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ABSTRACT 

The catchments in the western Rift Valley escarpment of northern Ethiopia are highly 

responsive in terms of hydro-geomorphic changes. With deforestation, dense gully and 

scar networks had developed by the 1980s on the escarpment between the towns of 

Alamata and Korem, transporting huge amounts of runoff and sediment down to the 

fertile and densely populated Raya Valley. To reverse this problem, catchment-scale 

rehabilitation activities were initiated in the mid-1980s. In this study, we examine the 

major hydro-geomorphic response of streams after catchment rehabilitation. Scar 

networks in 20 adjacent catchments were mapped on Google Earth imagery of 2005 and 

their density was explained in terms of its corresponding Normalized Difference 

Vegetation Index (NDVI) and slope gradient. Soil and water conservation measures and 

vegetation recovery have reduced discharge and sediment flow which in turn resulted in 

various hydro-geomorphic changes. In a multiple regression analysis, scar density was 

negatively related with NDVI and positively with average gradient of very steep slopes 

(r
2 

= 0.53, p<0.01, n = 20). The size and amount of sediment supply to streams 

decreased and various channel adjustments occurred. Notably, previously braided 

streams have changed to single-thread streams, lateral bars have been stabilized and 

stream channels are narrowing and incising. 
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INTRODUCTION 

Land degradation is a major problem in the Tigray region of the northern Ethiopia 

(Nyssen et al., 2008; Gebresamuel et al., 2009). This is mainly due to deforestation, 

overgrazing, impoverishment of the farmers, erosive rains, steep slopes (Nyssen et al., 

2004) and limited agricultural intensification (Nyssen et al., 2008). The severity of land 

degradation in this region is mostly evident in several hydro-geomorphic features, 

including dense gully and river networks (Frankl et al., 2011; Yitbarek et al., 2012).  

To reverse this problem, different rehabilitation activities, composed of physical 

structures and reforestation measures including establishment of exclosures on highly 

degraded steep slopes have been carried out in the region since the mid-1980s 

(Mengistu et al., 2005; Descheemaeker et al., 2006a,  Descheemaeker et al., 2006b; 

Nyssen et al., 2007; Munro et al., 2008). Stone bunds, terraces, soil bunds, trenches and 

check dams were among the commonly used physical structures (Nyssen et al., 2007) 

whereas the reforestation measures included both local and exotic species.    

As a result, significant changes have been registered in the region (Pender & 

Gebremedhin, 2006; Nyssen et al., 2007). A study by Descheemaeker et al. (2006a) on 

small exclosed catchments showed a significant reduction of runoff after rehabilitation. 

According to these researchers, the amount of runoff from rehabilitated exclosures 

becomes negligible when the vegetation cover surpasses 65%. Nyssen et al. (2010) in 

their turn found a reduction of direct runoff volume by 81% after catchment 

management, and Frankl et al. (2011) found gully systems to be partially stabilized. On 

the other hand, a sediment dynamics study at medium-sized catchment scale (100-

10,000 km
2
) with mixed land use and land cover showed that the majority of sediment 

export occurs during a few short but intensive flash floods. Given the patchy nature of 

rehabilitation activities, the effect of the soil and water conservation measures 

implemented in such catchments could not be clearly detected (Vanmaercke et al., 

2010).  

Mountain streams respond especially to changes in the bio-physical characteristics of 

catchments (Montgomery & Buffington, 1997; Liébault et al., 2002a; Defries & 

Eshleman, 2004; Lana-Renault et al., 2011; Serrano-Muela et al., 2013). Deforestation, 



3 
 

overgrazing, and increased agricultural pressure increase discharge and sediment supply 

to stream channels. In contrast, when catchments are reforested, the amount of 

discharge and sediment supply decreases, causing various forms of channel adjustments 

namely, channel narrowing, pavement development, stream incision, change of pattern 

from braiding to meandering, and colonization of bars by vegetation (Knighton, 1998; 

Liébault et al., 2002a; Liébault et al., 2002b;  Kondolf et al., 2002;  Hooke, 2003; 

Rinaldi, 2003; Vanacker et al., 2005;  Stott & Mount, 2004; Keesstra et al., 2005, 

Liébault et al., 2005; Schumm, 2005;  Beguería et al., 2006; Boix-Fayos et al., 2007;  

Frankl et al., 2011; Nadeu et al., 2011, 2012; Liébault et al., 2012; Yu et al., 2012).  

