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Abstract

We introduce time-varying parameters in a multi-agent clustering model and we derive necessary and sufficient conditions
for the occurrence of clustering behavior with respect to a given cluster structure. For periodically varying parameters the
clustering conditions may be formulated in a similar way as for the time-invariant model. The results require the individual
weights assigned to the agents to be constant. For time-varying weights we illustrate with an example that the obtained results
can no longer be applied.
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1 Introduction

Synchronization in its most general form may be con-
sidered as a process where several subsystems achieve
similar long-term behavior, usually as a result of mutual
interactions. Examples include systems of coupled oscil-
lators [14], animal swarms [3,13,11], opinion formation
[8].

When the subsystems are not identical and the disper-
sion of the parameters is large compared to the inter-
action strength, several clusters may arise. Each cluster
is characterized by its own long-term behavior, which
may correspond to a common phase [7,6] or average fre-
quency [12] in the case of coupled oscillators, a common
direction of motion in e.g. swarming [9,4], or a common
opinion [5,4].

The correspondingmodels are usually investigated using
simulations, or by combining simulations and local sta-
bility results. In [1,2,4] we have introduced a model with
a behavior similar to the clustering behavior of models
of coupled oscillators such as the Kuramoto model [10],
but with an increased potential for analytical results.
Furthermore, the model is also relevant for applications
not related to coupled oscillators, as we have argued in
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[4] for swarming and opinion formation, and in [2] for
compartmental systems.

The (time-invariant) model is decribed as follows. Each
agent tries to follow its natural velocity, while it interacts
with other agents by saturating interactions. As a result
of these dynamics a cluster structure emerges, with the
long-term behavior of each cluster depending on the cou-
pling strength. When the coupling strength equals zero,
all agents move at their natural velocities and can be
considered as separate clusters (assuming no two natu-
ral velocities are equal). For small values of the coupling
strength several clusters arise, each characterized by the
same asymptotic velocity for its members. For larger val-
ues (and provided the interactions are attractive, and
the interaction network is connected), distances between
agents remain bounded, and all agents are contained in
a single cluster, characterized by an asymptotic velocity
that equals the average natural velocity of the agents.

Although the assumption of time-invariance may be a
good starting point for investigating cluster formation in
multi-agent systems, it is clear that for complex systems
such as animal swarms and opinion formation processes
this assumption is not realistic. The behavior of the indi-
vidual entities of these systems (i.e. the agents) is influ-
enced by a large number of variables, most of which will
be time-varying. Their behavior in time may be either
highly predictable, stochastic, or a mixture of both. E.g.
the evolution of the outside temperature in time (which
may be relevant for the behavior of both animals and
humans) may be written as a sum of two periodic func-
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tions (with periods one day and one year) and a residual
stochastic component. For systems where such variables
play an important role, it is more appropriate to aban-
don the assumption of time-invariance.

Notice however that, as will be shown in this paper, for
periodically varying parameters, conditions character-
izing the clustering behavior can be formulated in the
same way as for the time-invariant model. Consequently,
other results from the time-invariant model may be ex-
tended to the periodic case, such as Theorem 5.4 from
[4], which shows that the time-invariant model exhibits
clustering behavior for all choices of the parameters, and
the proof of which indicates how the cluster structure
can be obtained.

In this paper we let all parameters of the aforementioned
clustering model vary in time — except for the weights
γi (see the model in the next section) — and we derive
necessary and sufficient conditions for the clustering be-
havior. A numerical example shows that this result is
no longer valid if the weights γi are also time-varying.
Our analytical approach cannot easily be extended to
include time-varying weights, and it is not clear to us
how the model with time-varying weights could be dealt
with and whether or not similar criteria may be derived
for clustering behavior.

For the applications mentioned before (we refer to [2,4]
for details) the assumption of constant weights does not
seem to pose problems. Although for swarming and opin-
ion formation this may not be easily assessed in an ob-
jective way, it seems acceptable to assume that the in-
fluence of one animal or person on the others changes on
a slower time scale than the other parameters. For the
application on compartmental systems (such as a sys-
tem of interconnected water basins) the weights relate to
the sizes of the compartments (or water basins), which
may be assumed constant in most cases, while the time-
variance of the flow into or out of the compartments is
captured by the time-varying parameters of model.

In the next section we review the time-invariant model
and the results from [4] that are relevant to this pa-
per. Section 3 introduces the time-varying model and
presents necessary and sufficient conditions for cluster-
ing behavior of solutions of this model. The proof of this
analytical result is given in section 5. In section 4 we
reformulate the results for periodically varying parame-
ters, and section 6 deals with an example with (period-
ically) varying weights γi for which our main result can
no longer be applied. In section 7 we discuss further ex-
tensions of the model and whether or not these may be
treated by simply extending our analysis.

