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Abstract—Distributed-memory parallelization of the Multilevel
Fast Multipole Algorithm (MLFMA) relies on the partitioning of
the internal data structures of the MLFMA among the local
memories of networked machines. For three existing data par-
titioning schemes (spatial, hybrid and hierarchical partitioning),
the weak scalability, i.e. the asymptotic behavior for proportion-
ally increasing problem size and number of parallel processes,
is analyzed. It is demonstrated that none of these schemes are
weakly scalable. A non-trivial change to the hierarchical scheme
is proposed, yielding a parallel MLFMA that does exhibit weak
scalability. It is shown that, even for modest problem sizes and a
modest number of parallel processes, the memory requirements
of the proposed scheme are already significantly lower, compared
to existing schemes. Additionally, the proposed scheme is used
to perform full-wave simulations of a canonical example, where
the number of unknowns and CPU-cores are proportionally
increased up to more than 200 millions of unknowns and 1024
CPU-cores. The time per matrix-vector multiplication for an
increasing number of unknowns and CPU-cores corresponds very
well to the theoretical time complexity.

Index Terms—MLFMA, parallelization, weak scalability

I. INTRODUCTION

A
RGUABLY, the use of boundary integral equations is

one of the most powerful and popular methods to solve

large electromagnetic scattering problems in piecewise homo-

geneous media. A Method of Moments (MoM) discretization

gives rise to a dense system of N linear equations and N
unknowns which can be solved iteratively. The Multilevel Fast

Multipole Algorithm (MLFMA) reduces the computational

complexity of the matrix-vector multiplication in this iterative

scheme from O(N2) to O(N logN) [1], allowing simulations

with a large number of unknowns. To tackle problems that

exhibit memory requirements beyond what can be provided

by a typical workstation, the development of an efficient

distributed-memory parallel MLFMA is warranted. The data

structures associated with the MLFMA are then distributed

over the local memories of several nodes in a computational

cluster. Each node performs only a fraction of the total

computations and relies on network communication to access

data stored in the memory of another machine. Besides the

ability to handle larger problems, parallel algorithms usually

exhibit an important reduction in runtime.

In the past years, several distributed-memory parallel

MLFMA implementations have been proposed in literature,

aimed at high-frequency (i.e. geometry size ≫ λ) three-

dimensional scattering problems. They can be categorized
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according to how the data structures of the MLFMA are

partitioned over the different processes, namely spatial [2], [3],

[4], [5], hybrid [6], [7], [8], [9], [10] and hierarchical [11],

[12], [13] partitioning.

Two scalability measures are important in the assessment

of a particular parallel algorithm. In a strong scaling analysis,

the speedup as a function of the number of parallel processes

is observed for a fixed problem size. In the ideal case, this

speedup S is equal to the number of processes P and the

parallel efficiency (i.e. the ratio of S to P ) is 100%. However,

because of e.g. communication overhead and load imbalance,

such speedups are rarely observed in reality. In the asymptotic

case of a very large number of processes, the speedup is always

bounded (cfr. Amdahl’s law) and the efficiency tends to zero.

The maximum speedup that can be attained depends on the

problem size, implementation quality, speed of CPUs and in-

terconnection network, the ability to overlap communications

and computations, load balancing, etc.

Alternatively, in a weak scaling analysis, the ability to han-

dle larger problems using a proportionally higher number of

parallel processes is investigated. In other words, the problem

size per process is fixed. Suppose a problem of size N can be

handled using P processes with a certain parallel efficiency.

An algorithm is then said to be weakly scalable if a problem

twice the original size can be handled on twice the number of

processes, with the same efficiency. Clearly, weak scalability

is a very beneficial property. As opposed to strong scalability,

weak scalability is an intrinsic property of a parallel algorithm,

i.e. it is not related to the implementation quality or the parallel

architecture used.

Most authors only investigate the strong scaling behavior

of their algorithms. The term scalable then denotes that,

for a specific problem size, high parallel efficiencies can be

obtained using a certain number of processes. However, a

strong scaling analysis does not reveal whether or not these

efficiencies can be attained for larger problems to be solved

on a (future) larger cluster. In this work, we investigate the

weak scaling behavior of the spatial, hybrid and hierarchical

partitioning scheme, by assessing the asymptotic behavior of

these algorithms for large N and P . It turns out that these

schemes are not weakly scalable, i.e. the parallel efficiency

will tend to zero for sufficiently large N and P . We propose a

change to the hierarchical scheme, yielding a parallel MLFMA

that does exhibit weak scalability. Numerical experiments with

actual implementations of each of the four schemes confirm

our theoretical findings.

