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Abstract—In this paper, some properties of dispersion curves
in general isotropic piecewise homogeneous waveguides are rig-
orously derived. These properties are leveraged in a numerical
implementation capable of determining the dispersion curves
of such waveguides with cross-section materials that can be
highly conductive (such as copper). In a numerical example, the
influence of a lossy shielding conductor on the complex modes
of a shielded dielectric image guide is investigated for the first
time.

Index Terms—Dispersion curve, propagation constant, waveg-
uide, shielded dielectric image guide, complex mode

I. INTRODUCTION

THE recent development of computer-based information
systems shows a clear tendency towards higher bit rates

and miniaturization of (opto-)electronic components. The de-
sign of reliable information-carrying waveguides, driven at
high frequencies to sustain the bandwidth requirements, is
hampered by the presence of modal dispersion, cross-talk and
losses. Accurate prediction of all electromagnetic phenom-
ena occuring in the waveguide cross-section, including the
dispersion curves of the eigenmode propagation constants,
is of utmost importance for the design and optimization of
waveguiding structures. This paper derives properties that
contribute to this goal.
There are many techniques available, developed during the
past decades, to determine waveguide propagation characteris-
tics. The effective dielectric constant method is an approximate
technique that has been used to predict the dispersion relations
of several types of dielectric waveguides [1]. However, it only
works well under certain assumptions.
The mode-matching technique [2], [3] has the benefits of being
both exact (provided a sufficient number of modes is con-
sidered) and yielding full modal information, i.e. both prop-
agation constants and modal field distributions. The method
requires that the individual constituents of the cross-section
are of simple geometrical shape, such that the modes can be
determined analytically.
Finite difference and finite element techniques have been
succesfully applied to the analysis of dielectric waveguide
structures [4], [5]. Advantages of the methods are the easy
incorporation of inhomogeneous material regions, where the
material parameters can vary continuously as a function of
place, and the straightforward determination of the modal
characteristics by solving an eigenvalue problem. Although
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its linear system is sparse, the employed volume discretization
technique can yield a large number of unknowns in comparison
to a boundary element method. Moreover, the analysis of
open waveguides is somewhat problematic, as it leads to
a larger simulation domain and the introduction of (non-
perfect) boundary conditions or an absorbing layer at the
boundary. Finally, these methods require a sufficiently fine
mesh in regions with rapid field variations, and, therefore,
become infeasible in highly conducting regions with skin
effect phenomena.
Methods based on the Green’s functions of the material
regions can be classified into domain or boundary integral
methods. The first type was used to study the properties of
open planar stratified dielectric waveguides with embedded
inhomogeneous material regions [6], [7]. For waveguides with
piecewise homogeneous material regions, a boundary integral
formulation was applied to analyze dielectric waveguides and
lossy multiconductor transmission lines in multilayered media
[8], [9]. However, the use of a spectral representation of the
Green’s function in [8] requires a final spatial inverse Fourier
transform, which becomes numerically infeasible for material
regions with high losses. For open waveguides, Green’s func-
tion based methods automatically ensure the radiation condi-
tions at infinity and the prediction of leaky waves. Moreover,
less unknowns are needed than with a finite difference or
finite element method, as only the inhomogeneous domains
and boundaries of piecewise homogeneous domains need to
be meshed. Drawbacks of the methods are the non-sparseness
of the resulting linear system and the less trivial determination
of the dispersion curves, based on the search of the (complex)
zeros of the system matrix’s determinant.
The study of modal interactions has been thoroughly inves-
tigated in the past [10], [11], and the smoothness of the
characteric determinant in the dispersion equation is generally
taken as an ansatz (based on the physical nature of the
problem). In this paper, we investigate the behavior of a
single dispersion curve in general isotropic waveguides. The
numerical description allows us to explicitly establish the
(domain of) holomorphy of the characteristic determinant
and prove some useful theorems regarding the properties of
dispersion curves. The explicit incorporation of the numerical
framework in the derived properties is by no means a limita-
tion, considering existing convergence theorems, but this has
not been investigated in this contribution.
A Green’s function based boundary element method is em-
ployed to calculate the dispersion curves of waveguides with
arbitrarily shaped piecewise homogeneous material regions.
Use of a technique to evaluate MoM interaction integrals
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Fig. 1. Waveguide cross section with arbitrarily shaped piecewise homoge-
neous material regions