For an application of the time-varying clustering model
on swarming we refer to [4], where the influence of differ-
ent network structures on the emerging cluster structure
is discussed.

2 Preliminary results

2.1 The time-invariant model

The model from [4] is described by the following differ-
ential equations.

ẋi(t) = bi+K

N∑

j=1

γjfij(xj(t)−xi(t)), ∀ i ∈ {1, . . . , N},

(1)
with γj > 0, K ≥ 0, N > 1. The functions fij are non-
decreasing, Lipschitz continuous and satisfy

fji(x) = −fij(−x), ∀x ∈ R,

fij(x) = Fij , and thus fij(−x) = −Fji,

∀x ∈ [d,+∞),

for all i, j in {1, . . . , N}, for some d > 0. It follows that
(for i, j ∈ {1, . . . , N}) Fij ≥ −Fji, and therefore Fij +
Fji ≥ 0. (Notice that either Fij or Fji is allowed to be
negative.)

The intervals [−Fji, Fij ] and [−Fij , Fji] cover the range
of the interaction between agents i and j. The extent
to which each individual agent j tends to influence the
behavior of other agents is reflected by the weight γj .

The dispersion of the natural velocities bi and the in-
teraction lead to the formation of different clusters. The
clusters consist of agents whose natural velocities are
sufficiently close to each other compared to the interac-
tion strength, while the difference in natural velocity be-
tween agents from different clusters is too large to form
a single group.

Remark 1 The second condition imposed on fij is more
strict than the condition from [4] (which only required
that limx→+∞ fij(x) = Fij). As a consequence we will
formulate a stronger result in Theorem 2 (later on) than
the corresponding result from [4]. Theorem 2 is easily
proven by adapting the proof in [4] and may be considered
as a special case of the result that we will derive for the
time-varyingmodel in Theorem 3. This adaptation makes
it more convenient to compare the results for the time-
varying model with those for the time-invariant model.

2.2 Some notation

For n ∈ N0 denote by In the set {1, . . . , n} and let G =
(G1, . . . , GM ) be an ordered set partition of IN . Let G<

k

be a shorthand notation for
⋃

k′<k Gk′ , and similarly set

G>
k ,

⋃
k′>k Gk′ .

We consider the following definition of clustering behav-
ior of a solution x of (1) with respect to a cluster struc-
ture G:
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• The distances between agents in the same cluster re-
main bounded (i.e. |xi(t)− xj(t)| is bounded for all
i, j ∈ Gk, for any k ∈ IM , for t ≥ 0).

• For any D > 0 there exists a time after which the
distances between agents in different clusters are and
remain at least D.

• The agents are ordered by their membership to a clus-
ter: k < l ⇒ xi(t) < xj(t), for all i in Gk and j in Gl,
for all t ≥ T , for some T > 0.

For a non-empty set G0 ⊂ IN and a vector w ∈ RN

denote by 〈w〉G0
the weighted average of w over all ele-

ments in G0, with weighting factors γi:

〈w〉G0
=

∑
i∈G0

γiwi∑
i∈G0

γi
,

and define the function ṽ as

ṽ(G−, G0, G+) , 〈b〉G0
+

K∑
i∈G0

γi

∑

i∈G0

γi

×


 ∑

j∈G+

γjFij −
∑

j∈G−

γjFij


 ,

where G−, G0, G+ ⊂ IN with G0 non-empty.

If {G−, G0, G+} partitions IN , then the function value
ṽ(G−, G0, G+) represents the average velocity 〈ẋ(t)〉G0

(with x a solution of (1)) of the agents in G0 when the
agents in G−, resp. G+, have xi-values smaller than,
resp. larger than, the xi-values of the agents in G0, with
the differences being larger than or equal to d.

For any set S, let P(S) denote the set of all ordered
partitions of S in two subsets, i.e.

P(S) = {(S1, S2) : S1, S2 ( S with S2 = S \ S1}.

2.3 Necessary and sufficient conditions

The notation introduced in the previous section allows
a concise formulation of the following theorem which is
an adapted version of Theorem 5.1 from [4].

Notice that the conditions (2a) require the velocities as-
sociated with different clusters to be ordered according
to the order of the clusters. The conditions (2b) require
that the velocities associated with two subsets constitut-
ing a partition of a cluster should be such that the sep-
aration between these two subsets cannot increase once
they are sufficiently (i.e. a distance d) far apart.

Theorem 2 Consider the following inequalities

ṽ(G<
k , Gk, G

>
k ) < ṽ(G<

k+1, Gk+1, G
>
k+1),

∀ k ∈ IM−1,
(2a)

ṽ(G<
k ∪Gk,1, Gk,2, G

>
k ) ≤ ṽ(G<

k , Gk,1, G
>
k ∪Gk,2),

∀ (Gk,1, Gk,2) ∈ P(Gk), ∀ k ∈ IM .
(2b)

The conditions (2) are necessary and sufficient for clus-
tering behavior with respect to G of all solutions of the
system (1).

