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Abstract

We have classified by computer the projectively distinct complete (k, 3)-
arcs in PG(2, q), q ≤ 13. The algorithm used is an application of isomorph-
free backtracking using canonical augmentation, an adaptation of our earlier
algorithms for the generation of (k, 2)-arcs. We describe those parts of the
algorithms which are specific to the particular problem of (k, 3)-arcs. For
each of these arcs we have also determined the automorphism group. The
results are summarised in tables where the arcs are listed according to size
and automorphism group. For the arcs with the larger automorphism groups,
explicit descriptions are given. Part of the computer results can be generalized
to other values of q: we describe constructions of arcs having S4 as a group
of automorphisms, arcs containing the union of three ‘half conics’ and arcs
constructed from parts of cubic curves.

1 Introduction

Consider the Desarguesian projective plane PG(2, K) over a field K. Let k be a
positive integer. A (k, n)-arc S of PG(2, K) is defined to be a set of k points of
the plane such that at least one line of the plane meets S in n points but no line
meets S in more than n points. A (k, 3)-arc is called complete if and only if it
is not contained in a (k + 1, 3)-arc. By definition, a line of PG(2, K) intersects a
(k, 3)-arc in either 0, 1, 2 or 3 points, in which case it is called an external line, a
unisecant, a bisecant or a trisecant, respectively. In this paper, we shall mostly work
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with (k, 3)-arcs and for what follows the term “arcs” will always refer to (k, 3)-arcs.
Also, we will often silently drop the requirement that at least one line must contain
3 points. In other words, we will sometimes regard a (k, 2)-arc as a special case of a
(k, 3)-arc. Of course, for complete (k, 3)-arcs this is not an issue because a (k, 2)-arc
can never be a complete (k, 3)-arc.

We shall be interested in the case where K is the finite field of q elements, and
write PG(2, q) = PG(2, K) as customary. Let m3(2, q) denote the largest size of a
(k, 3)-arc of PG(2, q). Then m3(2, q) ≤ 2q+ 1 for q ≥ 4. For further information on
the geometrical properties of (k, 3)-arcs we refer to [5].

The subject of (k, 3)-arcs is not only interesting in its purely geometrical setting.
Arcs have applications in coding theory, where they can be interpreted as linear max-
imum distance separable (MDS) codes. A linear [k, d, k − d]q code C such that its

dual code C⊥ has minimum distance equal to d is called NMDS. Every [k, 3, k − 3]q
NMDS code is equivalent to a (k, 3)-arc in PG(2, q) containing at least three collinear
points. A (k, 3)-arc is also the complement of a t-fold blocking set with t = q − 2.

The purpose of our research is to determine by computer all complete (k, 3)-arcs in
PG(2, q) up to PGL(3, q)-equivalence. Two (k, 3)-arcs are called PGL-equivalent if
there exists a collineation of PGL(3, q) mapping one arc to the other. For q ≤ 9,
the classification was already done by Marcugini et al. [6, 7]. They also found that
m3(2, 11) = 21 and m3(2, 13) = 23 and that the smallest size of a complete arc
in PG(2, 13) is 15 [8]. For q = 13 they found the spectrum: there is a complete
(k, 3)-arc for each k, 15 ≤ k ≤ 23 [9]. We extend this to a full classification of
all complete (k, 3)-arcs in PG(2, 11) and PG(2, 13). Our programs reproduce the
results of Marcugini et al. The algorithm we use is that of [3, 4], adapted to the
case of (k, 3)-arcs instead of (k, 2)-arcs. This algorithm can also be used to classify
the full set of arcs, i.e., not necessarily only those that are complete, in Section 3.2
we list the results for q ≤ 13.

One of the purposes of doing a computer classification of this type is to gain further
insight into the general class of objects under investigation. In our case we hope
to find patterns in the vast amount of data which may for instance allow us, or
other researchers, to derive new general constructions of arcs that also work for
larger fields. Our results lead to several general types of arc. These are described in
Section 4.

Most well-known constructions produce arcs that have an interesting (and often
large) automorphism group. For this reason we list the automorphism groups of all
complete arcs (cf. Tables 1-6). We also discuss the arcs with the larger automorphism
groups in more detail, in order to describe them in a more elegant way than by just
listing the coordinates of their points. (See Section 5 for q = 11 and Section 6 for
q = 13.)
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Our programs, which were written in Java, were run on a cluster of Debian Linux
systems with 56 quad core Intel Xeon X3220 2.40GHz processors. The generation
of all complete arcs of PG(2, 11) up to equivalence takes approximately 6 hours of
CPU time. For q = 13 it took approximately 152 days of CPU time. To store the
results (in compressed form) we need about 35 MByte of disk space for q = 11 and
about 14 GByte for q = 13.

2 The algorithm

For the generation of the (complete) (k, 3)-arcs up to equivalence in PG(2, q), q ≤ 13,
we used an application of isomorph-free generation using canonical augmentation, as
introduced by B. McKay [10]. In [3, 4], we adapted this technique to the generation
of all subsets S of the set V of points of PG(2, q) up to equivalence for the group
G = PGL(3, q), that satisfy a certain property P(S), where P is a set predicate with
the following characteristics:

1. P is group invariant : P(S) if and only if P(Sg), for every S ⊆ V and g ∈ G;

2. P is hereditary : if P(S) then P(S ′) for every subset S ′ of S.

More specific, in [3, 4], we considered for P(S) the predicate “S is a (k, 2)-arc of
PG(2, q)”. In this paper we shall instead use the predicate “S is a (k, 2)-arc or a
(k, 3)-arc of PG(2, q)” for P(S). This necessitates some important changes that are
explained in the following subsections.

The basic idea behind the generation algorithm is the use of a function F which
singles out a special orbit in the set of all orbits of the stabilizer of the arc S on
the points of S, and which is group invariant. Arcs of size k + 1 are then generated
from arcs of size k by adding a single point s to an arc S but only in those cases
where s belongs to the special orbit F (S ∪{s}) of the generated arc. Computations
are speeded up by making careful use of some invariants. These are functions that
associate a value to every point and line of the plane in such a way that two points
or two lines have the same invariant value whenever they are in the same orbit of
the stabilizer group of the arc.

We also make use of the improvement of the algorithm as explained in [4], where
we do not always have to compute the set stabilizer GS′ for the generated arc
S ′ = S ∪ {s}. This is possible because whenever the stabilizer GS of S is trivial,
and the points of S ′ satisfies certain conditions, then also GS′ must be trivial.
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2.1 Invariants

Let us now explain the invariants of the arc that were used to speed up computations.

Let S be an arc, let ` be a line of the plane, let p be a point of the plane. Denote
the number of points of S on ` by dS(`), the number of bisecants of S through p
by bS(p), the number of trisecants of S through p by tS(p). Note that dS(`), bS(p)
and tS(p) are invariant for the group G, i.e. dS(p) = dSg(pg), bS(p) = bSg(pg) and
tS(p) = tSg(pg) for all g ∈ G. Hence it follows that dS(`), bS(p) and tS(p) are also
invariant for the group GS.

For every line ` of the plane we define the following line invariant :

IS(`)
def
= h(dS(`)) +

∑
p∈`\S

(h1(bS(p)) + h2(tS(p))).

where h, h1 and h2 denote simple hash functions (one of them, say h, can be the
identity). Again IS satisfies ISg(`g) = IS(`) for every g ∈ G. Note that IS can be
computed quite efficiently if we keep track during the course of the algorithms of
the values of dS(`), bS(p) and tS(p) for all lines and points of the plane.

For every point p of the plane we define a point invariant :

IS(p)
def
=

∑
`,p∈`

h3(IS(`)),

where again h3 denotes a simple hash function. Here we also have ISg(pg) = IS(p)
for every g ∈ G. The computation of the point invariant values for all points in the
arc S is not very efficient, but we do not need to compute them for every generated
arc S. In contrast to the (k, 2)-arcs, where each arc point p had the same value bS(p),
for (k, 3)-arcs in many cases bS(p) is itself already a sufficiently strong invariant for
our purposes and IS(p) is only used when this turns out not to be the case. (In our
programs we use tS instead of bS, but because bS and tS are linear dependent, this
is not really significant.)