We motivate our work as follows. First, since the introduc-

tion of the multi-core CPU in 2003, progress in computational
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power of CPUs is mainly achieved by incorporating more and

more CPU-cores. Second, more powerful clusters are built

by assembling an increasing number of networked machines,

each machine typically containing a number of multi-core

CPUs. Clusters containing several thousands of CPU-cores are

nowadays widespread. However, the speed of a single core

and the available memory per core has progressed at a much

slower pace. This trend is likely to continue in the future. In

order to take advantage of current and future infrastructures,

an efficient parallel algorithm is required that exhibits weak

scalability.

This paper is organized as follows: in Section II, the

weak scaling bottlenecks are identified for three existing data

partitioning schemes using an asymptotic analysis. A fourth

scheme is proposed that exhibits weak scalability. Next, in

Section III, implementations of each of the four schemes are

numerically compared. In Section IV, we apply our weakly

scalable parallel solver to simulate a large problem with

more than 200 millions of unknowns. Finally, our conclusions

are presented in Section V. Parts of the ideas in this work

have been presented in [17] and [18]. Here, a much more

comprehensive and detailed analysis is put forward together

with an actual implementation of our proposed algorithm.

II. WEAK SCALING ANALYSIS: THEORY

A. General considerations

We consider a high-frequency (i.e. geometry size ≫ λ),

three-dimensional scattering problem that is formulated using

boundary integral equations. The mesh size is inversely pro-

portional to the frequency, e.g. λ/10. In the MLFMA, the N
unknowns are recursively subdivided in a tree-like structure

of boxes with O(logN) levels. At the lowest level, there are

O(N) boxes, each holding a radiation pattern consisting of a

constant number (i.e. independent of N , or O(1)) of sampling

points. When going up one level in the MLFMA tree, the

number of boxes decreases roughly by a factor of four, whereas

the size of the radiation patterns increases roughly by the

same factor (see Table I). Hence, the top levels contain O(1)
boxes, each holding a radiation pattern of size O(N). Each

level contains O(N) sampling points in total. Because only

a constant amount of work is required per sampling point,

the amount of calculations to perform on each level is also

O(N). Taking the O(logN) levels into account yields a total

complexity of O(N logN) for the sequential MLFMA.

To assess the weak scalability, the asymptotic behavior for

a proportionally increasing problem size N and number of

processes P will be investigated, i.e. P = O(N). Note that

this does not impose a strict linear dependency of P on

N , but rather an asymptotic upper bound of how fast the

number of processes can grow as a function of N . Follow-

ing the assumption that the P = O(N) processes operate

concurrently, the complexity per process should not exceed

O(logN). Because of inherent data dependencies between the

radiation patterns on different levels, concurrency can only be

achieved by distributing the O(N) work at each level among

all processes. In other words, the computational complexity

per process and per level should be O(1).

TABLE I
NUMBER OF RADIATION PATTERN SAMPLING POINTS Ql AND NUMBER OF

BOXES Bl AS A FUNCTION OF THE MLFMA-LEVEL l FOR PROBLEM S6 AS

DEFINED IN SECTION III.

level l box size Ql
Ql

Ql−1

Bl
Bl−1

Bl

0 0.5λ 1 200 n/a 4 024 568 n/a
1 1λ 2 380 1.98 1 003 688 4.01
2 2λ 3 280 1.38 249 698 4.02
3 4λ 8 844 2.70 62 426 4.00
4 8λ 27 144 3.07 15 608 4.00
5 16λ 88 620 3.26 3 752 4.16
6 32λ 309 684 3.49 866 4.33
7 64λ 1 135 524 3.67 218 3.97
8 128λ 4 295 380 3.78 56 3.89
9 256λ 16 571 524 3.86 8 7
10 512λ 64 740 820 3.91 1 8

The time to send a message of size n between two processes

is modeled as α+βn, where α denotes the latency (i.e. the time

to send an empty message) and 1

β
the bandwidth. Therefore,

weak scalability implies that also the communication volume

per process and per level should be bounded by O(1). Note

that a non-blocking communication model is assumed where

two processes can communicate at full speed, regardless of

any ongoing communication between other processes.

