ t

0

(
d∑
i=1

fi(s)λie
−µi(t−s)

)
ds.

The ‘Markov part’ changes more pervasively as there is in general no explicit expression
like for I(·) anymore, nor can we hope to find the optimal path f?(·) with a relatively simple
procedure as the one we presented in Section 4.
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Indeed, the equivalent of I [6, 7] for (irreducible) continuous-time Markov chains with a
state space of size d is:

I(x) = sup
u>0

[
−

d∑
i=1

xi
(Qu)i
ui

]
,

where x, u are the positive d-dimensional vectors, with
∑d
i=1 xi = 1. In case Q is symmet-

ric, the supremum can be evaluated explicitly:

I(x) = −
d∑

i,j=1

√
xiνij

√
xj .

Symmetric Markov chains, which satisfy the detailed balance equation πiνij = πjνji, form
another class of Markov chains that have an explicit rate function for the occupation mea-
sure:

I(x) = −
d∑

i,j=1

πi

√
xi
πi
νij

√
xj
πj
,

of which, evidently, the expression for the two-dimensional Markov chain is a special case.
� We can also find the large deviations of the job populations split based on their ‘types’: jobs

of type i arrive at times when the background chain is in state i and have a corresponding
service rate µi, with i = 1, 2. With a similar proof as in Section 3, we can establish that

lim
N→∞

1

N
logP

(
M

(N)
i (t) ≥ Nai, i = 1, 2

)
= − inf

f∈F

(
2∑
i=1

Ip(κi(f), ai) +

∫ t

0

I(f(s))ds

)
,

where M (N)
1 (t) (resp. M (N)

2 (t)) denotes the user population at time t of type 1 (resp. of
type 2), while κ1(f) and κ2(f) are given by

κ1(f) =

∫ t

0

f(s)λ1 exp(−µ1(t− s))ds; κ2(f) =

∫ t

0

(1− f(s))λ2 exp(−µ2(t− s))ds.

The corresponding optimum path can be found by a procedure similar to the one presented
in Section 4.1.

� From the previous result, we can determine the contribution of each population to the
overflow event

{
M (N)(t) ≥ Na

}
, indeed, by the contraction principle , we have that the

decay rate of this overflow event satisfies

− inf
a1+a2=a

inf
f∈F

(
2∑
i=1

Ip(κi(f), ai) +

∫ t

0

I(f(s))ds

)
The optimal function f?(·) is the same that optimizes the original variational problem. It
takes some calculations involving Lagrange multipliers to see that the optimal a1 and a2

equal

a1 =
κ1(f?)

κ1(f?) + κ2(f?)
a; a2 =

κ2(f?)

κ1(f?) + κ2(f?)
a.

Informally, each job type contributes to the overflow event proportionally with the corre-
sponding Poisson rate κi(f?).

� Next, we can also consider non-zero starting conditions, that is, at time 0 there is a popula-
tion of Na1(0) jobs of type 1 and of Na2(t) jobs of type 2. The amount of jobs of type i that
is still in the system at time t can be seen as a sum of Nai(0) Bernoulli random variables
with success probability e−µit.
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Recall that a Bernoulli random variable with success probability p has the following large-
deviations rate function:

Ib(p, x) = x log

(
x

p

)
+ (1− x) log

(
1− x
1− p

)
.

It is now seen that the decay rate of the system with a non-empty starting condition is the
solution of the following variational problem:

− inf

(
2∑
i=1

Ip(κi(f), ai − xiai(0)) + Ib(e
−µit, xi) +

∫ t

0

I(f(s))ds

)
,

where the minimization should be performed over f ∈ F , x1 and x2 in [0, 1], and ai ≥
xiai(0) (for i = 1, 2).

We conclude this subsection by mentioning that the last three extensions can be combined into a
procedure for computing the most probable build-up path of each of the job populations; we do
not provide the details here.

5.2. Interpretation. As observed above, the formula for the decay rate can be decomposed into a
‘Poisson contribution’ and a ‘Markov-chain contribution’. The Poisson contribution is unbounded,
while the Markov contribution is bounded by max(ν1t, ν2t). It can therefore be anticipated that in
case of very high value of a, the Poisson contribution will dominate.
The behavior of the system is to a large extent dependent on the precise shapes of the curves (as
functions of s ∈ [0, t])

λi exp(−µi(t− s)), for i = 1, 2.

These expressions essentially reflect the arrival rate in both states at any time s ∈ [0, t], but ‘thinned’
by a fraction exp(−µi(t−s)) (so that we obtain the jobs that are still in the system at time t). When at
a specific time s one curve is higher than the other, this means that the corresponding state is more
‘favorable’ for creating overflows. The intuition is that during build-ups to overflow ( M (N)(t)

exceeding Na, that is), the background process will reside more frequently in this state than the
stationary probability would predict. The extent to which is deviated from the expected behavior
depends on both the cost of doing so (as reflected in the function I(·)), as well as the benefit asso-
ciated with it (quantified by the difference between the two curves). A similar line of reasoning
applies in the regime that just the arrival rates λi are scaled by N , whereas the background process
is not sped up; see [1].
Unless µ1 = µ2, the curves have a unique intersection point s?, which is equal to

s? = t− log λ1 − log λ2

µ1 − µ2
.

The trivial case is that λ1 > λ2 and µ1 < µ2 (or λ2 > λ1 and µ2 < µ1); then it is always favorable to
be in state 1 (2, respectively). Let us therefore assume, without loss of generality, that λ1 > λ2 but
µ1 > µ2. Hence if 0 < s? < t, then state 2 is favorable in [0, s?] and state 1 in [s?, t]. We observe that
in [0, s?], f?(·) is smaller than π1, whereas in [s?, t], it will be larger.
We can find two easy upper bounds for the decay rate based on two simple paths, as follows.