It can be shown (by adapting Theorem 5.4 from [4] to the
formulation of (2)) that there is always a unique clus-
ter structure satisfying the conditions (2), and therefore
the solutions of the model (1) always exhibit clustering
behavior. Notice that for K = 0 the corresponding clus-
ter structure is easily found, and then increase K to the
proposed value; whenever, in the process of increasing
K, one of the conditions (2a) (resp. (2b)) is no longer
satisfied, a new cluster structure satisfying (2) (for this
particular value of K) can be obtained by merging two
clusters (resp. splitting a cluster). This procedure can
be repeated until K attains the proposed value.

3 Time-varying parameters

Fromnow onwe assume that bi,K and fij (and therefore
also Fij) are time-varying:

ẋi(t) = bi(t) +K(t)

N∑

j=1

γifij (xj(t)− xi(t), t) , ∀ i ∈ IN ,

(3)
with γj > 0,K(t) ≥ 0 for all t in R,K and bi continuous,
and fij is Lipschitz continuous with fij(x, t) increasing
in x and saturating for all t inR. The functions fij attain
their saturation values for d > 0, i.e.

fij(x, t) = Fij(t), ∀x ≥ d, ∀ t ∈ R, ∀ i, j ∈ IN ,

and satisfy

fji(x, t) = −fij(−x, t), ∀x, t ∈ R, ∀ i, j ∈ IN .

Redefine the function ṽ as

ṽ(G−, G0, G+, t) , 〈b(t)〉G0
+

K(t)∑
i∈G0

γi

∑

i∈G0

γi

×


 ∑

j∈G+

γjFij(t)−
∑

j∈G−

γjFij(t)


 ,

for any t ∈ R, where again G−, G0, G+ ⊂ IN with G0

non-empty.

With this notation we can extend Theorem 2 as follows.
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Theorem 3 (Main Theorem) The conditions

lim
t→+∞

∫ t

0

(
ṽ(G<

k+1, Gk+1, G
>
k+1, t

′)

− ṽ(G<
k , Gk, G

>
k , t

′)
)
dt′ = +∞,

∀ k ∈ IM−1,

(4a)

∃ c ∈ R :

∫ t

t0

(
ṽ(G<

k ∪Gk,1, Gk,2, G
>
k , t

′)

− ṽ(G<
k , Gk,1, G

>
k ∪Gk,2, t

′)
)
dt′ < c,

∀ t, t0 ∈ R+ with t > t0,

∀ (Gk,1, Gk,2) ∈ P(Gk), ∀ k ∈ IM .
(4b)

are necessary and sufficient for clustering behavior with
respect to G of all solutions of the system (3).

For the proof we refer to section 5.

Remark 4 There may not always be a cluster structure
satisfying (4). The corresponding solutions of (3) will
then also not exhibit clustering behavior.

4 Periodically varying parameters

In this section we assume that the parameters bi,K, and
Fij are periodic in time, with a common period for K
and all Fij (unless K is constant). We define v as the
time-average of the function ṽ:

v(G−, G0, G+) , lim
t→+∞

1

t

∫ t

0

ṽ(G−, G0, G+, t
′)dt′,

for all G−, G0, G+ ⊂ IN with G0 non-empty.

With these assumptions each of the integrals in (4a) and
(4b) can be written as the sum of a linear function of
time, with a coefficient equal to

v(G<
k+1, Gk+1, G

>
k+1)− v(G<

k , Gk, G
>
k )

or

v(G<
k ∪Gk,1, Gk,2, G

>
k )− v(G<

k , Gk,1, G
>
k ∪Gk,2),

and a periodic function of time. As a result Theorem 3
can be rewritten in terms of v as follows.

Corollary 5 The conditions

v(G<
k , Gk, G

>
k ) < v(G<

k+1, Gk+1, G
>
k+1),

∀ k ∈ IM−1,
(5a)

v(G<
k ∪Gk,1, Gk,2, G

>
k ) ≤ v(G<

k , Gk,1, G
>
k ∪Gk,2),

∀ (Gk,1, Gk,2) ∈ P(Gk), ∀ k ∈ IM .
(5b)

are necessary and sufficient for clustering behavior with
respect to G of all solutions of the system (3) with peri-
odically varying parameters bi, K, and fij.

Notice that the formulation of this result is similar to the
formulation of Theorem 2 regarding the time-invariant
system (1). It can be shown that an adapted version of
Theorem 5.4 from [4] may be applied to the conditions
(5), implying that a unique cluster structure can be as-
sociated with (3), for any choice of the (periodic) param-
eters.