The objectives of this study are to: i) examine the role of integrated catchment scale 

reforestation on reduction of land degradation as represented by scar networks; ii) 

analyze the relationship between land degradation and vegetation cover as well as major 

topographic variables (slope gradient and slope aspect); and iii) identify the major 

stream channel adjustments occurred  in response to catchment scale vegetation cover 

changes. 

 

MATERIAL & METHODS 

The area of study (12º22'-12º30'N; 39º27'-39º35'E) expands over 114 km
2
 in the 

southern zone of the Tigray Region, as a part of the western Rift Valley escarpment of 

northern Ethiopia (Figure 1). Its elevation ranges from 1540 m.a.s.l to 3270 m.a.s.l. The 

lithology is composed of Tertiary basalt and consolidated volcanic ash (Dessie, 2003) 

whereas the geomorphology is characterized mainly by plateaus associated with a steep 

and strongly dissected escarpment. The study focuses on 20 catchments which, like in 

many other parts of the region, were severely mismanaged up to the mid-1980s mainly 

due to deforestation, overcultivation, overgrazing and plowing on steep slopes. 

Consequently, networks of dense gullies and scars (incised to the bedrock) developed, 

transporting huge amounts of water and sediment to the farmlands and settlements in 

the downstream areas. Therefore the environment and the livelihoods of rural and urban 

communities and mainly of Alamata town were threatened. In response to severe 

flooding downstream, different interventions were carried out to reforest the upper 

escarpment starting from the mid-1980s: some households were resettled outside the 
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catchments, farming on steep slopes was prohibited, some catchments were exclosed 

and various soil and water conservation measures were introduced. As a result, the 

present-day vegetation cover of the catchments has shown different degrees of 

improvement. 

The catchments are characterized by volcanic rocks and shallow soils in the sloping 

areas. The average slope gradient of the catchments ranges from 31% to 68% which 

corresponds to either a steep (30%-60%) or a very steep (>60%) terrain (FAO, 2006).  

The streams drain towards the Raya Valley, a marginal graben of the Rift Valley 

(Figure 1). 

The data used in this study were collected from catchment scale analysis of topographic 

maps, remote sensing imagery and field observations. Topographic maps with scale of 

1:50,000 were used to delimit the catchment boundaries. A 30 m resolution digital 

elevation model (DEM) was used to compute the slope gradient and slope aspect of the 

catchments.  

The Normalized Difference Vegetation Index (NDVI) is among the most common 

indices widely used to indicate the amount and state of vegetation cover in a given area 

at a specific time (Myneni et al., 1995). It has been widely used by many researchers for 

measuring and monitoring vegetation cover characteristics (Leprieur et al., 2000). In 

semi-arid regions, NDVI has been used for monitoring land cover change and 

identifying areas affected by land degradation (Li et al., 2004) because NDVI, being a 

satellite-derived dataset, provides spatially continuous data and yields time series 

signatures from which temporal patterns, changes and relationships may be extracted 

(Nicholson et al., 1998). The NDVI value indicates the amount and condition of green 

vegetation available in a pixel. It provides an effective measure of photo-synthetically 

active biomass. More vegetation cover is represented by higher NDVI values. Hence, 

the mean NDVI values of each catchment were computed from Landsat satellite image 

(Thematic Mapper) of 25 December 2010 according to the following standard equation: 

 NDVI                (1) 

                         

Where, NIR and Red are the spectral reflectance values in the near infrared (0.76-

0.90µm) and visible red (0.63-0.68 µm) bands (Myneni et al., 1995). In theory, NDVI 
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values range between -1.0 and +1.0. In practice however, they generally range between 

-0.1 and +0.7. Objects like water, snow, and ice give negative NDVI values whereas 

bare soils, and other background materials produce values between -0.1 and +0.1. 

Vegetated areas have values greater than zero (Quyen et al., 2004).  

High-resolution imagery available on Google Earth is increasingly used in geographic 

studies. For example, Jacob et al. (2011) used Google Earth imagery for mapping and 

measuring treeline elevation in Ethiopia and Frankl et al. (2013) mapped geographic 

features on Google Earth imagery and made advanced analysis in Geographic 

Information System (GIS). In this study, all scars on the steep slopes of the 20 

catchments were mapped on Google Earth imagery (from GeoEye image of 0.6 m 

resolution acquired in October 2005) and were processed in GIS to examine the status 

of land degradation in each catchment. Though both gullies and scars are important 

visual indicators of land degradation, only scars were chosen to represent changes in 

land degradation before and after rehabilitation of catchments because they are mainly 

related to deforestation whereas gullies may develop due to other factors (Frankl et al., 