The functions tS and IS each induce a partition on S which we will denote by tS\\S,
resp. IS\\S. Two points p, p′ belong to the same part U ∈ tS\\S (IS\\S) if and only

if tS(p) = tS(p′) (IS(p) = IS(p′)), and in that case we shall write tS(U)
def
= tS(p)

(IS(U)
def
= IS(p)). We will call elements of these partitions t-quasi-orbits and I-

quasi-orbits of S.

Note that U ∈ tS\\S satisfies U g = U for every g ∈ GS and therefore any t-quasi-
orbit U is a union of orbits of GS on S. The same holds for all I-quasi-orbits.
In other words, GS\\S is a refinement of tS\\S and of IS\\S. In particular, every
singleton t- or I-quasi-orbit {p} must be a true orbit of GS.
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2.2 Canonical forms for (k, 3)-arcs

While the invariants tS and IS play a crucial role in the canonical augmentation al-
gorithm, there are (rare) occasions where they are not sufficient to ensure isomorph-
free generation. In those cases we need to use some kind of canonical form of the
generated set S. Fortunately, the data we gather to compute the invariants can also
be put to good use when constructing such a canonical form. We want to construct
a canonical form for S in which certain known points have minimal values for I.

It is for example very easy to see that the two points p1 and p2 with minimal
invariants, i.e., satisfying I(p1) ≤ I(p2) ≤ I(p) for all p ∈ S−{p1, p2}, can always be
mapped by a projectivity to two chosen points, say the points e1, e2 with coordinates
(1, 0, 0) and (0, 1, 0). With (k, 2)-arcs this principle can easily be extended to four
points, but for (k, 3)-arcs there are some complications.

The first complication already arises for the point p3 with third smallest invariant.
We have two possibilities: if p1, p2, p3 are not collinear, then p3 can be mapped to
e3(0, 0, 1), otherwise it can be mapped to f3(1, 1, 0).

We can however be sure that if the third point cannot be mapped to e3(1, 0, 0) then
the fourth point can (otherwise there would be four points on the same line). More
generally, among the five points with smallest invariants, we will always be able to
find four that form a quadrangle. The fourth point of the quadrangle can then be
mapped to e4(1, 1, 1). Whence the following definition :

Let JS denote an invariant (in our case JS = IS or tS). Then a (k, 3)-arc S will be
called J-quasi-canonical if and only if the following conditions are satisfied :

• e1, e2, e3, e4 ∈ S,

• JS(e1) ≤ JS(e2) ≤ JS(e3) ≤ JS(e4)

• There exist at most one point p ∈ S−{e1, e2, e3, e4} such that JS(p) < JS(e4).

• If such p exists, it lies on at least one of the lines eiej, or equivalently,
{e1, e2, e3, e4, p} is not a (5, 2)-arc.

• If such p lies on exactly one line eiej, then JS(p) ≥ JS(ei), JS(ej).

Proposition 1 Let S be a (k, 3)-arc of PG(2, K) with |S| ≥ 5. Then SG contains
at least one J-quasi-canonical element.

Proof : We can always find a set P = {p1, . . . , p5} ⊆ S of 5 points of S that satisfy
the condition JS(p1) ≤ JS(p2) ≤ · · · ≤ JS(p5). (Take p1 to be one of the points of S
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for which JS is minimal, take p2 to be one of the points of S − {p1} for which JS is
minimal, . . . )

Now define the point p∗ as follows :

• If no three points among p1, . . . , p5 are collinear, then p∗
def
= p5.

• If P contains exactly one collinear triple, say pipjpk with i < j < k, then

p∗
def
= pk.

• If P contains two collinear triples, then p∗ is the point these triples have in
common.

Define P ′ = P − {p∗}. By the choice of p∗, P
′ contains no collinear triples. Write

P ′ = {pi, pj, pk, p`} with i < j < k < `. Now, there exists a (unique) projectivity g
that maps pi to e1, pj to e2, pk to e3 and p` to e4.

We leave it to the reader to verify that Sg is J-quasi-canonical.

The proof of this proposition is constructive and can easily be extended to an algo-
rithm which finds all J-quasi-canonical elements of SG.

Now, fix an ordering on the points of the plane and extend this to a lexical ordering
of subsets of points of equal size. We are finally in a position to define the canonical
form of an arc. Let S denote a (k, 3)-arc with k ≥ 5.

1. If the t-quasi-orbit partition of S contains at least one singleton, then define
can (S) to be the smallest of all t-quasi-canonical arcs in SG with respect to
this lexical ordering.

2. Otherwise, define can (S) to be the smallest of all I-quasi-canonical arcs in SG

with respect to this lexical ordering.

Although the definition of the canonical form is rather involved, in practice it can be
computed quite efficiently, especially when all relevant invariant values are known
beforehand.

2.3 The function F

We can now use the invariants on the points and the canonical form to construct
the function F used in the algorithm. We define F as follows:
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1. If the t-quasi-orbit partition of S contains at least one singleton, then we define
F (S) to be the singleton {p} for which tS(p) is minimal.

2. Otherwise, if the I-quasi-orbit partition of S contains at least one singleton,
then we define F (S) to be the singleton {p} for which IS(p) is minimal.

3. Otherwise F (S)
def
= ehGS

1 where h ∈ G is such that S = can (S)h and e1 is as in
Section 2.2. In simple terms: F selects that orbit of GS whose representative
corresponds to e1 in the canonical form of S.

Note that we only use the point invariant IS(p) if there is no unique value among
all values tS(p) for all p ∈ S. This only happens in 41% of the cases for q = 11 and
in 38% of the cases for q = 13.

3 Results

3.1 Complete (k,3)-arcs of PG(2, q), q ≤ 13

As mentioned in the introduction, we have been able to compute a full classification
of the projectively distinct complete (k, 3)-arcs in PG(2, q) for all q ≤ 13. For each
of these arcs we have also determined its automorphism group, i.e., the subgroup of
PGL(3, q) that stabilizes the set of points of the arc. The results are summarised in
Tables 1-6.

In these tables k denotes the size of the arcs in the corresponding column, and Nk

the number of projectively distinct complete arcs of that size. For each k we specify
a list of possible automorphism groups GS and the corresponding number of k-arcs
with an automorphism group of that type. (We use the ‘Atlas’-notation for the
groups [2].) The underlined cases will be discussed in later sections.

Note that the number of projectively distinct complete (k, 3)-arcs in PG(2, q), q ≤ 9
was already found by Marcugini et al. [6, 7, 8, 9]. However for q = 8 and q = 9,
they did not give the automorphism groups of the arcs. For q = 11, they only found
that m3(2, 11) = 21 and that only two non-equivalent (21, 3)-arcs exist. For q = 13,
they found 7 non-equivalent arcs of size m3(2, q) = 23 and 33 non-equivalent of size
15. They also found the spectrum for q = 13: there is a complete (k, 3)-arc for each
k, 15 ≤ k ≤ 23.
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k = 9 k = 10 k = 11

Nk = 2 Nk = 2 Nk = 2

GS # GS # GS #

S3 1 3 2 D8 1

D12 1 5 : 4 1

Table 1: Numbers of complete (k, 3)-arcs in PG(2, 5) listed according to size and
automorphism group.

k = 9 k = 11 k = 12 k = 13 k = 14 k = 15

Nk = 1 Nk = 8 Nk = 69 Nk = 44 Nk = 2 Nk = 1

GS # GS # GS # GS # GS # GS #

[216] 1 1 1 1 55 1 23 1 1 S4 : 3 1

2 4 2 4 2 15 6 1

22 1 3 7 3 2

S3 2 S3 1 22 2

32 1 S3 2

3S3 1

Table 2: Numbers of complete (k, 3)-arcs in PG(2, 7) listed according to size and
automorphism group.