Remark 6 When K and Fij have no common period, v
may still be well-defined, but the proof of the convergence
of the limit is somewhat technical, and for convenience
we consider a more restrictive assumption implying pe-
riodicity of the products KFij .

Remark 7 Notice that the reformulation of (4) as (5)
may also hold for non-periodically varying parameters.
(However, the convergence of the limits in the definition
of v does not guarantee the reformulation to be valid: if
the integral in (4a) behaves like ln t for large t, then (4a)
will be satisfied, but in (5a) the left hand side and the
right hand side will be equal.) Therefore the present re-
sults show that for a large class of time-varying systems
one may simply consider the results of the time-invariant
model by appriopriately defining the constant parameters
in this model. E.g. the parameters bi of the time-invariant
model will correspond to the time-averages of the func-
tions bi of the time-varying model.

5 Proof of the Main Theorem

5.1 Necessity of the conditions (4)

Assume there is a solution x of (3), exhibiting clustering
behavior with respect to G. Choose T > 0 such that the
distances between agents in different clusters are and
remain at least d. It follows that for any k ∈ IM−1 and
t > T

〈ẋ(t)〉Gk+1
− 〈ẋ(t)〉Gk

=

ṽ(G<
k+1, Gk+1, G

>
k+1, t)− ṽ(G<

k , Gk, G
>
k , t).

From the clustering behavior of x immediately follows
(4a).

Similarly one derives, for any k ∈ IM and (Gk,1, Gk,2) ∈
P(Gk), and taking into account that the functions fij are
non-decreasing in their first argument, that, for t ≥ T ,

〈ẋ(t)〉Gk,2
− 〈ẋ(t)〉Gk,1

≥ ṽ(G<
k ∪Gk,1, Gk,2, G

>
k , t)

− ṽ(G<
k , Gk,1, G

>
k ∪Gk,2, t),

and since 〈x(t)〉Gk,2
− 〈x(t)〉Gk,1

remains bounded, (4b)
follows.
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5.2 Sufficiency of the conditions (4) for the existence
of a solution exhibiting clustering behavior with re-
spect to G

Assume (4) holds. Set γmin , mini∈IN γi. For any D1 ≥
D2 > 0, consider the following region RD1,D2

⊂ RN :

y ∈ RD1,D2
⇔




〈y〉Gk+1
− 〈y〉Gk

≥
D1

∑
i∈Gk∪Gk+1

γi

2γmin
,

∀ k ∈ IM−1,

〈y〉Gk,2
− 〈y〉Gk,1

≤
D2

∑
i∈Gk

γi

2γmin
,

∀ (Gk,1, Gk,2) ∈ P(Gk), ∀ k ∈ IM .

We will show that a solution x with x(t0) ∈ RD1,d, sat-
isfies x(t) ∈ RD′

1
,D′

2
, ∀t ≥ t0, for some D1, D

′
1, D

′
2 ∈ R,

with D1 ≥ D′
1 ≥ D′

2 ≥ d.

The second set of inequalities characterizingRD1,D2
can

be rewritten as

〈y〉Gk,2
− 〈y〉Gk

≤
D2

∑
i∈Gk,1

γi

2γmin

or

〈y〉Gk
− 〈y〉Gk,1

≤
D2

∑
i∈Gk,2

γi

2γmin
,

for all (Gk,1, Gk,2) in P(Gk), for all k in IM . Consider-
ing the inequalities for which |Gk,1| = 1 or |Gk,2| = 1
together with the first set of inequalities characteriz-
ing RD1,D2

, it follows that if y ∈ RD1,D2
then for any

k ∈ IM−1, all i ∈ Gk and j ∈ Gk+1 satisfy yj − yi ≥
D1(γi+γj)

2γmin
≥ D1. As a consequence we can derive that, if

x(t) ∈ RD1,D2
for some t ∈ R, with D1 ≥ D2 ≥ d, then

〈ẋ(t)〉Gk+1
− 〈ẋ(t)〉Gk

=

ṽ(G<
k+1, Gk+1, G

>
k+1, t)− ṽ(G<

k , Gk, G
>
k , t), (6)

and therefore (4a) implies that, given t0 ∈ R,

〈x(t)〉Gk+1
− 〈x(t)〉Gk

−
(
〈x(t0)〉Gk+1

− 〈x(t0)〉Gk

)

is bounded from below. If follows that for the choice

D1 ≥ D2 − min
k∈IM−1

2γmin∑
i∈Gk∪Gk+1

γi
inf
t≥t0

∫ t

t0

dt′

×
(
ṽ(G<

k+1, Gk+1, G
>
k+1, t

′)− ṽ(G<
k , Gk, G

>
k , t

′)
)
, (7)

and D2 ≥ d, a solution with x(t0) ∈ RD1,d cannot leave
RD2,D2

⊃ RD1,d by making

〈x(t)〉Gk+1
− 〈x(t)〉Gk

−
D2

∑
i∈Gk∪Gk+1

γi

2γmin

negative for some k ∈ IM−1.