2011). Preliminary observations show that gully erosion is not a straightforward 

indicator of land degradation since it is dependent on many variables, such as presence 

and thickness of alluvio-colluvial materials, slope gradient, and anthropogenic drainage 

activities. Further, scars are easily identifiable on high-resolution satellite images. No or 

very poor vegetation cover, incision till the bedrock, absence of large sinuosity, absence 

of fill material and low bottom  roughness were the major parameters used to recognize 

the scars. Having prepared the scar density map, it was verified in the field in May 

2012, by observing all slopes from vantage points. Then the average scar density of 

each catchment was explained in terms of average NDVI value and average slope 

gradient using correlation and multiple linear regression analysis. Pixels corresponding 

to scars do not have vegetation cover. Hence, they are expected to minimize the mean 

NDVI values. However, though they are impressive in the landscape, the area occupied 

by the scars is relatively small and hence the impact on the overall NDVI value as well 

as on the results of the correlation and regression analysis is also expected to be 

negligible.  

Reconnaissance surveys not only help inference of lateral and vertical channel 

adjustments but also provide representative data and contextual information on channel 



6 
 

morphology as well as in-channel and sedimentary features (Downs & Thorne, 1996). 

In this study, reconnaissance surveys were first carried out in five catchments in 

February, July and September 2011 and  the geological, geomorphological and 

topographic settings, level of degradation of the catchments, the reforestation and 

structural methods used in rehabilitating the catchments, the degree of vegetation 

recovery as well as  the differences in the characteristics of the channels and the size of 

bed load depositions both in the abandoned and active channels of the streams were 

observed. Catchment scale detailed field observation was executed in all the catchments 

and along all major streams in May 2012 to identify the degree of: i) channel incision, 

where availability of new terraces, recently abandoned channels and old stream channel 

deposits were used as indicators; ii) channel aggradation as represented by sediment 

deposition in the active channels and or between side bars; iii) widening of channels 

indicated by exposed tree roots, fallen or leaning trees, destruction of gabions, and 

falling of banks; iv) conversion of single thread channels to braided channels or vice 

versa; and v) size of boulder depositions in the abandoned  and active channels. 

 Interviews were also carried out with two elderly local farmers who have relatively 

better knowledge about the rehabilitation processes, situation of the vegetation cover 

before and after intervention and the hydro-geomorphic changes followed. 

 

RESULTS 

Scar density 

The total length of the scar networks mapped on Google Earth was 34,723 m, while the 

length identified in the field was 33,351 m. The overestimation, or networks that were 

mapped as scars but are not scars in the field, was 1866 m (5.6%) whereas the 

underestimation, or the length of scars that are present in the field but were not mapped 

in Google Earth, was 494 m (1.5% of the networks). Similarity of scars with gullies and 

with some footpaths were the major causes for mapping errors, but no systematic 

change could be observed between field observation (May 2012) and Google Earth 

imagery (October 2005).  
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The scar density ranges from 0.04 to 0.69 km/km
2
 (mean = 0.31, standard deviation = 

0.21) and the catchment-averaged NDVI values vary from 0.05 to 0.2 (mean = 0.13, 

standard deviation = 0.04) (Figure 2 and Table 1). The data further indicate some 

pattern of relationship between the two variables. Relatively low scar density exists in 

the catchments with better vegetation cover and vice versa. For example, in Gira-Kahsu 

(catchment 2, Table 1), where the most intensive rehabilitation activities were carried 

out and where the larger part of the catchment is exclosed, relatively high average 

NDVI value and the lowest scar density are observed. 

The incidental repeat photographs of Gira-Kahsu catchment (Figure 3 - catchment 2 in 

Table 1) show a gradual reduction in vegetation cover up to 1975 and a strong increase 

in 2006. The farmlands on sloping areas of the catchment observed in the 1975 photo 

were totally covered by shrubs in the 2006 photo. This was also verified in the field. On 

the other hand, in the Wera’-Hara catchment (catchment 3, Table 1), where farmlands, 

grazing lands and settlement dominate the upper part of the catchment, less vegetation 

cover and the largest noticeable scars are observed in the sloping parts of the catchment 

(Figure 4).  