in highly conductive materials allows the treatment of both
dielectric and electric waveguides with non-perfect conductors.
As the formulation is based on a two-dimensional version
of the PMCHWT (Poggio-Miller-Chang-Harrington-Wu-Tsai)
integral equation [12], [13], [14], spurious modes are nonexis-
tent. It is shown that the evolution of a propagation constant in
the complex plane as a function of frequency can be tracked
efficiently based on the derived theorems.
In Section II, the geometry of the considered waveguides
is presented, along with the employed boundary integral
equations. The obtained system of coupled integral equations
is then transformed to a finite-dimensional linear system by
means of the method of moments (MoM), as explained in
Section III. Some properties regarding the MoM system matrix
that will be needed in the sequel are also derived. The
properties of the dispersion curves that simplify and speed up
a numerical implementation are derived in Section IV. Section
V discusses these numerical techniques to search for and track
the propagation constants in the complex plane as a function of
frequency. Numerical examples demonstrating the correctness
and accuracy of the methods are presented in Section VI.

II. GEOMETRY AND INTEGRAL EQUATIONS

Consider a waveguide cross section S ⊂ R2, being the
union of linear isotropic piecewise homogeneous material
regions Ωi characterized by their complex electric permittivity
εi and magnetic permeability µi. We assume that uni

is
the external normal to Ωi and uni

× uti = uz (Fig. 1).
Suppose that all the sources and fields have a common time
and longitudinal dependence ej(ωt−βz) (β ∈ C), which is
omitted for notational convenience. The following representa-
tion formulae for the tangential (subscript t) and longitudinal
(subscript z) components of the electric field at the boundary
point ρb ∈ ∂Ωi hold if medium Ωi contains no sources (with
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Fig. 2. The boundaries are approximated by means of straight segments, over
which triangular and pulse functions are defined

γ2
i = ω2εiµi − β2) [8]:

Ez(ρb) = lim
ρ→ρb

∮
∂Ωi

dc′
[
Ez(ρ

′)
∂Gi(ρ|ρ′)

∂n′
(1)

−
(
jγ2
i

ωεi
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ωεi
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′)

∂t′

)
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]
,

Et(ρb) = lim
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∂Ωi

dc′
[
jωµi
γ2
i
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′)
∂2Gi(ρ|ρ′)
∂n∂n′

(2)

+
jωµi
γ2
i

(
jγ2
i

ωµi
Et(ρ

′)− β

ωµi

∂Ez(ρ
′)

∂t′

)
∂Gi(ρ|ρ′)

∂n

−jβ
γ2
i

Ez(ρ
′)
∂2Gi(ρ|ρ′)
∂t∂n′

+
jβ

γ2
i

(
jγ2
i

ωεi
Ht(ρ

′)− β

ωεi

∂Hz(ρ
′)

∂t′

)
∂Gi(ρ|ρ′)

∂t

]
.

The limit should be taken from the inside of Ωi to the
boundary. Similar expressions relating the magnetic field com-
ponents Hz(ρb) and Ht(ρb) at the boundary to the tangential
and longitudinal electric and magnetic field components at the
boundary are found via the duality substitutions E → H ,
H → −E, εi → µi and µi → εi in (1) and (2). The
Green’s function in the homogeneous medium i is given by
Gi(ρ|ρ′) = j

4H
(2)
0 (γi|ρ − ρ′|) as the fundamental solution

to the two-dimensional Helmholtz operator that satisfies the
Sommerfeld radiation condition at infinity, which fixes the
choice of the branch cuts of γi(β).
The tangential transversal and longitudinal field components
Et, Ht, Ez and Hz at the boundaries are the unknowns of
the problem. A set of coupled integral equations is obtained
by imposing the continuity of these field components at
the boundaries between different material regions. If there
are sources in Ωi, additional inhomogeneous terms, i.e. not
depending on the unknown fields at the boundary, appear in the
integral equations that contribute to the right hand side vector
of the matrix equation after discretization in the MoM [15].
However, in an eigenmode analysis no sources are present.