In the following sections, we investigate the computational,

memory and communication complexity of three data parti-

tioning strategies (spatial, hybrid and hierarchical partitioning)

and show that they exceed O(1) per level and per process.

Next, an augmented hierarchical partitioning scheme is pro-

posed that is weakly scalable. In what follows, the term

scalable always refers to weak scalability.

B. Spatial partitioning

The earliest attempts at parallelizing the MLFMA were

based on the distribution of boxes (spatial partitioning (SP),

sometimes referred to as simple partitioning) [2], [3], [4], [5].

Only at a constant number of lowest levels, the O(N) boxes

can be evenly divided among P = O(N) processes, yielding

a complexity of O(1) per process. On all other levels, the

number of boxes grows slower than linear as a function of N .

For increasing N , the number of processes P will eventually

become larger than the number of boxes, which means that

certain processes will not be attributed a box, rendering them

idle and yielding an unfavorable load balancing.

From a different perspective, consider the complexity of a

process that is attributed a top-level box. Because such a box

contains O(N) sampling points, the computational complexity

for that process is also O(N). Also, if such radiation patterns

need to be communicated to another process (e.g. during the

translation phase), the communication complexity is O(N).
Clearly, spatial partitioning is not scalable.

C. Hybrid partitioning

Velamparambil et al. [6], [7] recognized this bottleneck and

proposed the hybrid partitioning (HyP) scheme to alleviate

the poor load balancing at the top levels. For the lower half

of the tree, spatial partitioning is used as described above.

For the upper half of the tree, the k-space partitioning (KP)
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Fig. 1. Stripwise (left) vs. blockwise (right) partitioning of radiation pattern
samples (blue dots). The solid lines mark the different partition boundaries
while the numbers denote the process to which the partition is attributed.
The (red) dashed line encompasses all sampling points required for a local
interpolation of that partition.

scheme was proposed. Instead of distributing the boxes among

all processes, the sampling points within a box are distributed

among all processes. Because the top-level radiation patterns

contain O(N) sampling points, k-space partitioning attributes

O(1) sampling points to each process for these levels. The

hybrid scheme requires the transition from spatial to k-space

partitioning at some level. The optimal level depends on the

specific number of boxes and sampling points. From a com-

plexity analysis point of view, the middle level is appropriate.

At this transition level, i.e. the lowest level with k-space

partitioning, there are O(
√
N) boxes each containing O(

√
N)

sampling points.

Even in this improved scheme, bottlenecks continue to

exist, as also pointed out in [6], [7]. The highest level that

is partitioned using SP contains only O(
√
N) boxes. For

increasing N and P , the number of processes will again

become larger than the number of available boxes. Processes

that are attributed a box have a computational complexity of

O(
√
N). Similarly, at the lowest level that is partitioned using

KP, the boxes contain only O(
√
N) sampling points which

can not be evenly partitioned among O(N) processes. Even

though the HyP scheme reduces the worst-case complexity per

process and per level from O(N) to O(
√
N) compared to SP,

the HyP scheme is also not scalable. However, this bottleneck

in HyP will only become apparent for a higher number of

processes than is the case for SP.

D. Hierarchical partitioning

Hierarchical partitioning (HiP), introduced in [11], [12],

[13], uses a gradual transition between spatial and k-space

partitioning. At the lowest level(s), the boxes are distributed

using SP. At the next level, each box is shared among four

processes, however, each process now only holds a quarter

of the sampling points. At every next level, the radiation

patterns are further repartitioned into an increasing number

of 4, 16, 64, . . . , P partitions, until eventually, full k-space

partitioning is obtained at the top levels. Note that we assume

for simplicity that P is a power of four.

Hierarchical partitioning can result in a scalable paralleliza-

tion. For the two-dimensional MLFMA, this has been shown

in [14], [15], [16]. In three dimensions however, special care
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(a) Local interpolation of a source radiation pattern (the input for the
interpolation, denoted by the blue crosses) in a point of a destination
radiation pattern (one output point of the interpolation, denoted by the
black dot). The (red) dashed line encompasses all sampling points required
to calculate the value in the black dot. Two source points (NP) on each
side in the θ and φ-direction are needed.
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(b) Number of neighboring source points (NP), on each side in the θ and
φ direction, required for local interpolation as a function of the MLFMA
level l for different target precisions ǫ for problem S6. For level 0 and 1 an
FFT-interpolator is used, as their target level still uses spatial partitioning
(SP).