k = 11 k = 12 k = 13 k = 14 k = 15

Nk = 4 Nk = 22 Nk = 674 Nk = 472 Nk = 43

GS # GS # GS # GS # GS #

2 3 1 19 1 584 1 471 1 25

23 1 3 3 2 67 2 1 2 3

3 18 3 3

4 1 22 6

S3 4 4 1

S3 3

A4 2

Table 3: Numbers of complete (k, 3)-arcs in PG(2, 8) listed according to size and
automorphism group.
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k = 12 k = 13 k = 14 k = 15 k = 16 k = 17

Nk = 4 Nk = 453 Nk = 7261 Nk = 7880 Nk = 646 Nk = 6

GS # GS # GS # GS # GS # GS #

2 1 1 384 1 7231 1 7523 1 613 1 4

S3 1 2 57 2 28 2 261 2 14 2 2

[36] 1 3 7 4 2 3 73 3 11

[54] 1 22 4 22 7 22 2

S3 1 4 2 4 2

6 3 5 2

S3 9 6 1

D10 2 3 : 4 1

Table 4: Numbers of complete (k, 3)-arcs in PG(2, 9) listed according to size and
automorphism group.
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k = 13 k = 14 k = 15 k = 16 k = 17

Nk = 5 Nk = 146 Nk = 71584 Nk = 1574490 Nk = 2082781

GS # GS # GS # GS # GS #

2 1 1 138 1 70705 1 1573677 1 2078955

6 1 2 8 2 794 2 613 2 3782

S3 2 3 56 3 196 22 20

D10 1 22 6 22 1 4 9

4 2 6 2 5 5

6 2 S3 1 8 1

S3 15 D8 5

D10 2 Q8 1

S4 2 D10 3

k = 18 k = 19 k = 20 k = 21

Nk = 259585 Nk = 4176 Nk = 15 Nk = 2

GS # GS # GS # GS #

1 259174 1 4055 1 13 7 : 3 2

2 234 2 76 2 2

3 166 3 35

22 1 22 5

4 4 4 1

5 1 S3 3

S3 3 19 : 3 1

A4 1

S4 1

Table 5: Numbers of complete (k, 3)-arcs in PG(2, 11) listed according to size and
automorphism group.
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k = 15 k = 16 k = 17 k = 18 k = 19

Nk = 33 Nk = 95497 Nk = 27833779 Nk = 487287851 Nk = 644018777

GS # GS # GS # GS # GS #

1 13 1 95149 1 27819765 1 487274273 1 643963031

2 4 2 314 2 13907 2 10588 2 55128

3 10 3 25 3 54 3 2927 3 459

6 3 4 4 22 26 22 2 22 78

S3 2 6 1 4 1 4 11 4 59

[36] 1 S3 4 6 1 6 13 6 1

S3 23 S3 18 S3 14

D8 2 32 15 D8 7

3S3 1

S4 1

31+2
+ 1

[36] 1

k = 20 k = 21 k = 22 k = 23

Nk = 96109026 Nk = 2300204 Nk = 9669 Nk = 7

GS # GS # GS # GS #

1 96105103 1 2297792 1 9618 1 5

2 3733 2 1954 2 28 2 1

3 161 3 425 3 16 4 1

22 2 22 9 4 4

4 24 4 3 6 1

6 3 6 8 S3 1

S3 6 7 1

32 2

D12 2

D14 1

3S3 2

Table 6: Numbers of complete (k, 3)-arcs in PG(2, 13) listed according to size and
automorphism group.
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3.2 The (k,2)- and (k,3)-arcs of PG(2, q), q ≤ 13

In Table 7 we list the number of PGL-inequivalent arcs in PG(2, q), q ≤ 13, not
necessarily complete. To obtain these results we used the same algorithm of Sec-
tion 2, except that we do not filter for completeness. Running times are essentially
the same as for complete arcs.

q = 5 q = 7 q = 8 q = 9 q = 11 q = 13

k = 4 2 2 2 2 2 2

k = 5 3 4 3 5 5 7

k = 6 8 17 20 31 52 88

k = 7 13 54 100 192 564 1429

k = 8 13 181 507 1343 6764 25851

k = 9 16 526 2250 8232 70555 405923

k = 10 7 907 6681 36573 574777 5175927

k = 11 2 923 12664 111833 3520995 52242283

k = 12 395 12781 209172 15291648 403124643

k = 13 65 5822 211818 44020760 2282452775

k = 14 4 871 97050 76936027 9001288813

k = 15 1 43 16386 73157838 23188169036

k = 16 734 32916332 36058738738

k = 17 6 5884405 30742092308

k = 18 333858 12779923892

k = 19 4467 2246238494

k = 20 17 140208097

k = 21 2 2507054

k = 22 0 9805

k = 23 0 7

Table 7: Numbers of PGL-inequivalent (k, 2)- or (k, 3)-arcs in PG(2, q) for q ≤ 13

3.3 Regular (k,3)-arcs of PG(2, q), q ≤ 13

Among the complete (k, 3)-arcs of PG(2, q), 7 ≤ q ≤ 13 there are a few that are
regular in the sense that every point of the arc lies on the same number of trisecants
to that arc (and hence also the same number of bisecants and unisecants). We list
some information on these arcs in Table 8. k denotes the size of the arcs, u, b and t
denote the number of unisecants, bisecants and trisecants respectively through each
point of the arc and # denotes the number of projectively distinct arcs of that size
with corresponding number of unisecants, bisecants and trisecants.
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PG(2, 7) PG(2, 8) PG(2, 9)
# k u b t # k u b t # k u b t
1 9 4 0 4 1 15 0 4 5 5 15 1 4 5
1 14 1 1 6 5 15 2 2 6
1 15 0 2 6 3 16 1 3 6

PG(2, 11) PG(2, 13)
# k u b t # k u b t
2 15 3 4 5 2 15 6 2 6
7 15 4 2 6 4 17 4 4 6
9 16 3 3 6 1 18 5 1 8

21 17 2 4 6 30 18 4 3 7
1 18 1 5 6 12 18 3 5 6

11 18 2 3 7 2 19 2 6 6
1 19 3 0 9 1 21 2 4 8
2 21 1 2 9 3 21 3 2 9

Table 8: Regular arcs in PG(2, q), q ≤ 13

4 General constructions

4.1 Some arcs with automorphism group S4

Among our results, there are three types of arcs that accept the symmetric group S4

as a group of automorphisms and that can be generalized to other values of q. One
has size 12, one has size 15 and one has size 18. The arc of size 12 looks very similar
to the (k, 2)-arc S∗(a) = S(2/a) described in [3, Proposition 3] and [4, Theorem
1]: it consists of the same set of points, but the conditions for which this set is a
(k, 3)-arc are somewhat relaxed.

Theorem 1 Let a ∈ GF(q), q odd. Let S∗(a) denote the set of points of PG(2, q)
with coordinates of the form (a,±1,±1), (±1, a,±1) or (±1,±1, a), with independent
choices of sign. Let S∗(∞) be the set of points with coordinates (1, 0, 0), (0, 1, 0) or
(0, 0, 1).

The set S∗(a) (= S∗(−a)) is a (12, 3)-arc of PG(2, q) if and only if

a /∈ {0,±1,±
√
−1}. (1)

The set S∗(a) ∪ S∗(∞) is a (15, 3)-arc if and only if a satisfies (1).
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The set S∗(a) ∪ S∗(0) is a (18, 3)-arc if and only if a satisfies (1) and

a 6= ±2, a2 ± a± 2 6= 0. (2)

The group S4 acts as a group of automorphisms for each of these sets.

Proof : Note that |S∗(a)| = 12 if and only if a 6= 0,±1 or ∞ and that |S∗(0)| = 6.

The symmetric group of order 24 acts transitively on S∗(a), S∗(0) and S∗(∞).
Indeed, S4 is generated by two types of transformations: the permutations of the
three coordinates and the transformations changing the sign of one or more of the
coordinates.