The Pearson’s correlation (r
2 

= 0.28, n = 20, P = 0.012) also showed a negative 

association between scar density and NDVI values (Figure 5, left). No significant 

relation was observed between average slope gradient of the catchments and scar 

density. Thus, to differentiate the effect of different slope classes, pixel values of the 

slope gradient in each catchment were classified in to 10 classes according to the FAO 

(2006) classification system. Of all the classes, only the average gradient of the steepest 

slopes (>60%) had a positive relationship (r
2 

= 0.21, n = 20, P = 0.041) with scar density 

(Figure 5, right).  

The effect of slope aspect (orientation) of catchments on scar density was also 

investigated. However, no preferential orientation of scars was observed.  

Finally, in a multi-linear regression analysis, scar density was positively related with 

steep slope gradients (>60%) and negatively with average NDVI values. Based on this 

result, the following equation is used to predict the scar density in relation to the 

explanatory variables. 
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    01.053.001.099.204.0 2 PRSNDVISd     (2) 

Where:  Sd, stands for scar density, NDVI for catchment-averaged Normalized 

Difference Vegetation Index, and S for average slope gradient of the steepest slopes 

(>60%).  

 

Stream bed adjustments 

Apart from the differences in scar density, variations were also observed in the field 

between forested and less forested catchments in terms of: i) size and amount of 

sediments deposited in their channels, and ii) stream channel adjustments. In many of 

the less forested catchments (NDVI range of 0.06-0.14, scar density of 0.41-0.69 

km/km
2
) and where grazing and cultivation takes place in the upper part of the 

catchments, deposition of large boulders and aggradation occur in the active channels 

(Figure 6A). In many of the relatively forested catchments (NDVI range of 0.15-0.2, 

scar density of 0.04-0.2) with no or less farming and grazing lands in their upper 

catchment however, very few small boulder depositions were observed in the active 

channels while accumulations of large boulders were noticed in their abandoned 

channels (Figure 6B).  

In certain cases, sediments trapped around riverine trees were good indicators of 

changes in the amount of sediment deposition before and after reforestation of the 

catchments. For example, the trunks of two of the remnant original trees in Gira-Kahsu 

catchment (Figure 7) were buried by successive sediment deposits when the catchment 

was degraded. Consequently, new roots have grown all along the trunk. The stones and 

boulders trapped in the tree crowns indicate the level up to which sediment was 

deposited. After reforestation, the channel of the stream incised along the trees and parts 

of the trunks were exposed. Now, new branches are growing again on the exposed part 

of the trunks. 

Abandonment of previously braided channels in favour of single thread streams 

(Knighton, 1998), narrowing and lateral displacement of active channels, colonization 

of lateral bars by vegetation (Boix-Fayos et al., 2007) and downstream channel incision 

(Gordon & Meentemeyer, 2006) were among the most important stream channel 

adjustments observed in response to improvements in vegetation cover of upper 
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catchments and its subsequent effect on reduction of discharge and sediment flow 

(Figure 8 and Figure 9). 

 

DISCUSSION 

In agreement with earlier research findings in the region (e.g. Mengistu et al., 2005; 

Pender & Gebremedhin, 2006; Nyssen et al., 2008; Meire et al., 2013), the vegetation 

cover in several catchments has improved thanks to the different management 

interventions executed since the mid-1980s. Similarly, a study by Gebrehiwot & Van 

der Veen (2013), in Enderta district of Tigray region showed a substantial increase in 

vegetation cover of exclosures between 2000 ( NDVI = 0.10 to 0.22) and  2008 (NDVI 

= 0.15 to 0.39).  As reported by the elderly people and verified in the field, generally, all 

types of interventions contributed for the improvements of the vegetation cover of the 

catchments though the exclosed catchments and sub-catchments showed relatively 

better improvements owing to less or no contact with livestock and human beings. 

However, the average NDVI values of the catchments (Table 1) remain relatively low 

due to i) the presence of other land covers such as rock outcrops and other land uses like 

farmlands, settlement, grazing land or bare lands, and ii) the relatively high grazing 

pressure (especially along roads and footpaths) causing sparse vegetation complexes to 

dominate.  