III. DISCRETIZED SYSTEM WITH THE METHOD OF
MOMENTS

A. Properties of the Interaction Integrals

The boundaries ∂Ωi are approximated by a union (denoted
Γi) of straight segments Sj with length lj and end points ρj
and ρj+1 (Fig. 2), although the use of general curved seg-
ments would change nothing to the properties and numerical
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Fig. 3. Relevant to the explicit form of the interaction integrals

techniques derived in the sequel. As in [8], the transverse
tangential components Et and Ht will be expanded in terms of
pulse functions pj(ρ), with support over segment Sj , whereas
the longitudinal components Ez and Hz are expanded into
triangular functions tj(ρ), with support over Sj and Sj+1:

pj(ρ) =
1

lj
ρ ∈ Sj , (3)

tj(ρ) =

{
1− |ρ− ρj+1| l−1

j

1− |ρ− ρj+1| l−1
j+1

ρ ∈ Sj
ρ ∈ Sj+1.

(4)

Moreover, a Petrov-Galerkin approach is employed, choosing
an identical set of basis and test functions. The integral
equations for Ez and Hz will be tested with pulse functions,
whereas the equations for Et and Ht will be tested with
triangular functions [8]. To calculate the elements in the
MoM system matrix, the interaction integrals (5)-(7) below are
evaluated numerically for basis and test functions with support
over segments that have Ωi as a neighboring medium. This
can easily be seen by inspecting (1) and (2). The tangential
derivatives of the Green’s function can be transferred to the
test function using Stokes’ theorem such that only three types
of interaction integrals remain.

Ippjk =

∫
Γi

pj(ρ) dc

∫
Γi

Gi(ρ|ρ′) pk(ρ′) dc′, (5)

Iptjk =

∫
Γi

pj(ρ) dc

∫
Γi

∂Gi(ρ|ρ′)
∂n′

tk(ρ′) dc′, (6)

Ittjk =

∫
Γi

tj(ρ) dc

∫
Γi

∂2Gi(ρ|ρ′)
∂n∂n′

tk(ρ′) dc′. (7)

More explicitly, one can rewrite the interaction integrals as in
(8)-(10) (with the notations used in Fig. 3). Note that the inner
integral of the last type is to be interpreted in Hadamard finite

part sense (p.f.).

Ippjk =

∫
Γi

pj(ρ)

∫
Γi

j

4
H

(2)
0 (γir) pk(ρ′) dc′ dc, (8)

Iptjk =

∫
Γi

pj(ρ)

∫
Γi

jγi
4
H

(2)
1 (γir)(un′ · ur) tk(ρ′) dc′dc, (9)

Ittjk =

∫
Γi

tj(ρ) p.f.
∫
Γi

[
jγ2
i

8

(
H

(2)
0 (γir) +H

(2)
2 (γir)

)
un·un′

−jγ
2
i

4
H

(2)
2 (γir)(un·ur)(un′·ur)

]
tk(ρ′) dc′dc. (10)

Consider a fixed mesh Γi of the boundary ∂Ωi, for all
frequencies and propagation constants. The branch cuts Bi(ω)
of the transversal wave number γi =

√
ω2εiµi − β2 at the

frequency ω are chosen on the hyperbola in the complex β-
plane such that =γi < 0 for β ∈ (C \ Bi(ω)) [16]. Likewise,
denote B̃i(β) as the branch cuts of γi, for a fixed β and viewed
as a function of ω, such that =γi < 0 for ω ∈ (C \ B̃i(β)). It
is easy to see that γi(ω, β) is a holomorphic function of the
two variables ω and β in the domain Oi = C2 \ {(ω, β) | β ∈
Bi(ω)} = C2 \ {(ω, β) | ω ∈ B̃i(β)}. It will be proved in the
following theorems that the interaction integrals (8)−(10) are
also holomorphic functions of ω and β in Oi.