To prove that S∗(a) is an arc we show that no quadruple of different points of S∗(a)
is collinear. Because S4 is a transitive group of automorphisms, we may chose an
arbitrary element of S∗(a) as the first point of each quadruple, say P0(a) = (1, 1, a).

We will also use a second type of symmetry to reduce the number of quadruples we
need to consider: substituting −a for a everywhere permutes the points of S∗(a)
and therefore S∗(a) = S∗(−a). Hence, for what follows, all conditions we derive for
a must also hold for −a.

Interchanging the first two coordinates leaves P0(a) invariant and the stabilizer of
P0(a) splits S∗(a)\{P0(a)} into a singleton orbit {P1(a)} and 5 pairs {Pi(a), P ′i (a)},
as follows:

P1(a) = (−1,−1, a),
P2(a) = (1,−1, a), P ′2(a) = (−1, 1, a),
P3(a) = (1, a, 1), P ′3(a) = (a, 1, 1),
P4(a) = (−1, a,−1), P ′4(a) = (a,−1,−1),
P5(a) = (a,−1, 1), P ′5(a) = (−1, a, 1),
P6(a) = (a, 1,−1), P ′6(a) = (1, a,−1).

Hence, taking P1(a), . . . , P6(a) as representatives of these 6 orbits, it suffices to show
that for each i = 1, . . . , 6 the line P0(a)Pi(a) intersects S∗(a) in at most three points.

In fact, it is not necessary to investigate all six of these cases. Note for instance
that applying (x, y, z) → (y, x,−z) to P3(a) yields P5(−a) and applying the same
transformation to P0(a) yields P0(−a). Hence P0(a)P5(a) will intersect S∗(a) in
at most three points, if and only if P0(a)P3(a) does so. The same relation exists
between P0(a)P6(a) and P0(a)P4(a).

We may therefore restrict ourselves to the first four cases:

1. P0(a)P1(a), with equation f1(x, y, z) = x− y = 0,

14



2. P0(a)P2(a), with equation f2(x, y, z) = ax− z = 0,

3. P0(a)P3(a), with equation f3(x, y, z) = (a+ 1)x− y − z = 0,

4. P0(a)P4(a), with equation f4(x, y, z) = −(1 + a2)x+ (1− a)y + (1 + a)z = 0.

In the first part of Table 9 we list the values of fi(r) for each of the 12 points r of
S∗(a).

For S∗(a) to be a (k, 3)-arc, none of the colums for f1(r) . . . f4(r) may contain more
than 3 zeroes for rows that correspond to S∗(a). From the columns for f1(r) and
f2(r) we find the conditions 2 6= 0, a 6= 0, a 6= ±1 and a2 6= ±1. f3(r) yields the
extra condition that not both a2 + a + 2 and a2 + a − 2 can be zero. This only
happens when 4 = 0, which was already excluded bij f1(r). From f4(r), we know
that at most one of −a3 − a + 2 = 0, −a3 − a − 2 = 0 and a2 + 3 = 0 is allowed.
When both −a3 − a+ 2 and −a3 − a− 2 are zero, we again find 4 = 0. When both
−a3 − a + 2 = 0 and a2 + 3 = 0, we find 3a− a + 2 = 0 or 2a + 2 = 0, while when
both −a3 − a− 2 = 0 and a2 + 3 = 0, we find 3a− a− 2 = 0 or 2a− 2 = 0.

Hence, when q is odd and a satisfies (1), no four different points of S∗(a) lie on the
same line, and we may conclude that S∗(a) is indeed a (12, 3)-arc.

Because S∗(a) is a (k, 3)-arc and S∗(∞) only contains three points, a line containing
four points of S∗(a)∪S∗(∞) must contain at least one point of S∗(a) and one point of
S∗(∞). By symmetry, we may again choose the element P0(a) = (1, 1, a) of S∗(a) as
the first point of such a line. The stabilizer of P0(a) splits S∗(∞) into the singleton
{T1(0, 0, 1)} and the pair {T2(0, 1, 0), T ′2(1, 0, 0)}. Hence, it suffices to show that
P0(a)T1 and P0(a)T2 intersect S∗(a) ∪ S∗(∞) in at most three points. It is easily
computed that P0(a)T1 = P0(a)P1(a) and P0(a)T2 = P0(a)P2(a) and hence again by
inspecting the colums for f1(r) and f2(r) we see that no additional conditions are
needed for S∗(a) ∪ S∗(∞) to be a (k, 3)-arc.

Finally, consider the set S∗(a) ∪ S∗(0). It is easily checked that the set S∗(0) never
contains more than three points on a line and when (1) is satisfied neither does
S∗(a). The set S∗(0) has four trisecants and three bisecants. The trisecants have
equations x± y± z = 0 with independent choices of sign, the bisecants are the lines
with equations x = 0, y = 0 and z = 0.

A line containing four points of S∗(a) ∪ S∗(0) is one of three types. First, we have
the lines that are trisecants of S∗(a) and contain one point of S∗(0). To avoid such
lines, we must be sure that no columns of Table 9 contain more than three zeroes
in rows corresponding to S∗(a) ∪ S∗(0). This yields the extra conditions a 6= −2,
a2 ± a + 2 6= 0 and a2 + a± 2 6= 0. Second, we have the lines that are bisecants of
S∗(a) and bisecants of S∗(0). Such a line must be one of x = 0, y = 0 and z = 0,
but none of the points (a,±1,±1), (±1, a,±1) or (±1,±1, a) lies on such a line.
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f1(r) f2(r) f3(r) f4(r)

−(1 + a2)x

x− y ax− z (a+ 1)x− y − z +(1− a)y + (1 + a)z

S∗(a) (1, 1, a) 0 0 0 0

(−1,−1, a) 0 −2a −2a 2a(1 + a)

(1,−1, a) 2 0 2 2(−1 + a)

(−1, 1, a) −2 −2a −2(1 + a) 2(a2 + 1)

(1, a, 1) 1− a −1 + a 0 −2a(−1 + a)

(1, a,−1) 1− a 1 + a 2 −2(a2 + 1)

(−1, a,−1) −1− a 1− a −2a 0

(−1, a, 1) −1− a −1− a −2(1 + a) 2(1 + a)

(a, 1, 1) −1 + a a2 − 1 a2 + a− 2 −a3 − a+ 2

(a,−1,−1) 1 + a a2 + 1 a2 + a+ 2 −a3 − a− 2

(a, 1,−1) −1 + a a2 + 1 a(1 + a) −a(a2 + 3)

(a,−1, 1) 1 + a a2 − 1 a(1 + a) −a(a2 − 1)

S∗(0) (1, 1, 0) 0 a a −a(1 + a)

(−1, 1, 0) −2 −a −2− a a2 − a+ 2

(1, 0, 1) 1 −1 + a a a(1− a)

(−1, 0, 1) −1 −1− a −2− a a2 + a+ 2

(0, 1, 1) −1 −1 −2 2

(0,−1, 1) 1 −1 0 2a

S∗(∞) (1, 0, 0) 1 a 1 + a −a2 − 1

(0, 1, 0) −1 0 −1 1− a
(0, 0, 1) 0 −1 −1 1 + a

Table 9: Lists the values of fi(r) for each of the points in the left column (cf. proof
of Theorem 1).
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Last, we have the lines that are trisecants of S∗(0) and contain one point of S∗(a).
Because ±1 ± 1 ± a 6= 0, this case also never occurs. Hence, when (1) and (2) are
satisfied, S∗(a) ∪ S∗(0) is a (k, 3)-arc.

In some cases, S4 is not the full automorphism group of S∗(a). For instance, if
q ≡ 1 (mod 3) and a3 = 1, a 6= 1, then (x, y, z) 7→ (x, ay, a2z) extends the group of
automorphisms of S∗(a) to S4 : 3.