Fig. 2. Local interpolation of the radiation patterns.

needs to be taken of how the radiation pattern sampling

points are distributed among the processes. We consider two

scenarios, denoted the stripwise and blockwise (see Fig. 1)

approach. At first glance, this choice may seem to be an

implementation detail, however, it follows from the complexity

analysis that the former does not lead to a scalable algorithm

whereas the latter does.

1) Stripwise scheme: In [11], [12], [13] the radiation pat-

terns are partitioned stripwise (S-HiP): the values of the θ-

range (elevation) are distributed among the different processes,

irrespective of the φ-values (azimuth), as shown in Fig. 1
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Fig. 3. Hierarchical scheme with a blockwise partitioning of the radiation pattern sampling points (B-HiP). MLFMA tree (right) and physical layout of
the radiation pattern partitions on the sphere (left). Similar as Fig. 1, the (blue) dots denote sampling points, the solid lines mark the boundaries of the
partitions and the numbers denote the process they are attributed to. Partitions held by the same process overlap as much as possible, reducing the required
communication during repartitioning. The dashed (red) rectangle encompasses the sampling points that are required for local interpolation of that partition.

(left). This scheme again imposes a bottleneck. The top-

level radiation patterns consist of O(N) sampling points,

i.e. O(
√
N) points along the azimuth times O(

√
N) along

the elevation direction. Clearly, for P = O(N) processes,

distributing the radiation pattern along one dimension (i.e.

elevation) only fails to attribute O(1) sampling points to each

process. Indeed, eventually, P will exceed the number of sam-

pling points along the elevation direction. Some processes will

be attributed O(
√
N) sampling points, whereas others will be

attributed none. Hence, the hierarchical scheme with stripwise

partitioning does not improve the worst-case complexity per

process, compared to hybrid partitioning.
2) Blockwise: We propose a modification to the hierarchical

scheme, where the radiation patterns are partitioned blockwise

(B-HiP), i.e. both in azimuth (φ) and elevation (θ), as schemat-

ically shown in Fig. 1 (right). The partitions then consist of

rectangular patches in the (θ,φ)-plane. Fig. 3 demonstrates the

hierarchical blockwise scheme for three MLFMA levels.

The radiation patterns are uniformly sampled in θ and

φ [19]. This yields a Cartesian grid of sampling points, which

facilitates their partitioning in two dimensions. Because the

number of partitions grows proportionally to the number of

sampling points, each partition consists of O(1) sampling

points.

At every level in the tree, the blockwise hierarchical scheme

attributes O(1) sampling points to each process. Hence, the

memory and computational complexity per level and per

process is also O(1). We now prove that the communication

per level and per process is also O(1).

• During the aggregation phase, the radiation patterns are

repartitioned at every level. This means that approxi-

mately 3

4
of the locally contained points are sent to other

processes, yielding O(1) communication per process and

per level. Similarly, the communication during the disag-

gregation phase is O(1).
• During the translation phase, interactions between boxes

are evaluated. If the corresponding radiation patterns (or

their partitions) are held by different processes, they

need to be communicated. Because each process contains

only O(1) boxes per level, and because the number of

possible interactions for a box is bounded, the required

communication per level and per process is O(1).
• In order to perform accurate local interpolation and

anterpolation, sampling points near the boundaries of

neighboring partitions (eight in the case of the blockwise

partitioning) are required (see Fig. 1 right and Fig. 2(a)).

Fig. 2(b) illustrates that the number of required neigh-

boring source points (i.e. the input for the interpolation

or anterpolation), on each side in the θ and φ direction,

for a local interpolator is constant on every level. Hence,

again only O(1) communication is required per process

and per level.

III. WEAK SCALING ANALYSIS: NUMERICAL VALIDATION

In the previous section, we have theoretically investigated

the weak scalability for the four data distribution schemes (SP,

HyP, S-HiP and B-HiP) based on their asymptotic behavior for

a high number of unknowns N and parallel processes P . In

this section, we wish to a) validate the theoretically derived

bounds and b) quantitatively assess each of the schemes for a

realistic problem size and number of processes.