The erosion control measures and vegetation recovery reduced land degradation which, 

in turn, was followed by various hydro-geomorphic changes. As shown in both the 

Pearson correlation and multiple linear regression analysis, scar density, which is one of 

the most easily discernible indicators of the status of land degradation and hydro-

geomorphic characteristics of the landscape, significantly decreased with increasing 

vegetation cover (Figure 5, left). Often, scars now remain as relicts on the slopes, being 

overgrown by vegetation. This is in line with many studies in semi-arid regions which 

showed positive relations between plant cover and NDVI values. For example, Amiri et 

al. (2010), Sepheri (2003) and Khajeddin (1995) found significant relations between 

NDVI values and field vegetation cover data. This is due to the fact that when the 

vegetation cover increases, the NDVI value increases owing to strong reflection of the 

near infrared bands by the plant cover (Amiri et al., 2010). Conversely, low vegetation 
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cover results in lower NDVI values due to the effect of the background soil (Apan et al., 

1997).  The positive association of scar density with very steep slope gradients (>60%) 

expectedly indicates that these areas are very vulnerable for incision because 

topographic features such as slope gradient enhance erodibility, showing that steep land 

is more vulnerable to erosion than flat land (Hudson, 1981).  

Similar stabilization of gullies due to the successful implementation of soil and water 

conservation measures have been  reported in the region (Frankl et al., 2012) and in 

many other semi-arid areas (Grimaldi et al., 2013) 

Vegetation cover largely determines runoff and sediment delivery to streams. Initially, 

in the deforested catchments (1980s situation), runoff production was high and so was 

sediment production by the streams (Coulthard & Macklin, 2001). This is evidenced by 

large boulders present in many of the abandoned channels and by the thickness of flood 

deposits filling valleys, to the extent of fully covering trunks of riverine trees (Figure 7). 

Similarly, at present, the less forested catchments are still producing high peak 

discharges, transporting large boulders and producing huge amounts of sediment.  

These findings are in line with similar studies carried out in the region in relation to 

reforestation and its impact on runoff production and sediment transportation (e.g. 

Descheemaeker et al., 2006a, Descheemaeker et al., 2006b, Nyssen et al., 2009). 

Bruijnzeel (2004) and Huang & Zhang (2004) also found similar results. In the study 

area, the runoff and sediment supply to the stream channels have been reduced greatly 

after reforestation. Consequently, the transport capacity of streams was reduced and 

only small boulders and flood deposits of limited thickness were observed in the active 

channels of the reforested catchments. Worldwide, changes in discharge and sediment 

load cause channels to adjust their shape and size (Schumm, 1977; Petts, 1979). With 

reducing discharges and sediment loads, typical changes are the abandonment of the 

previously braided channel patterns in favor of a single thread stream, lateral 

displacement and deepening of active channels and stabilization and colonization of 

lateral bars by vegetation cover. Such changes were widely observed in the streams of 

the reforested catchments of our study. When sediment load reduction is more important 

than peak flow reduction, the clear water effect ( Boix-Fayos et al., 2007) causes 

previously aggrading channels to incise. The precise impact of long-term variations in 
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discharge and sediment load can best be understood by considering the equations of 

Knighton (1998):    

Q
+
 and/or Qs

+
 => w

+
, (w/d)

+   
(3) 

Q
+
 and/or Qs

-
 => d

+    
(4) 

Q
-
 and/or Qs

+
 => d

-    
(5) 

Q
-
 and/or Qs

-
 => w

-
, (w/d)

-    
(6) 

in which, the + or - signs indicate an increase or decrease in discharge (Q) and sediment 

load (Qs) of the streams, and their impact on the width (w), depth (d) and width/depth 

ratio (w/d) of the channels. The four equations conceptualize the general response of 

stream channels to runoff and sediment load alterations related to changes in catchment 

vegetation cover. Generally, eq. (3) corresponds to the situation of degraded catchments 

where high discharge and sediment supply to the streams results in widening of the 

channels. With high sediment supply, oversaturated flows cause the channels to 

aggradate (eq. 5). This situation was commonly observed in the most of the degraded 

catchments and in the catchments which comprise different land use/cover classes. For 

example, the big boulders shown in Figure 6A, were deposited in 2010 in the 

Wera’_Hara catchment owing to the existence of very large farmlands, grazing lands, 

settlement and rock out crops in its upper catchment. Reversely, eqs. (4) and (6) explain 

the status of the channels after reforestation where decreased discharge and sediment 

supply have resulted in incision and less aggradation and thereby reducing the width of 

the active part of the channels. This corresponds to the situation of the catchments like 

the Gira-Kahsu catchment where reduced discharge and sediment supply led to 

narrowing of the active channels (Figure 6B) and incision (Figures 6B, 7A, 7B, 8B). 