Note that the line x = y always intersects S∗(a) ∪ S∗(0) ∪ S∗(∞) in four points
(when a 6= 0), hence this set is never a (k, 3)-arc.

4.2 (k,3)-arcs from half conics

For q = 11 Table 5 lists 6 complete (k, 3)-arcs with an automorphism group of type
D10. In this section we shall describe how to construct these arcs and show that this
construction can be generalised to other (small) fields, yielding arcs having a cyclic
group q−1

2
or a dihedral group Dq−1 as a group of automorphisms.

Let q be odd. Let D ∈ GF(q) − {0}. Denote by CD the conic with equation
xz = Dy2. This conic belongs to the pencil of conics that are tangent to the lines
x = 0 and z = 0 in the points P and Q with coordinates (1, 0, 0) and (0, 0, 1). These
tangents intersect in the point R with coordinates (0, 1, 0).

Except for P and Q, all points of CD can be given coordinates of the form (1, t, Dt2)
with t 6= 0. We shall call t the parameter of the corresponding point of CD.

Let C+
D denote the set of all points of CD whose parameter is a non-zero square.

Likewise, let C−D denote the set of all points of CD with a parameter that is not a
square. Note that CD = C+

D ∪C
−
D ∪ {P,Q}. The sets C+

D and C−D will be called half
conics.

The sets C+
D and C−D are left invariant by a dihedral group of order q − 1 generated

by the projective transformations

φ1 : (x, y, z) 7→ (x, α2y, α4z)

and {
φ2 : (x, y, z) 7→ (z, y, x) if D is a square,

φ3 : (x, y, z) 7→ (z, αy, α2x) if D is a non-square.

with α a generator of the multiplicative group of GF(q). The sets C+
D and C−D are

interchanged by φ2 if D is a non-square, and by φ3 if D is a square. In terms
of parameters t, the group is generated by t 7→ α2t (φ1) and t 7→ 1/Dt (φ2) or
t 7→ α/Dt (φ3).
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Note that any transformation of the form (x, y, z) 7→ (x, y, kz) with k ∈ GF (q)− 0,
maps C+

D onto C+
kD. Also, the transformation (x, y, z) 7→ (x, αy, α2z) maps C+

D onto
C−D .

As a consequence, when considering a number of half conics, without loss of gener-
ality we may take one of them to be C+

1 .

It turns out that for smaller values of q we can construct (k, 3)-arcs by taking the
union of three such half conics, yielding arcs of size 3

2
(q − 1). We have generated

by computer all arcs of this form for q ≤ 79. The results (up to equivalence) are
listed in table 4.2 (together with their automorphism group). We conjecture that
for q > 19 no arcs of this type exist.

q = 5 q = 11 q = 13

C+
1 ∪ C−1 ∪ C+

2 [120] C+
1 ∪ C−1 ∪ C+

5 D10 C+
1 ∪ C−1 ∪ C+

7 D12

C+
1 ∪ C−1 ∪ C+

3 D4 C+
1 ∪ C−1 ∪ C+

7 D10 C+
1 ∪ C+

2 ∪ C+
4 6

q = 7 C+
1 ∪ C−1 ∪ C+

9 D10 C+
1 ∪ C+

2 ∪ C+
11 6

C+
1 ∪ C−1 ∪ C+

2 D6 C+
1 ∪ C+

2 ∪ C+
3 5 C+

1 ∪ C+
4 ∪ C+

6 6

C+
1 ∪ C−1 ∪ C+

4 D6 C+
1 ∪ C+

2 ∪ C+
4 5 q = 19

C+
1 ∪ C−1 ∪ C+

5 D6 C+
1 ∪ C+

2 ∪ C+
5 5 C+

1 ∪ C+
7 ∪ C+

11 [162]

C+
1 ∪ C−1 ∪ C+

6 [54] C+
1 ∪ C+

2 ∪ C+
10 5 C+

1 ∪ C+
8 ∪ C+

11 9

C+
1 ∪ C+

2 ∪ C+
3 D6 C+

1 ∪ C+
4 ∪ C+

5 D10

C+
1 ∪ C+

2 ∪ C+
4 [54] C+

1 ∪ C+
4 ∪ C+

7 5

C+
1 ∪ C+

3 ∪ C−2 32 C+
1 ∪ C+

4 ∪ C+
9 D10

q = 9 C+
1 ∪ C+

8 ∪ C+
9 5

C+
1 ∪ C−1 ∪ C+

−α S4 C+
1 ∪ C+

2 ∪ C−10 5

C+
1 ∪ C−1 ∪ C+

−α3 S4 C+
1 ∪ C+

4 ∪ C−9 D10

C+
1 ∪ C+

α ∪ C+
α2 4

C+
1 ∪ C+

α ∪ C+
α3 3 : 4

C+
1 ∪ C+

α2 ∪ C+
−α 4

with α = 1 +
√
−1, i.e., α2 + α = 1.

Table 10: Complete list of arcs, up to equivalence, that consist of three ‘half conics’
(for q ≤ 79)

The arcs of this type can be roughly divided into three kinds:

• those that contain two half conics with the same index D, i.e., almost the full
conic CD,
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• those that use three half conics of the same sign,

• those that use half conics of two different signs, and never with the same index

The following lemma shows that those of the first and third kind will never be
complete arcs

Lemma 1 Let D,E, F ∈ GF(q), D 6= E. If S = C+
D ∪C

+
E ∪C

−
F is a (k, 3)-arc, then

so is S ∪ {P,Q}.

Proof : First note that no line through Q(0, 0, 1) can already contain 3 points of
S. If that were the case, then each of these points would have the same middle
coordinate (assuming coordinates are normalized to have first coordinate equal to
1). But the middle coordinates of C+

D and C+
E are squares, while those of C−F are

not.

By symmetry, also no line through P (1, 0, 0) can already contain 3 points and finally,
the line joining P and Q, i.e., the line with equation y = 0 does not intersect S.

Lemma 2 Let q ≡ −1 (mod 4) (i.e., −1 is not a square). Let D,E, F ∈ GF(q),
D 6= E 6= F 6= D. If S = C±D ∪ C

±
E ∪ C

±
F (with independent choices of sign) is a

(k, 3)-arc, and {D,E, F} contains at least one square and one non-square, then also
S ∪ {R} is a (k, 3)-arc.

Proof : A line through R(0, 1, 0) intersects S in points that have the same last
coordinate. If −1 is not a square, then a half conic C±D can contain at most one
point with a given last coordinate, and that last coordinate will be a square if and
only if D is a square. As D,E, F are not all squares or all non-squares, the line can
not contain 3 points of S.

From the proofs of these lemmas it follows that all three points P,Q,R can be added
when the conditions of both lemmas are both satisfied.

The converse is not true: if neither lemma is satisfied this does not necessarily imply
that an arc S = C±D ∪C

±
E ∪C

±
F is complete. In fact we only find the following three

complete arcs of size 3
2
(q − 1): in PG(2, 11), C+

1 ∪ C+
4 ∪ C+

5 and C+
1 ∪ C+

4 ∪ C+
9 are

complete. In PG(2, 19) the set C+
1 ∪ C+

7 ∪ C+
11 is complete.

There are two arcs of the second kind that merit special attention. For q = 7 and
q = 19 the sets C+

1 ∪C+
ω ∪C+

ω2 with ω3 = 1, ω 6= 1 are (k, 3)-arcs. These arcs admit
an additional symmetry (x, y, z) 7→ (x, y, ωz) that permute the three half conics.
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For q = 7, this arc is the set C+
1 ∪C+

2 ∪C+
4 . It is the set S1 from Theorem 2 which

is not complete. For q = 19, this arc is the set C+
1 ∪ C+

7 ∪ C+
11 which is complete.

Note that the two arcs for q = 9 with S4 as automorphism group are arcs of the
type as described in Section 4.1 with a = α3 for C+

1 ∪ C−1 ∪ C+
−α and a = α for

C+
1 ∪ C−1 ∪ C+

−α3 .