The previously described data partitioning schemes have

been implemented in a generic parallel MLFMA frame-

work [20] written in C/C++. Communication between the

different processes is handled using the Message Passing Inter-

face (MPI). To investigate the weak scalability, a sequence of
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TABLE II
SIMULATION DETAILS: INCREASINGLY LARGER CUBES ARE HANDLED

USING A PROPORTIONALLY INCREASING NUMBER OF PARALLEL

PROCESSES.

simulation number of cube edge number of number of
processes P size unknowns N levels L

S1 4 128 · λ/10 294 912 6
S2 16 256 · λ/10 1 179 648 7
S3 64 512 · λ/10 4 718 592 8
S4 256 1024 · λ/10 18 874 368 9
S5 1024 2048 · λ/10 75 497 4724 10
S6 4096 4096 · λ/10 301 989 888 11

six increasingly larger simulations (denoted as Si, i = 1 . . . 6)

is considered. Each problem Si contains exactly four times

as many unknowns as Si−1, while the number of parallel

processes is also increased by a factor of four. The geometry

consists of a perfectly electrically conducting (PEC) cube,

illuminated by an incident plane wave (although it should be

added that the type of excitation does not influence the weak

scalability analysis). The details for each simulation are listed

in Table II.

For all simulations, the relative precision for local interpola-

tion was set to ǫ = 10−6, the size of the lowest-level box was

0.5λ. Single-precision calculations were used. For the HyP,

the transition level was ⌈L
2
⌉, with L the number of MLFMA

levels. For the S-HiP and B-HiP, spatial partitioning was used

for the three lowest levels. For every next level, the number

of partitions was increased by a factor of four.

The weak scalability is assessed by considering the memory

requirements Mp for each process p individually. We excluded

from Mp the memory required to store the matrices for the

near interactions and lowest-level (dis)aggregations, because

these contributions are identical for the four partitioning

schemes. Among all processes, the process that has the highest

amount of memory usage is selected:

Mmax = max
p=1...P

Mp

Fig. 4 shows the average memory usage per MLFMA

level (i.e. Mmax/(L − 2), as there are no translations, inter-

and anterpolations at the two highest MLFMA-levels) for

the different simulations and partitioning schemes. One can

observe that for the spatial, hybrid and stripwise hierarchical

scheme, certain processes exhibit a memory requirement that

exceeds O(1). This is a manifestation of the fact that these

schemes fail to attribute O(1) sampling points to each process

at each level. For the blockwise hierarchical partitioning (B-

HiP), however, the memory usage per process and per level,

remains constant, which shows that the memory complexity

per level and per process is indeed O(1), yielding a scalable

data distribution scheme.

A few remarks are in order when interpreting the results.

First, Mmax only contains the contributions from the radi-

ation patterns, translation operators, inter- and anterpolation

matrices and communication buffers. The reason why near

interactions and lowest-level (dis)aggregations were excluded

from Mmax is that they contribute in a significant, but constant

way to the total memory requirements. The goal of this

experiment is to validate the theoretically derived complexities
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Fig. 4. Memory usage per level (maximum over all processes) as a function
of the number of processes P and unknowns N .

from section II. A large constant contribution to a certain

extent hides the presence of the higher-order terms.

Second, because a constant number of calculations are

required per radiation pattern sampling point, the memory

complexity is also representative for the computational com-

plexity and hence the runtime. The time complexity cannot be

lower than the memory complexity as every memory location

has to be used at least once. Note that the largest cluster

we have at our disposal contains 1024 CPU-cores and that

the result on 4096 cores was obtained by oversubscribing the

cluster, i.e. running 4 processes on a single core. Also note

that in [17], the communication complexities were measured

in a similar setup and shown to be O(1) as well.

Third, we make no statements as to which scheme has the

highest parallel efficiency for a particular problem size and/or

number of parallel processes. This depends on numerous

factors, as listed in the introduction. However, the asymptotic

analysis learns that for sufficiently large N and P , the B-

HiP scheme will be most efficient. Algorithms with a lower

computational complexity are usually more complex and their

actual runtime can be dominated by fairly large prefactors. For

example, the FFT-MLFMA algorithm has a higher computa-

tional complexity than the MLFMA [21], [22]. Nevertheless,

the parallelization of the FFT-MLFMA algorithm is highly

efficient (in a strong scaling sense) for current cluster sizes.