In the appendix we show that, if x(t0) ∈ RD1,d and D1

and D2 are sufficiently large,

〈x(t)〉Gk,2
− 〈x(t)〉Gk,1

−
D2

∑
i∈Gk

γi

2γmin
≤ 0, (8)

for all t ≥ t0, (Gk,1, Gk,2) in P(Gk), for all k in IM . This
implies that x(t) ∈ RD2,D2

, ∀ t ≥ t0, and together with
(6) and (4a) we can conclude that x exhibits clustering
behavior with respect to G.

The proof is quite technical. It is based on the fact
that, on the one hand, when x(t) ∈ RD2,D2

and xi(t) ≤
xj(t)−d for all i in Gk,1, j in Gk,2, for some (Gk,1, Gk,2)
in P(Gk), for some k in IM , and for some interval for t,
then 〈x(t)〉Gk,2

− 〈x(t)〉Gk,1
cannot increase by a value

larger than c in this interval for t (by (4b)), while on
the other hand, when switching to another partition
(G′

k,1, G
′
k,2) ∈ P(Gk) for considering this property, the

corresponding value is multiplied by a factor Γ smaller
than 1. As a result, the total increase will be bounded
by c

1−Γ , implying that xi(t)− xj(t) is bounded.

5.3 Sufficiency of (4) for clustering behavior (with re-
spect to G) of all solutions of (1)

Let x∗ be a solution exhibiting clustering behavior with
respect to G and let x be any other solution of (1). Con-
sider the function

V : R → R : t 7→ V (t) =
∑

i∈IN

γi(x
∗
i (t)− xi(t))

2.

Then

V̇ (t) = 2
∑

i∈IN

γi(x
∗
i (t)− xi(t))K(t)

∑

j∈IN

γj

×
(
fij(x

∗
j (t)− x∗

i (t), t)− fij(xj(t)− xi(t), t)
)

= K(t)
∑

i,j∈IN

γiγj(x
∗
i (t)− x∗

j (t) + xj(t)− xi(t))

×
(
fij(x

∗
j (t)− x∗

i (t), t)− fij(xj(t)− xi(t), t)
)

≤ 0,

since the functions fij are non-decreasing in their first
argument. It follows that V is non-increasing, and there-
fore |x∗

i (t)− xi(t)| is bounded, for any i ∈ IN . This im-
plies that x exhibits the same clustering behavior as x∗.

6 An example with time-varying weights γi

The proof of Theorem 3 is based on the fact that

d〈x〉G0

dt
= 〈ẋ〉G0

,
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i.e. the time-derivative of the average over a setG0 equals
the average of the time-derivatives. If the weights γi
would also be time-varying, this equality would no longer
hold and the result of Theorem 3 would not be valid.

In this section we provide an example of a system with
3 agents with time-varying weights γi, and we show (nu-
merically) that a cluster structure appears which is dif-
ferent from the cluster structure predicted by Theorem
3.

The functions fij are set equal to the function f , defined
by Fij = F = 1, d = 1, and f(x) = x for x ∈ [−d, d].
Furthermore, K(t) = 1, b1(t) = −6 and γ1(t) = 1 for
all t ∈ R. The parameters b2(t) and b3(t) are switching
repeatedly between 6 and −2, and γ2(t) and γ3(t) are
switching between 1 and 4, in time intervals with length
5:

b2(t) = 6, γ2(t) = 1,

b3(t) = −2, γ3(t) = 4,

for all t in [10k, 10k+ 5), for some k in Z,

b2(t) = −2, γ2(t) = 4,

b3(t) = 6, γ3(t) = 1,

for all t in [10k + 5, 10k + 10), for some k in Z.

Remark 8 Although the functions b2, b3, γ2, and γ3 are
not continuous, they can be approximated by continuous
functions, without affecting our conclusion. For conve-
nience, we choose them to be piecewise continuous.

We verify that for the choice G = ({1, 2, 3}) (i.e. there
is only one cluster, containing the three agents) the con-
ditions (5b) from Corollary 5 are satisfied. (There are
no conditions corresponding to (5a) for a partition with
only one cluster.)