For completeness we would like to point out that the complete (13, 3)-arc with group
D10 for q = 11, can be constructed by combining two half conics (C+

1 and C+
3 ) and

the three points P , Q and R.

4.3 (k,3)-arcs from cubic curves

4.3.1 The Hessian configuration

Let q ≡ 1 (mod 3). Then the field GF(q) contains an element ω 6= 1 such that
ω3 = 1 (and hence ω2 + ω + 1 = 0).

Consider the set H of the nine points with the following coordinates :

(1,−1, 0) (0, 1,−1) (−1, 0, 1)
(1,−ω, 0) (0, 1,−ω) (−ω, 0, 1)
(1,−ω2, 0) (0, 1,−ω2) (−ω2, 0, 1)

The set H is called the Hessian configuration and has many interesting properties
[1, 5]. It is a (9, 3)-arc such that every point lies on exactly 4 trisecants and no
bisecants. There are 12 trisecants in all. The configuration of points and trisecants
represents an affine plane AG(2, 3) embedded in PG(2, q). (Note that for q = 7 this
arc is complete and regular.)

H is the set of intersection points of the Hesse pencil of cubic curves generated by
xyz = 0 and x3 + y3 + z3 = 0. In fact, H is the set of nine inflection points for each
of the irreducible cubics in this pencil.

Every cubic curve in the Hesse pencil is left invariant by the group G18 (of order
18) that is generated by the permutations of the coordinates together with the
transformation σω : (x, y, z) 7→ (x, ωy, ω2z). For specific curves in the pencil the
automorphism group can be larger. The group of projective transformations that
leaves H itself invariant has order 216.

Let Cc denote the cubic of the Hessian pencil with equation x3 +y3 +z3 +cxyz, with
c ∈ GF(q). Cc is irreducible (and non-singular) if and only if c 6= −3,−3ω,−3ω2.
In that case, the Abelian group associated with Cc (with one of its inflection points
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chosen as neutral element) hasH as a subgroup. It follows that |Cc|must be divisible
by |H| = 9. The following table lists the largest possible value of |Cc| for finite fields
not larger than 256.

q maxc |Cc| q maxc |Cc| q maxc |Cc|
4 9 64 81 157 180
7 9 67 81 163 189
13 18 73 90 169 189
16 18 79 90 181 207
19 27 97 117 193 216
25 36 103 117 199 225
31 36 109 126 211 234
37 45 121 144 223 252
43 54 127 144 229 252
49 63 139 162 241 270
61 72 151 171 256 288

For many fields these cubic curves Cc provide (k, 3)-arcs of a reasonably large size.
All listed sizes lie in the interval [q +

√
q − 1, q + 2

√
q + 1] and in some cases

(q = 4, 25, 64, 121, 256) the upper bound (the Hasse bound) is even reached.

We shall be interested in the cubic curve C1, i.e., the curve with equation x3 + y3 +
z3 +xyz = 0. Consider the set H1 of the nine points with the following coordinates :

(1, 1,−1) (1,−1, 1) (1,−1,−1)
(1, ω,−ω2) (1,−ω, ω2) (1,−ω,−ω2)
(1, ω2,−ω) (1,−ω2, ω) (1,−ω2,−ω)

It is easily seen that each of these points belongs to the curve C1.

Both H and H1 are orbits of G18. The set Ĥ def
= H ∪ H1 is an (18, 3)-arc. The

tangent to the curve C1 in a point of H1 intersects a point of H. (For example, the
line x + y + 2z = 0 is a tangent at (1, 1,−1) and intersects H in (1,−1, 0).) Apart
from these 9 tangents (which are bisecants to the arc) all other lines connecting two
points of H1 are trisecants.

As a consequence Ĥ is a subgroup of the Abelian group of the curve C1, and hence
|C1| is a multiple of 18. Note that H is a subgroup of index 2 of Ĥ, and hence the
corresponding coset H1 is necessarily a (9, 2)-arc (which does not lie on a conic).

The (9, 2)-arcH1 can be extended to a (k,3)-arc in other ways. Consider for example
the set Sω :

(1, 0, 0) (0, 1, 0) (0, 0, 1)
(ω2, 1, 1) (1, ω2, 1) (1, 1, ω2)

which consists of two orbits of G18, each of size 3. It is easily seen that this set is a
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(6,2)-arc, and that the 15 bisecants have the following equations :

x = 0, y = 0, z = 0,

x = y, y = z, z = x,
x = ωy, y = ωz, z = ωx,
x = ω2y, y = ω2z, z = ω2x,

ωx+ y + z = 0, x+ ωy + z = 0, x+ y + ωz = 0,

forming three orbits of G18 (of sizes 3, 9, 3). By considering one line in each orbit, it
is easily seen that no bisecant of Sω intersects H1 in more than one point. As both
Sω and H1 are (k,2)-arcs, this proves that H1 ∪ Sω is a (15,3)-arc.

There is another way to extend H1 to an arc with interesting properties. Consider
the set H′1 obtained by extending H1 with the following orbit of G18 :

(1, 1, 1), (1, ω, ω2), (1, ω2, ω)

In other words, H′1 contains the 12 points with coordinates that are of the form
(±1,±1,±1), (±1,±ω,±ω2) or (±1,±ω2,±ω). The symmetric group S4 acts on
H′1 by permuting the coordinates and allowing independent sign changes of the
coordinates. Together with σω this group extends to a group G72 of automorphisms
of type S4 : 3, of size 72.

In fact, applying the transformation z 7→ ωz shows that H′1 is equivalent to S∗(ω)
of Theorem 1 and therefore a (12, 3)-arc (and even a (12, 2)-arc provided the char-
acteristic of the field is not 7).

By the same theorem it can be extended to a (15,3)-arc by adding the points (1, 0, 0),
(0, 1, 0) and (0, 0, 1), still with G72 as a group of automorphisms, and to an (18,3)-arc
provided the characteristic of the field is not 5 or 7. The latter arc no longer has σω
as an automorphism.

4.3.2 A (18,3)-arc with GS ≈ 31+2
+

Theorem 2 Let q ≡ 1 (mod 3). Let ω ∈ GF(q), ω 6= 1 such that ω3 = 1. Let
c ∈ GF(q).

Consider the sets S1 and S2(c) of points with the following coordinates :

S1 S2(c)

(1, 1, 1) (1, 1, ω) (1, 1, ω2) (1, 0, c) (ω, 0, c) (ω2, 0, c)
(1, ω, 1) (1, ω, ω) (1, ω, ω2) (0, c, 1) (0, c, ω) (0, c, ω2)
(1, ω2, 1) (1, ω2, ω) (1, ω2, ω2) (c, 1, 0) (c, ω, 0) (c, ω2, 0)

(3)

22



Then S1 ∪ S2(c) is an (18, 3)-arc if and only if c 6= 0 and c3 6= ±1. The group
G27 ≈ 31+2

+ of size 27, generated by the elements

(x, y, z) 7→ (x, ωy, z), (x, y, z) 7→ (x, y, ωz), (x, y, z) 7→ (y, z, x),

is a group of automorphisms of S1 ∪ S2(c).

Proof : Note that |S1| = |S2(c)| = 9, as c 6= 0.

First consider the case c3 = −1, i.e., c = −1, −ω or −ω2. In that case S2(c)
is precisely the Hesse configuration H. Then the trisecant of H with equation
x + y + z = 0 intersects S1 in the additional points (1, ω, ω2) and (1, ω2, ω) and
therefore S1 ∪ S2(c) is not an (18,3)-arc. Henceforth we shall assume that c3 6= −1.

It is easily verified that G27 leaves both S1 and S2(c) invariant. If we extend G27

to G54 by the map which interchanges two coordinates, then G54 still leaves S1

invariant, but not S2(c) (unless c = 1, ω or ω2, i.e., c3 = 1).

The stabilizer of (1, 1, 1) in G54 consists of the 6 coordinate permutations and has
three orbits on S1. It is therefore easily seen that the lines connecting (1, 1, 1) with
any other point of S1 have equations

x = y, x+ ωy + ω2z = 0

or an equation obtained from these by permuting x, y, z.