Theorem III.1. Given ν ∈ N. Suppose a(r) is a piecewise
continuous complex function of a positive real argument r > 0
that vanishes for r > R. Then, if the function F (ω, β) =

limε→0

∫ R
ε
a(r)H

(2)
ν (γi(ω, β)r)dr converges as an improper

Riemann integral in Oi = C2 \ {(ω, β) | β ∈ Bi(ω)}, it is
holomorphic in Oi.

Proof. Suppose that F (ω, β) converges as an improper Rie-
mann integral in Oi. We will first prove that, for fixed ω0,
F (ω0, β) is holomorphic in the variable β ∈ Ψ = C \Bi(ω0).
Consider a fixed ε > 0. Thanks to the choice of the branch cuts
Bi(ω0), H(2)

ν (γi(ω0, β)r) is holomorphic for r > 0 and β ∈
Ψ. As by assumption Fε(β) =

∫ R
ε
a(r)H

(2)
ν (γi(ω0, β)r)dr

is Riemann integrable in Ψ, the sequence of its holomorphic
Riemann sums converges uniformly on all compact subsets of
Ψ. Therefore, for each value of ε, the limit of this sequence
of holomorphic Riemann sums, namely Fε(β), is found to be
holomorphic too, by a well-known theorem of Weierstrass.
As limε→0 Fε(β) exists, the sequence of the holomorphic
functions F1/n(β) for n → ∞ also converges uniformly on
all compact subsets of Ψ, implying that the limit function
F (ω0, β) = limε→0 Fε(β) is holomorphic in Ψ.
Completely analogously, one can prove that, for fixed β0,
F (ω, β0) is holomorphic as a function of ω in C \ B̃i(β0).
Application of Hartogs’ fundamental theorem, also called the
separate analyticity theorem [17], leads to the proposition.

Theorem III.2 (Holomorphy of the interaction integrals). The
interaction integrals (8)− (10) are holomorphic functions of
the two complex variables ω and β in the domain Oi.

Proof. It can be shown that interactions of the form (8)
and (9) can be reduced to the form of F (ω, β) in Theorem
III.1, which converges as an improper Riemann integral in
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Oi. Interactions of the last form (10) cannot be written
straightforwardly as an improper Riemann integral if the kernel
in the integration domain contains a hypersingularity. By
extracting the hypersingular part of the second order Hankel
function, the regularised integrand is (improperly, if basis and
test functions are overlapping or tangent) Riemann integrable,
and by arguments similar to the proof in Theorem III.1, the
integral leads to a holomorphic function in Oi. The finite part
integral of the hypersingular part is independent of ω and β,
and thus trivially holomorphic. Indeed, it is given by:

Ittjk,sing =−
∫
Γi

tj(ρ) dc p.f.
∫
Γi

1

2πr2

[
un · un′

− 2(un · ur)(un′ · ur)
]
tk(ρ′) dc′.

This lets us conclude that the interaction integrals are holo-
morphic functions of ω and β in Oi.

B. Properties of the System Matrix

We denote the MoM system matrix at frequency ω and
longitudinal wave number β as M(ω, β) ∈ CN×N , i.e. it has
the same dimension N for all ω and β, resulting from the
earlier assumed fixed discretization of the boundaries ∂Ωi. Its
determinant will be designated as D(ω, β) = detM(ω, β).
The employed methods to search for propagation constants
of the waveguide, discussed in Section IV, rely on the de-
termination of the zeros of D(ω, β) in the β-plane. A few
interesting properties of the dispersion curves as a function of
frequency can be proved, taking into account the holomorphy
of the determinant. The latter is the subject of the following
theorems.