Consequently, the largest integral equation problem so far was

solved using a parallel FFT-MLFMA implementation.

We can now easily understand the bottlenecks in the dif-

ferent non-scalable schemes. The largest simulation S6 was

handled using P = 4096 processes. Table I reveals that only

for level l = 0 to 4, the number of boxes Bl > P . Level 8 (i.e.

the highest level that has actual MLFMA interactions) contains

only 56 boxes. This means that only 56 processes out of 4096

actually contain a box on that level and that the other 98.6%

of the processes are idle. In the spatial partitioning scheme,

certain processes require 15 times more memory, compared to

B-HiP.
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For the HyP scheme, the transition level for simulation S6

was l = 6. The highest level that uses SP (level l = 5)

contains only 3 752 boxes, which can again not be uniformly

distributed among P = 4096 processes. Even though this

already significantly improves the load imbalance compared

to pure SP, the transition level still imposes a bottleneck.

Consequently, compared to the B-HiP scheme, the memory

requirements are 4 times higher.

For the S-HiP scheme, a similar analysis can be made. A

box on level 8 contains Ql = 4 295 380 sampling points, or

1465 in elevation times 2932 in azimuth. Clearly, using the

stripwise scheme from Fig. 1 (left), it is impossible to achieve

a uniform partitioning. Roughly 35% of the processes are

attributed a strip of 1×2932 sampling points, the other 65% are

attributed none. From Fig. 2(b), it follows that 6 (ǫ = 10−3)

to 16 (ǫ = 10−6) sampling points in elevation are required

from adjacent partitions. This means that in order to perform

accurate interpolations for a certain partition, data from several

neighboring partitions are required, instead of only the two

adjacent partitions as depicted in Fig. 1 (left). Clearly, such

a communication pattern is undesirable. Even though the

memory requirements are again lowered with respect to the

HyP scheme, they are still approximately twice as high as for

the B-HiP scheme when using 4096 processes.

For comparison, in B-HiP, each partition on level l = 8 con-

tains roughly 1000 (23× 46) sampling points. Every process

contains a uniform amount of data and hence participates in

the calculations. To perform interpolations and anterpolation

on a certain partition, (portions of) no more than 8 neighboring

boundary partitions are required.

We want to emphasize that the specific numbers attributed

to the bottlenecks given above are specifically for problem

S6 using P = 4096 processes. For larger problem sizes and

number of processes, these bottlenecks will become even more

profound, and the relative difference to the proposed B-HiP

scheme will become even larger.

IV. NUMERICAL EXAMPLE

In order to demonstrate the correctness of our B-HiP imple-

mentation and provide for a runtime analysis, the simulation

results of a canonical example (a PEC sphere) are compared

to the analytical solution (the Mie series [23]). Similar to the

previous section, we increased the number of CPU-cores by

a factor of four (P = 1, 4, . . . , 1024) and the diameter d of

the sphere by a factor of two, resulting in an increase of the

number of unknowns by roughly a factor of four. This way, the

weak scaling behavior of the implementation and the accuracy

of the simulations can be validated.

We considered a plane wave impinging on the PEC sphere

with a diameter d = 14.41·
√
P ·λ, using a λ/10-discretization.

The largest simulation on P = 1024 CPU-cores, depicted

in Fig. 6(a), contained 200 120 454 unknowns. For all sim-

ulations, the Combined Field Integral Equation (CFIE) [24]

with the combination coefficient α = 0.5 was used. For the

construction of the MLFMA-tree, a smallest boxsize of 0.2λ
was chosen, resulting in a tree of 13 MLFMA-levels for the

largest simulation. The iterative convergence precision was set

TABLE III
RUNTIME PER ITERATION AND OBTAINED PRECISION WITH RESPECT TO

THE ANALYTICAL SOLUTION FOR A PEC SPHERE WITH AN INCREASING

DIAMETER SIMULATED ON AN INCREASING NUMBER OF CPU-CORES.