It follows that S1 is a (9,3)-arc in which every point lies on three trisecants (the
orbit of G54 of the first equation above) and two bisecants (the orbit of the second
equation). It also follows that if c3 6= 1 then no point of S2(c) lies on a trisecant of
S1. Likewise, if c3 6= −1, then no point of S2(c) lies on a bisecant of S1.

As a consequence, any line which intersects S1 ∪ S2(c) in more than three points,
must intersect S2(c) in more than two points. To determine these lines, consider the
stabilizer of (1, 0, c) in G27. It consists of the 3 transformations that multiply the
y-coordinate by either 1, ω or ω2 and has 5 orbits on S2(c). The lines connecting
(1, 0, c) with any other point of S2(c) have equations

y = 0, cx+
1

c
y − z = 0, cx− c2y − z = 0,

or equations derived from these by multiplying the coefficient of y by ω or ω2.

If c3 = −1,−ω or −ω2, i.e., if c9 = −1, then some of these lines will coincide and
each point will then lie on 4 trisecants of S2(c). The case c3 = −1 was already
excluded. If c3 = −ω or −ω2, then it is easily verified that all 18 points of S1∪S2(c)
lie on the (irreducible) cubic with equation x3− c3y3 + c6z6, making it an (18,3)-arc.
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If c9 6= −1, then the only line through (1, 0, c) which intersects S2(c) in more than
two points is the line with equation y = 0. Clearly this line does not contain a point
of S1, hence again S1 ∪ S2(c) is an (18,3)-arc.

The set S1 consists precisely of the nine intersection points of the pencil of cubics
generated by x3 = y3 and y3 = z3. In this pencil, consider the three cubics C,C ′, C ′′

with equations

C : c3(x3 − y3) = z3 − y3, C ′ : c3(z3 − x3) = y3 − x3, C ′′ : c3(y3 − z3) = x3 − z3.

Note these cubics coincide if and only if c6 − c3 + 1 = 0 and then all points of
S1 ∪ S2(c) belong to that cubic. Otherwise, each of the cubics C,C ′, C ′′ intersects
S2(c) in precisely three points, corresponding to the three rows in (3).

5 Special (k,3)-arcs for q = 11

5.1 The unique complete arc of size 19 with GS ≈ 19 : 3

This arc can be constructed as an orbit of the 7th power of a Singer cycle. If we
take this 7th power to be

φ1 : (x0 x1 x2) 7→ (x0 x1 x2)

 0 1 0
0 0 1
6 9 5

 ,

then the arc is the orbit of the point with coordinates (1, 0, 0) under the action of
φ1. The automorphism group of the arc has order 57 and is generated by φ1 of order
19 and

φ2 : (x0 x1 x2) 7→ (x0 x1 x2)

 1 0 0
5 8 6
9 8 2


of order 3. We have φ1φ2 = φ2φ

11
1 .

Note that this arc is regular: through each point there are 0 bisecants, and hence 9
trisecants and 3 unisecants.
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5.2 The 2 complete arcs of size 21 with GS ≈ 7 : 3

These two arcs each consists of the union of three orbits of size 7 of the 19th power
of a Singer cycle. Consider the following 19th power of a Singer cycle:

φ1 : (x0 x1 x2) 7→ (x0 x1 x2)

 0 1 0
0 0 1
5 1 1

 .

The first arc then consists of the three orbits of (5,−4, 1), (−5,−5, 1) and (−2,−3, 1)
under the action of φ1, while the second arc consists of the three orbits of (4, 4, 1),
(−1, 2, 1) and (5,−2, 1).

The automorphism group of both arcs is generated by φ1 and the following linear
transformation

φ2 : (x0 x1 x2) 7→ (x0 x1 x2)

 1 0 0
0 0 4
3 8 10

 .

We have φ7
1 = φ3

2 = 1 and φ1φ2 = φ2φ
2
1.

Note that again the arcs are regular: in both cases each point of the arc lies on 9
trisecants, and hence 2 bisecants and 1 unisecant.

5.3 The complete arcs with GS ≈ S4

When applying Theorem 1 to q = 11, we find that S∗(a) ∪ S∗(∞) is an arc for all
values of a, except for the values 0 and ±1 (as −1 is non-square in GF(11)). This
arc is only complete for 4 of these values, i.e. when a = ±4 or a = ±5. (Note
that S∗(a) = S∗(−a).) This results in two inequivalent complete arcs of size 15
both having S4 as automorphism group. These arcs are regular: each point lies on
6 trisecants, 2 bisecants and 4 unisecants.

Also according to Theorem 1, the values a = ±3 are the only ones for which S∗(a)∪
S∗(0) is an arc in PG(2, 11). This arc is complete and has again S4 as automorphism
group. In this case, the set S∗(a) is a complete (k, 2)-arc. The twelve points of S∗(a)
each lie on 5 trisecants, 7 bisecants and 0 unisecants. The six points of S∗(0) each
lie on 7 trisecants, 3 bisecants and 2 unisecants.
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5.4 The complete arcs with GS ≈ D10

As mentioned in Section 4.2, PG(2, 11) contains six complete arcs up to isomorphism
that have the dihedral group of order 10 as group of automorphisms.

When using the same notations as in Section 4.2, we find the following complete
(k, 3)-arcs up to isomorphism:

S13 = C+
1 ∪ C+

3 ∪ {P,Q,R}
S15 = C+

1 ∪ C+
4 ∪ C+

9

S ′15 = C+
1 ∪ C+

4 ∪ C+
5

S17 = C+
1 ∪ C−1 ∪ C+

9 ∪ {P,Q}
S ′17 = C+

1 ∪ C−1 ∪ C+
5 ∪ {P,Q}

S ′′17 = C+
1 ∪ C+

4 ∪ C−9 ∪ {P,Q}

Because all indices that appear are squares in GF(11), the group D12 is generated
by the transformations φ1 and φ2 as defined in Section 4.2.

6 Special (k,3)-arcs for q = 13

6.1 The unique complete arc of size 18 with GS ≈ S4

When applying Theorem 1 to q = 13 we find 6 values of a for which S∗(a)∪S∗(0) is an
arc. Only for a = ±6 this arc turns out to be complete and has S4 as automorphism
group.

This arc is regular: each point lies on 7 trisecants, 3 bisecants and 4 unisecants.

6.2 The complete arcs of size 21 with GS ≈ D12

PG(2, 13) contains two complete arcs having the dihedral group of order 12 as group
of automorphisms. Both arcs consist of the same three ‘half’ conics as defined in
Section 4.2, together with three points. Using the same notations we find

S = C+
1 ∪ C−1 ∪ C+

7 ∪ {P,Q,R}
S ′ = C+

1 ∪ C−1 ∪ C+
7 ∪ {(1, 0, 7), (1, 0, 8), (1, 0, 9)}
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Because 7 is a non-square in GF(13), the group D12 is generated by φ1 and φ3 as
defined in Section 4.2.

6.3 Arcs related to the Hessian configuration

Because 13 ≡ 1 (mod 3), the arcs defined in Section 4.3.1 exist in PG(2, 13). The
set Ĥ = H ∪ H1 is a complete (18, 3)-arc for q = 13. Its group of automorphisms
has size 36: it can be obtained by extending G18 with the following generator, of
order 4 :

(x y z) 7→ (x y z)

 1 1 9
9 1 1
9 3 9


The (15, 3)-arc H1 ∪ Sω also is complete for q = 13 and has the same group of
automorphisms of size 36 as Ĥ.

6.4 The unique complete arc of size 18 with GS ≈ 31+2
+

For q = 13 and c = −2, the (18, 3)-arc S1 ∪ S2(−2) as defined in Section 4.3.2 is
complete with 31+2

+ as group of automorphisms.

6.5 Cubic curves of size 21

The largest size of a cubic curve in PG(2, 13) turns out to be 21, with two examples
up to isomorphism.