� The first path that we can insert is f(s) = π1 for all s ∈ [0, t]. This provides us with the
following upper bound to the decay rate:∫ t

0

2∑
i=1

πiλie
−µi(t−s)ds =

2∑
i=1

πi
λi
µi
e−µit.
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FIGURE 1. Four plots of the optimal path showing the ‘switch’ around s = s?.

This path is close to optimal in cases that it is relatively ‘expensive’ to change the behavior
of the Markov chain.

� The second path is f(s) = 1 for s ≤ s? and 0 for s > s? (or f(s) = 0 for s ≤ s? and 1 for
s > s?; whichever of the two alternatives leads to a lower decay rate). This leads to the
decay rate

λ1

µ1

(
e−µ1(t−s?) − e−µ1t

)
+
λ2

µ2

(
1− e−µ2(t−s?)

)
+ s?ν1 + (t− s?)ν2.

This path tends to be close to optimal when the Poisson contribution dominates (which is
the case for instance for large values of a).

6. NUMERICAL EXAMPLES

In this section, we illustrate the obtained results by means of a series of numerical experiments.
We introduce the following alternative characterization of the two-state Markov chain: Let K =

ν1 + ν2;π1 = ν2/K. As such, π1 denotes the stationary probability of being in state 1, and K is a
measure for the speed at which the continuous-time Markov chain changes states.
In Fig. 1, we show how optimal paths behave around the transition point s?; we took four typical
examples. In the left graphs we took specific values for the arrival and service rates, but changed
the background process (thus leaving the position of s? unchanged); the same holds for the right
graphs. We notice that the optimal path indeed switches behavior at point s?, and that f?(s?) = π1

as predicted. In the left graphs the value of K is ‘moderate’, while it is substantially smaller in the
right graphs; in the latter case the optimal path tends to look like a step function (cf. the analysis
in [1]).
Next, we show in Fig. 2 a plot of the decay rate versus the target level a. It is observed that
the decay rate increases rapidly for increasing a. We have included plots of the optimal paths at
various places. We see that for smaller a, the optimal paths are fairly flat, whereas curvier graphs
are obtained for larger a. This can be intuited from the fact that as a increases, the contribution of
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FIGURE 2. Plot of the decay rate versus a for λ1 = 0.5, µ1 = 4, µ2 = 3, π1 =

0.75,K = 100, t = 1; and λ2 = 4 for the dashed line; λ2 = 0.5 for the full line. The
gray lines represent the perturbation-based results.

the Poisson term will get larger, and as such paths that have a more ‘expensive’ Markov term come
into the picture.
Next, we show in Fig. 3 a plot of the decay rate versus K. An increase of K makes the ‘Markov
contribution’ larger, and hence it is in accordance with the intuition that for small K, we see opti-
mal paths that at any time instant almost exclusively reside in the ‘most favorable state’, whereas
for larger K we obtain optimal paths that are close to the stationary probability.

APPENDIX A. ESTIMATES FOR MARKOV FLUID SOURCES

A.1. Exact asymptotics. LetL(0, t) be the amount of time the unscaled background process spends
in state 1 during the interval [0, t]. In this appendix we provide the asymptotics of the probability
that L(0, t)/t attains a rare value, that is, values away from the limiting mean ν2/(ν1 + ν2).

In the first place, we mention that the usual Chernoff bound estimate gives the upper bound

P
(
L(0, t)

t
≥ a

)
≤ inf
ϑ>0

exp
(

logEeϑL(0,t) − ϑat
)
.

Due to [13, Lemma 2.1], for t large enough, we have that, for a constant K independent of ϑ,

EeϑL(0,t) ≤ KeΛ+(ϑ) t,
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FIGURE 3. Plot of the decay rate versus K for λ1 = 1, λ2 = 2, µ2 = 2, π1 =

0.75, a = 10, t = 1; and µ1 = 1 for the dashed line; µ1 = 4 for the full line.

with

Λ±(ϑ) :=
1

2

(
−ν1 − ν2 + ϑ±

√
(ν1 + ν2 − ϑ)2 + 4ν1ϑ

)
.

We thus obtain the uniform upper bound (with K independent of t and a)

P
(
L(0, t)

t
≥ a

)
≤ exp

(
logK − t sup

ϑ>0
(ϑa− Λ+(ϑ))

)
= Ke−tI(a).

More precise results can be found, though. [13, Lemma 2.1] also provides us with the asymptotics
of the moment generating function:

EeϑL(0,t)

κ(ϑ)eΛ+(ϑ)t
→ 1,

as t→∞, with

κ(ϑ) :=
1

ν1 + ν2

(
ν1ϑ+ (ν2 − ν1)Λ−(ϑ)

Λ+(ϑ)− Λ−(ϑ)

)
.

Relying on this property, we can identify ‘fine asymptotics’ of the probability that L(0, t)/t attains a
rare value. The idea is that althoughL(0, t) does not have independent increments, the dependence
is sufficiently weak to enable the computation of so-called exact asymptotics, in the spirit of those
developed by Bahadur and Rao for sums of independent random variables — this was hinted in
Remark c, immediately below [6, Thm. 3.7.4]. The proof is completely analogous to that in [14] for
the related model of M/G/∞ input. The uniformity follows as in [10].
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Proposition 1. Let η ≡ η(a) solve a = Λ′+(η). Uniformly in a,

lim
t→∞

√
tetI(a) · P

(
L(0, t)

t
≥ a

)
=

1

η
√

2πΛ′′+(η)

1

κ(η)
.
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