We find that

v({1}, {2, 3}, ∅) = −
7

5
< v(∅, {1}, {2, 3}) = −1,

v({2}, {1, 3}, ∅) = −
39

10
< v(∅, {2}, {1, 3}) =

11

2
,

v({3}, {1, 2}, ∅) = −
39

10
< v(∅, {3}, {1, 2}) =

11

2
,

v({1, 2}, {3}, ∅) = −
3

2
< v(∅, {1, 2}, {3}) =

11

10
,

v({1, 3}, {2}, ∅) = −
3

2
< v(∅, {1, 3}, {2}) =

11

10
,

v({2, 3}, {1}, ∅) = −11 < v(∅, {2, 3}, {1}) =
3

5
,

0 5 10 15 20 25 30
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Figure 1. Simulation of the system described in section 6.

suggesting that there will indeed only be one cluster,
equal to {1, 2, 3}. On the other hand, the simulation of
the differential equations (3) shown in Fig. 1 reveals the
emergence of two clusters: G = ({1}, {2, 3}). Although
ṽ(G−, G0, G+, t) may still be considered as an average
velocity over a set G0 of agents, it is no longer equal
to the time-derivative of the average xi-value over G0,
since the latter may also vary as a result of changes in
the weights γi.

7 Further extensions and conclusion

The previous example has illustrated that Theorem 3
cannot simply be extended for the case of time-varying
weights. In fact, the expression for the time-derivative
d〈x〉G0

dt (t) would also contain products of γ̇i(t) and the
positions xi(t), indicating that the distances between
agents from the same cluster would also have an im-
pact on the average cluster velocity, and therefore on the
clustering behavior. Since these distances also depend
on the shape of the interaction functions fij — and not
only on the saturation values Fij — a characterization
of a potential emerging cluster structure would probably
involve the functions fij and would therefore be much
more complex than the necessary and sufficient condi-
tions stated in this paper. It is not clear to us what such
an exact characterization might look like if one wants to
maintain the generality of the model, and even less how
it may be derived.

Another extension of the model that would be relevant
for applications is to consider a more general class of
interaction functions. Removing the saturation assump-
tion and allowing a function fij to growunbounded could
be easily incorporated into the analysis by setting the
corresponding saturation value Fij equal to +∞, and in-
troducing some new notation to avoid evaluating expres-
sions equivalent to∞−∞. To investigate the case where
the interactions become zero for large distances, which
would be more realistic whenmodeling e.g. swarming be-
havior, one may consider removing the restriction that
the functions fij are non-decreasing in their first argu-

6



ment. However, this would require a different analytical
treatment; the independence of initial conditions will be
lost and the possible cluster structures may depend on
the shape of the interaction functions fij and not only
on the saturation values, implying again that an analyt-
ical treatment with results as general as in this paper
will be much harder.

In this paper we have studied a time-varying version
of a clustering model and we have provided conditions
characterizing the clustering behavior of its solutions.
The results show that for a large class of time-varying
systems these conditions may be formulated similarly as
the conditions for the time-invariant system. This may
for instance justify replacing some of the time-varying
parameters by their time-averaged values.

Some properties of the system that are crucial in our
analysis are the assumption of constant weights and non-
decreasing interaction functions. For some of the appli-
cations that we have in mind these assumptions seem
acceptable (e.g. for compartmental systems), for other
applications this imposes some restrictions on the sys-
tems that may be investigated analytically. We have il-
lustrated that an emerging cluster structure in a sys-
tem with time-varying weights does not necessarily sat-
isfy the conditions presented in this paper, and a differ-
ent analytical approach may be required to handle this
problem.
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A Proof of the inequalities (8)

We first introduce some notation. Fix a k ∈ IM and
define D̃2,k : RN → R by

D̃2,k(y) ,
2γmin∑
i∈Gk

γi
max

(Gk,1,Gk,2)
∈P(Gk)

(
〈y〉Gk,2

− 〈y〉Gk,1

)
,

for all y in RN . Notice that D̃2,k is a linear function.

For (Gk,1, Gk,2) in P(Gk) and δ > 0, set

BGk,1,Gk,2
,

{
y ∈ D̃−1

2,k(2d) :

2γmin∑
i∈Gk

γi

(
〈y〉Gk,2

− 〈y〉Gk,1

)
= 2d

}
,

B̃Gk,1,Gk,2
, {y ∈ D̃−1

2,k(2d) :

∃ y′ ∈ BGk,1,Gk,2
with ‖y − y′‖∞ ≤ d

2},

WGk,1,Gk,2
, {λy ∈ RN: y ∈ BGk,1,Gk,2

, λ ≥ 1},

W̃Gk,1,Gk,2
, {λy ∈ RN: y ∈ B̃Gk,1,Gk,2

, λ ≥ 1}.
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The set BGk,1,Gk,2
corresponds to the face of the con-

vex polytope defined by D̃2,k(y) ≤ 2d where the maxi-

mum in the definition of D̃2,k is attained for the parti-

tion (Gk,1, Gk,2). The set B̃Gk,1,Gk,2
may be considered

as a d
2 -neighborhood of BGk,1,Gk,2

on the boundary of
this polytope. The sets WGk,1,Gk,2

constitute a partition
(disregarding the fact that they may have parts of their

boundary in common) of the set {y ∈ RN : D̃2,k(y) ≥
2d}.

In the sections B and C we prove the following lemmas.