The first example corresponds to the following equation

xy(x+ y) = −6z3.

This is an irreducible cubic curve with three inflection points (coordinates: (1,0,0),
(0,1,0), (1,-1,0)) and three inflectional tangents that are concurrent (x = 0, y = 0
and x+ y = 0, intersecting in (0, 0, 1).)

The automorphism group G of this curve has size 18, is of type 3S3 and is generated
by the permutations of x, y and −x−y and the cyclic element z 7→ 3z (with 33 = 1).

Apart from the three inflection points, the curve has 18 additional points, which form
an orbit ofG. The points are those whose coordinates (x, y, z) satisfy {x, y,−x−y} =
{1, 2,−3} and z3 = 1.
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The points P0, . . . , P20 of this curve can be numbered in a way that reflects the
Abelian group of the curve (which is cyclic of order 21) :

P0 : (1, 0, 0) P7 : (0, 1, 0) P14 : (1,−1, 0)
P1 : (1, 2, 1) P8 : (2,−3, 1) P15 : (−3, 1, 1)
P2 : (6, 4, 1) P9 : (4, 3, 1) P16 : (3, 6, 1)
P3 : (5,−4, 1) P10 : (−4,−1, 1) P17 : (−1, 5, 1)
P4 : (−4, 5, 1) P11 : (5,−1, 1) P18 : (−1,−4, 1)
P5 : (4, 6, 1) P12 : (6, 3, 1) P19 : (3, 4, 1)
P6 : (2, 1, 1) P13 : (1,−3, 1) P20 : (−3, 2, 1)

(4)

Pi, Pj, Pk are collinear if and only if i+ j + k ≡ 0 (mod 21).

The automorphism group G can also be easily expressed in terms of this point
numbering: the circular permutation (x, y, z) 7→ (y,−x− y, z) is equivalent to Pi 7→
Pi+7, Pi 7→ P−i interchanges x and −x − y, and Pi 7→ p4i corresponds to z 7→ 3z
(each time with index aritmetic modulo 21).

The automorphism group has two orbits of size 3 in the plane. A first orbit consists
of the inflection points P0 ,P7 and P14, the second orbit corresponds to the points
with coordinates (1, 1, 0), (−2, 1, 0) and (1,−2, 0). Both orbits lie on the line with
equation z = 0.

These six points have an important property: every line through these points, except
the line z = 0, intersects the orbit of 18 non-inflection points in at most two points.

For the first orbit this is an immediate consequence of the fact that all 21 points
lie on an irreducible cubic curve. For the second orbit, consider the representative
point (1, 1, 0). From (4) we compute the values of (y − x)/z for each point Pi that
is not an inflection point.

Pi P1 P2 P3 P4 P5 P6

(y − x)/z 1 −2 4 −4 2 −1

Pi P8 P9 P10 P11 P12 P13

(y − x)/z −5 −1 3 −6 −3 −4

Pi P15 P16 P17 P18 P19 P20

(y − x)/z 4 3 6 −3 1 5

The number of times a specific value k occurs in this table, is equal to the number of
intersection points with the line x−y+kz = 0 through (1, 1, 0). For k = ±2,±5,±6
there is one intersection point, for k = ±1,±3,±4 there are two, but never three.
This proves our claim.

From this we conclude that adding any three of these six points to the 18 non-
inflection points of the cubic yields a (21,3)-arc, giving a total of 6 non-equivalent
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(21,3)-arcs for q = 13. These arcs turn out to be complete. Only two of them have
G as group of automorphisms. (The others have a cyclic automorphism group of
order 3 or 6.)

The second example of a cubic curve of size 21 corresponds to the curve C21 with
equation

x2y + y2z + 4z2x = 0.

This cubic has no inflection points. Its automorphism group is the group 32 of size
9 and is generated by the transformations

(x, y, z) 7→ (x, 3y, 9z), (x, y, z) 7→ (y, 4z, x).

The group has one orbit of size 3, with points (1, 0, 0), (0, 1, 0) and (0, 0, 1), and 20
orbits of size 9 (on the points of PG(2, 13)). The cubic C21 consists of the orbit of
size 3 and two orbits of size 9, with representatives (1,−1,−2) and (1,−1, 5). It is
a complete (21, 3)-arc.

Finally, it turns out that the same group leaves invariant a different (21,3)-arc which
does not lie on a cubic. It consists of the orbit of size 3 together with the two orbits
of size 9 with representatives (1, 1, 2) and (1, 1, 6).

6.6 Regular arcs for q = 13

From Section 3.3 we know that PG(2, 13) contains several (k, 3)-arcs that are regular.
We shall only discuss those of size 21.

The first (21,3)-arc of this type has automorphism group of type S3. Each point lies
on 8 trisecants (and 4 bisecants and 2 unisecants). The points of this arc can be
given by the following coordinates

(1,−1, 3) (1, 3,−1) (−1, 1, 3) (−1, 3, 1) (3, 1,−1) (3,−1, 1)
(0, 1, 1) (1, 0, 1) (1, 1, 0)
(1, 1, 4) (1, 4, 1) (4, 1, 1)

(1, 2, 5) (1, 5, 2) (2, 1, 5) (2, 5, 1) (5, 1, 2) (5, 2, 1)
(1, 0, 0) (0, 1, 0) (0, 0, 1)

(5)

The group S3 acts by permuting the coordinates. The first three rows of (5) form a
(12,2)-arc consisting of all points of the conic 2(x2 + y2 + z2) = (x+ y + z)2 except
those on the line x+ y + z = 0, i.e., (1, 3, 9) and (1, 9, 3).

The second (21,3)-arc of this type has a cyclic automorphism group of size 3. Each
point lies on 9 trisecants, 2 bisecants and 3 unisecants. The points of this arcs can
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be given by the following coordinates.

(1, 0, 0) (1, 2, 2) (1, 0, 2) (1, 2, 4) (1,−2,−4) (1, 4, 3) (1, 5, 3)
(0, 0, 1) (2,−5, 1) (0,−5, 1) (2, 3, 1) (−2,−3, 1) (4,−1, 1) (5,−1, 1)
(0, 1, 0) (−5, 4, 2) (−5, 4, 0) (3, 4, 2) (−3, 4,−2) (−1, 4, 4) (−1, 4, 5)

(6)

The automorphism group is generated by the transformation (x, y, z) 7→ (y, 4z, x)
which we encountered before, and cyclically permutes the rows of (6).

The third and fourth (21, 3)-arc of this type are the two arcs discussed in the last
part of Section 6.5.

6.7 The unique complete arc of size 21 with GS ≈ D14

For q = 13, there is one complete arc having the dihedral group of order 14 as
automorphism group. Let C1 be the conic with equation x20 + x22 + 6x0x1 + 6x1x2 +
11x0x2 = 0 and C2 the conic with equation x0x2 = x21. Then the arc consists of all
points of C1 together with the points of C2 with coordinates (1, t, t2) with t one of
the elements in the following list:

5, 2, 3, 1, 9, 7, 8 (7)

The points of C1 have the following coordinates:

(1, 5, 2), (1, 1, 5), (1, 2, 0), (0, 1, 0), (0, 1, 7), (1, 8, 8), (1, 9, 7) (8)

(1, 5, 9), (1, 8, 11), (1, 1, 4), (1, 0, 1), (1, 10, 10), (1, 9, 6), (1, 2, 3) (9)

The automorphism group can be generated by

ψ1 : (x, y, z) 7→ (z, 12y + 10z, x+ 6y + 9z)

of order 7 and
ψ2 : (x, y, z) 7→ (z, y, x)

of order 2. For the arc points on C2 ψ1 corresponds to t 7→ 12/t + 10 and ψ2 to
t 7→ 1/t. The order of the points listed in (7), (8) and (9) corresponds to consecutive
applications of ψ1. This order is reversed by ψ2. We have ψ1ψ2 = ψ2ψ

−1
1 .
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