 

CONCLUSION 

Overall, the vegetation cover of many catchments in the study area has improved due to 

the catchment-scale reforestation activities carried out since the mid-1980s. This was 

followed by many changes in hydro-geomorphic characteristics. Based on the results, 

the following points are concluded: Land degradation as represented by scar density 

decreases with increasing vegetation cover. A multi-linear regression analysis (r
2
=0.53, 

P<0.01, n=20) showed a negative relationship between scar density and NDVI and a 

positive relation with the occurrence of naturally vulnerable very steep slope gradients 
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(>60%).  The volume and size of sediment transported by the streams are reduced after 

reforestation. Old boulder deposits in the abandoned channels, thick layers of flood 

deposits around riverine trees and reduction of size and volume of newly deposited 

sediment in the active channels were observed in the reforested catchments indicating 

the impact of the reforestation in reduction of discharge and sediment supply. On the 

other hand, sediment supply continues unabatedly to the channels in the less reforested 

catchments. Various stream channel adjustments occurred in response to the changes in 

discharge and sediment load. Abandonment of many of the previously braided stream 

channels in favor of single thread streams, stabilization and colonization of lateral bars 

by vegetation and incision of lower stream channels were observed in the field. Unlike 

earlier catchment studies in nearby areas where catchments were insufficiently 

differentiated to demonstrate effects of variable land use, this study has shown that 

catchment reforestation in northern Ethiopia has led to a remarkable stabilisation of the 

slopes in less than 30 years as well as to narrowing and incising rivers that should be 

interpreted as signs of a resilient catchment. 
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Table 1. Average NDVI, average gradient of very steep slopes (>60%) and scar density 

of the catchments 

Catchmen

t number 

Area 

(km
2
) 

Aver

age 

Elev

ation 

(m 

a.s.l) 

Avera

ge 

NDVI 

Average 

slope 

gradien

t (%) 

Average 

gradient of                                       

very steep 

slopes 

(>60%) 

Scar density 

(km/km
2
) 

1 3.6 2246 0.13 56.4 100.1 0.31 

2 6.6 2227 0.20 49.4 91.3 0.04 

3 24.7 2470 0.14 34.3 89.9 0.61 

4 1.8 1920 0.06 51.1 92.2 0.69 

5 1.1 1857 0.13 49.0 98.4 0.39 

6 1.0 1692 0.05 30.8 63.7 0.19 

7 1.6 1623 0.08 30.4 78.0 0.41 

8 2.2 1868 0.15 41.4 80.1 0.13 

9 1.2 1718 0.09 33.2 86.4 0.67 

10 1.1 2053 0.20 45.0 80.1 0.15 

11 1.8 1977 0.12 42.4 70.0 0.44 

12 2.4 2120 0.13 44.9 82.0 0.32 

13 2.9 2193 0.12 52.8 86.0 0.60 

14 2.2 2087 0.13 68.0 70.3 0.06 

15 27.5 2530 0.15 49.4 60.0 0.13 

16 3.3 1946 0.14 32.9 66.6 0.35 

17 15.8 2212 0.17 38.6 83.3 0.20 

18 3.5 2096 0.12 34.6 63.1 0.12 

19 3.0 2279 0.16 46.7 74.5 0.21 

20 4.4 2438 0.14 51.0 61.0 0.16 

Mean 5.6 2078 0.13 43.9 78.9 0.31 

Standard 

deviation 

7.7 256 0.04 9.6 12.4 0.21 
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Figure captions:  

 

Figure 1. Location of the study area. Oro-hydrography based on SRTM data 

 (http://srtm.csi.cgiar.org). 

Figure 2. Average NDVI values (left) and scar density (km/km
2
) of the 20 catchments 

(right) 

Figure 3. The incidental series of repeat photographs of Gira-Kahsu catchment shows 

expansion of agricultural land up to 1975 and dramatic reforestation thereafter. 

Figure 4. Scars incised to the bed rock on steep slope mountains with less vegetation 

cover (Wera’-Hara catchment). 

Figure 5. Relationship between NDVI and scar density (left) and between average 

gradient of the steepest slopes (>60%) and scar density (right). 

Figure 6. Large boulders recently deposited in the active channel of the less forested 

catchment (A) and the gravelly active channel of the reforested Gira Kahsu catchment, 

finding its way between older boulder deposits (B). 

Figure 7. Riverine trees were buried by sediment before the catchment was reforested. 

Reincision allows to observe the thickness of the sediment deposition and roots that 

developed in it. Stones and boulders are still trapped in the crowns of the trees. 

Figure 8. Abandoned channels. The river now flows in one of the preexisting channels 

and deepens it (B). 

Figure 9. Stream channel adjustments in the lower reach of the Gira-Kahsu catchment 
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