Lemma 9 For any k ∈ IM , any (Gk,1, Gk,2) in P(Gk),
and any i in Gk,1 and j in Gk,2,

yi ≤ yj − D̃2,k(y), ∀ y ∈ WGk,1,Gk,2
,

and

yi ≤ yj −
D̃2,k(y)

2
, ∀ y ∈ W̃Gk,1,Gk,2

.

Lemma 10 There exists a Γ ∈ (0, 1) such that

〈y〉Gk,2
− 〈y〉Gk,1

〈y〉G′

k,2
− 〈y〉G′

k,1

≤ Γ,

for all y in WG′

k,1
,G′

k,2
\ W̃Gk,1,Gk,2

, for all (Gk,1, Gk,2),

(G′
k,1, G

′
k,2) ∈ P(Gk).

Consider a solution x of (3), with x(t0) ∈ RD1,d, where
D1 satisfies (7), with D2 > 2d to be determined later.
Assume that x leaves the region RD2,D2

by making

〈x(t)〉Gk,2
− 〈x(t)〉Gk,1

−
D2

∑
i∈Gk

γi

2γmin

positive for some t in R, (G′
k,1, G

′
k,2) in P(Gk), for some

k in IM .

Then there exist t1, t2 ∈ R with t0 < t1 < t2,
D̃2,k(x(t1)) = 2d, D̃2,k(x(t2)) = D2 and x(t) ∈ RD2,D2

and 2d ≤ D̃2,k(x(t)) ≤ D2, ∀ t ∈ [t1, t2].

Since D̃2,k(x(t)) ≥ 2d, ∀ t ∈ [t1, t2], we can find
a sequence (G1

k,1, G
1
k,2), . . . , (G

n
k,1, G

n
k,2) and times

τ0 = t1, τ1, . . . , τn = t2, with the property that

x(t) ∈ W̃Gl
k,1

,Gl
k,2

, ∀ t ∈ (τl−1, τl), ∀ l ∈ In,

x(τl) ∈ WGl
k,1

,Gl
k,2

∩ ∂W̃
G

l+1

k,1
,G

l+1

k,2

, ∀ l ∈ In−1,

x(τn) ∈ WGl
k,1

,Gl
k,2

.

(This sequence can be constructed easily by starting at
time t2 and reversing to t1.)

For each l ∈ In, it follows from Lemma 9 that xi(t) ≤
xj(t)−d, ∀ (i, j) ∈ Gl

k,1×Gl
k,2, ∀ t ∈ (τl−1, τl), and since

also x(t) ∈ RD2,D2
with D2 ≥ 2d, we can derive that

〈ẋ(t)〉Gl
k,2

− 〈ẋ(t)〉Gl
k,1

= ṽ(G<
k ∪Gl

k,1, G
l
k,2, G

>
k , t)

− ṽ(G<
k , G

l
k,1, G

>
k ∪Gl

k,2, t),

∀ t ∈ (τl−1, τl), and therefore, from (4b), that

〈x(τl)〉Gl
k,2

− 〈x(τl)〉Gl
k,1

≤ 〈x(τl−1)〉Gl
k,2

− 〈x(τl−1)〉Gl
k,1

+ c.

From Lemma 10 (and the continuity of x) it follows that
for l ∈ In

〈x(τl−1)〉Gl
k,2

− 〈x(τl−1)〉Gl
k,1

〈x(τl−1)〉Gl−1

k,2

− 〈x(τl−1)〉Gl−1

k,1

≤ Γ,

for some Γ ∈ (0, 1).

Consequently, ∀ l ∈ In,

D̃2,k(x(τl)) =
2γmin∑
i∈Gk

γi

(
〈x(τl)〉Gl

k,2
− 〈x(τl)〉Gl

k,1

)

≤
2γmin∑
i∈Gk

γi

(
〈x(τl−1)〉Gl

k,2
− 〈x(τl−1)〉Gl

k,1
+ c

)

≤
2γmin∑
i∈Gk

γi

(
Γ
(
〈x(τl−1)〉Gl−1

k,2

− 〈x(τl−1)〉Gl−1

k,1

)
+ c

)

= ΓD̃2,k(x(τl−1)) +
2γmin∑
i∈Gk

γi
c,

and thus

D̃2,k(x(t2)) ≤ ΓnD̃2,k(x(t1))

+
2γmin∑
i∈Gk

γi
c
(
1 + Γ + · · ·+ Γn−1

)

≤ 2d+

2γmin∑
i∈Gk

γi

c

1− Γ
.

Choosing D2 larger than the right hand side will result
in a contradiction, and therefore we have shown that a
solution x of (3), with x(t0) ∈ RD1,d, for some t0 ∈ R,
D1 satisfying (7), and

D2 > 2d+

2γmin∑
i∈Gk

γi

c

1− Γ
,
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will satisfy the inequalities (8) and x(t) ∈ RD2,D2
, ∀ t ≥

t0.