(a) Runtime per iteration

P number of average time average time
levels L per iteration divided by L− 2

1 8 1m 39s 16.50s
4 9 2m 08s 18.29s
16 10 2m 31s 18.88s
64 11 2m 49s 18.78s
256 12 3m 06s 18.60s
1024 13 3m 23s 18.45s

(b) Obtained precision

P sphere number of error w.r.t.
diameter d unknowns N Mie series (%)

1 14.41 · λ 195 426 1.20
4 28.82 · λ 781 098 0.96
16 57.64 · λ 3 112 850 0.99
64 115.28 · λ 12 502 692 1.02
256 230.56 · λ 50 032 914 1.06
1024 461.12 · λ 200 120 454 1.11

to 10−3. Each simulation was performed in single-precision

on a cluster consisting of 64 machines each containing two 8-

core Intel Xeon E5-2670 processors (1024 CPU-cores in total),

using 32 GByte of RAM (or 2 GByte per core). The machines

were connected using an Infiniband network.

Table III(a) displays the runtime per iteration (averaged over

20 iterations) for the different simulations. With every step,

both N and P are increased by a factor of four and one

can observe that the time per iteration grows with roughly

a constant contribution of approximately 20 seconds. This

corresponds to the time needed to handle one extra MLFMA

level in the tree and shows that the runtime indeed grows

with the number of levels, i.e. O(logN). The last column of

Table III(a) shows the average runtime per level (only L − 2
levels of the tree actually have MLFMA interactions). This

result corresponds very well to the goal of the scalable parallel

algorithm to obtain a O(1) computational complexity per level

per process.

Apart from the scalability of the B-HiP, it is interesting to

take a look at the communication map of the largest simulation

on P = 1024 CPU-cores. Fig. 5 shows the communication be-

tween the different processes. A dark spot denotes the presence

of communication between two processes. The communication

map is very sparse, only 77 744 of the 10242 data points or

7.4% are nonzero, which is the result of the hierarchical parti-

tioning scheme and the blockwise partitioning of the radiation

patterns, which limits the number of neighboring partitions.

From Fig. 5 one can also distinguish square-like clusters

of communication. These are the result of the hierarchical

partitioning of the levels.

Table III(b) shows the relative error in the radar cross

section (RCS) with respect to the analytical solution. The error

is given by

||fθ(θ, φ = 0)simulation − fθ(θ, φ = 0)analytical||2
||fθ(θ, φ = 0)analytical||2

with fθ(θ, φ = 0) the θ-component of the radiation pattern in

the φ = 0 plane. The obtained precisions around 1% are a
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Fig. 5. Communication between the different processes. A dark spot means
that there is communication between the processes, white corresponds to no
communication.

typical result for a λ/10-discretization, similar as in [12], [13].

Fig. 6 shows the absolute value of 4

d
fθ(θ, φ = 0), the θ-

component of the normalized radiation pattern in the φ = 0
plane, for the simulation of a PEC sphere with a diameter

d = 461.12λ. Fig. 6(a) displays the full θ-range (0◦ . . . 180◦),

discretized in 9026 sampling points or equivalently a resolu-

tion of approximately 0.02◦. Fig. 6(b), showing the backscat-

tering direction for θ = 0◦ . . . 2◦, confirms the good agreement

between the computational values from our MoM-MLFMA

implementation and the analytical solution of the Mie series,

shown in Table III(b).

V. CONCLUSION

In this paper a weak scaling analysis of the parallel MLFMA

was performed, both theoretically and numerically. First, we

examined three existing partitioning schemes, i.e. spatial (SP),

hybrid (HyP) and hierarchical (S-HiP) and showed that they do

not exhibit weak scalability. A modified hierarchical scheme

was proposed, where the radiation patterns are partitioned

blockwise (B-HiP) instead of stripwise. The complexity anal-

ysis shows that B-HiP does lead to a scalable algorithm.

These theoretical results were experimentally verified for the

different partitioning schemes. The results show that only the

B-HiP scheme achieves an O(1) computational complexity

per process and level, leading to a weakly scalable parallel

MLFMA. Finally, a canonical example, where the number

of unknowns and CPU-cores are proportionally increased up

to more than 200 millions of unknowns and 1024 CPU-

cores, was simulated using the B-HiP scheme. The time per

matrix-vector multiplication per level also corresponded to an

O(1) complexity and the results of the simulations were in

agreement with the analytical solution.
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(a) Full θ-range (0◦ . . . 180◦) in 9026 sampling points.
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Fig. 6. The absolute value of the normalized radiation pattern 4

d
fθ(θ, φ = 0)

for a PEC sphere with a diameter d = 461.12λ.
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