Consequently, x exhibits clustering behavior with re-
spect to G.

B Proof of lemma 9

For any y ∈ WGk,1,Gk,2
,

〈y〉Gk,2
− 〈y〉Gk,1

=
D̃2,k(y)

∑
i∈Gk

γi

2γmin
. (B.1)

Assume |Gk,1| 6= 1 6= |Gk,2| and pick an i1 ∈ Gk,1 and a
i2 ∈ Gk,2. Then

〈y〉Gk,2∪{i1} − 〈y〉Gk,1\{i1} ≤
D̃2,k(y)

∑
i∈Gk

γi

2γmin
,

〈y〉Gk,2\{i2} − 〈y〉Gk,1∪{i2} ≤
D̃2,k(y)

∑
i∈Gk

γi

2γmin
.

Multiplying with
(∑

i∈Gk,1\{i1}
γi

)(∑
i∈Gk,2∪{i1}

γi

)
,

resp.
(∑

i∈Gk,1∪{i2}
γi

)(∑
i∈Gk,2\{i2}

γi

)
, and sub-

tracting
(∑

i∈Gk,1
γi

)(∑
i∈Gk,2

γi

)
times (B.1) results

in

yi1γi1
∑

i∈Gk

γi − γi1
∑

i∈Gk

yiγi ≤

γi1


 ∑

i∈Gk,1

γi −
∑

i∈Gk,2

γi − γi1


 D̃2,k(y)

∑
i∈Gk

γi

2γmin
,

− yi2γi2
∑

i∈Gk

γi + γi2
∑

i∈Gk

yiγi ≤

γi2


 ∑

i∈Gk,2

γi −
∑

i∈Gk,1

γi − γi2


 D̃2,k(y)

∑
i∈Gk

γi

2γmin
.

Adding both expressions, after dividing by γi1
∑

i∈Gk
γi,

resp. γi2
∑

i∈Gk
γi, we obtain

yi1 − yi2 ≤ −
D̃2,k(y)(γi1 + γi2)

2γmin
≤ −D̃2,k(y).

For the cases |Gk,1| = 1 or |Gk,2| = 1, this reasoning is
easily adapted.

Since for any y ∈ B̃Gk,1,Gk,2
, there exists a y′ in

BGk,1,Gk,2
such that yi1 − yi2 ≤ y′i1 − y′i2 + d, it follows

by Lemma 9 (since BGk,1,Gk,2
⊂ WGk,1,Gk,2

) that

yi1 ≤ yi2 − d, ∀ i1 ∈ Gk,1, ∀ i2 ∈ Gk,2,

which we may write as

yi1 ≤ yi2 −
D̃2,k(y)

2
, ∀ i1 ∈ Gk,1, ∀ i2 ∈ Gk,2.

Because of the linearity of the function D̃2,k, this holds

for any y ∈ W̃Gk,1,Gk,2
:

yi1 ≤ yi2 −
D̃2,k(y)

2
, ∀ i1 ∈ Gk,1, ∀ i2 ∈ Gk,2.

C Proof of lemma 10

Assume that there does not exist such a Γ. Then there ex-
ist (Gk,1, Gk,2), (G

′
k,1, G

′
k,2) ∈ P(Gk), and (yn)n∈N

with

yn in WG′

k,1
,G′

k,2
\ W̃Gk,1,Gk,2

for all n in N, satisfying

lim
n→∞

〈yn〉Gk,2
− 〈yn〉Gk,1

〈yn〉G′

k,2
− 〈yn〉G′

k,1

≥ 1.

Notice that wemay assume that D̃2,k(y
n) = 2d (since we

can divide both the numerator and the denominator by
D̃2,k(y

n)/(2d)), we may assume that 〈yn〉Gk
= 0 (since

we can subtract 〈yn〉Gk
from yni with i ∈ Gk), and we

can set yni = 0 for all i /∈ Gk without loss of generality.
Since this implies that the yn are bounded, it follows that
there exists a limit value y in the closure of BG′

k,1
,G′

k,2
\

B̃Gk,1,Gk,2
with

〈y〉Gk,2
− 〈y〉Gk,1

〈y〉G′

k,2
− 〈y〉G′

k,1

≥ 1.

Since y ∈ BG′

k,1
,G′

k,2
this inequality can also be written

as
2γmin∑
i∈Gk

γi

(
〈y〉Gk,2

− 〈y〉Gk,1

)
≥ D̃2,k(y),

implying that this inequality is an equality (given the

definition of D̃2,k) and that y ∈ BGk,1,Gk,2
, contradicting

the fact that y is in the closure of BG′

k,1
,G′

k,2
\ B̃Gk,1,Gk,2

.
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