Theorem III.3 (Holomorphy of the matrix elements). The
matrix elements of M(ω, β) are holomorphic functions of ω
and β in the domain O = (C0×C)\(∪i{(ω, β) | β ∈ Bi(ω)}).

Proof. The discretized linear system arises after expanding the
tangential boundary field components into a set of basis func-
tions and imposing moments of the continuity relations, arising
from the representation formulae (1)-(2) and their duals, as
explained in Section II. Therefore each matrix element can
be written as a finite sum of products of prototype integrals
(holomorphic in ∩iOi, see Theorem III.2) with functions that
are holomorphic in O (note that some factors have a pole at
ω = 0). This completes the proof.

Theorem III.4 (Holomorphy of the determinant). The system
matrix determinant D(ω, β) is holomorphic as a function of
ω and β in the domain O, defined in Theorem III.3.

Proof. This follows immediately from Theorem III.3 and the
fact that the determinant is a finite sum of finite products of
matrix elements (up to a sign).

The following theorem discusses the symmetry of the matrix
determinant as a function of β, if the cross-section consists
entirely of lossless materials. This property implies that the
numerically found complex waves always come in pairs with
complex conjugate propagation constants.

Theorem III.5 (Symmetry property of the determinant for
lossless structures). Suppose εi, µi ∈ R0 and (ω, β) ∈ O, then
D(ω, β) = D(ω, β), where a stands for the complex conjugate
of a.

Proof. We shall make use of the identity H
(2)
n (−z) =

(−1)n+1H
(2)
n (z) if =z < 0 and n ∈ Z, which can be proved

using elementary properties of Bessel functions [18]. When
we replace β with β in the interaction integrals (8)-(10),
we can use the previous identity for (ω, β) ∈ O, as then
=(γir) < 0. Note that in the process of replacing β → β,
we have γi → −γi and γ2

i → γ2
i . This lets us conclude that

Ippjk → Ippjk, Iptjk → Iptjk and Ittjk → Ittjk if β → β. By examining
the additional factors in the representation formulae (1)-(2)
and their duals, it can be seen that some contributions, for
example Ht as a source for Ez (denoted [EzHt]), will be
transformed according to [EzHt] → −[EzHt]. Others, for
example Ez as a source for Ez , will be transformed according
to [EzEz] → [EzEz]. However, M(ω, β) and M(ω, β) will
only differ up to a multiplication of the same number of
columns and rows with −1. This leads to the proposition.

IV. PROPERTIES OF THE DISPERSION CURVES

Given (ω0, β0) ∈ O, with ω0 ∈ R+
0 . Suppose that β0

is a zero of the determinant at the operating frequency ω0,
i.e. D(ω0, β0) = 0. In the current context, β0 corresponds
to the propagation constant of one or more eigenmodes that
can exist in the structure. As a consequence of Hartogs’
lemma, also called the Osgood-Brown theorem [17], the zero
(ω0, β0) cannot be an isolated one. The Weierstrass prepa-
ration theorem and the fact that D(ω, β) may be expressed a
power series around (ω0, β0), which has a term only involving
β− β0, independent of ω−ω0 (otherwise D(ω0, β) would be
identically zero in the neighborhood where the power series
holds, and thus, by analytic continuation, the determinant
would vanish for ω = ω0), allows to write the following
local representation for D(ω, β), valid in a neighborhood1

Uε = B(ω0, ε)×B(β0, ε) of (ω0, β0) [19]:

D(ω, β) =

[
(β − β0)ν +

ν−1∑
i=0

ci(ω)(β − β0)i

]
φ(ω, β), (11)

where φ(ω, β) is holomorphic and zero-free in Uε, ν ∈ N0

and the functions ci(ω) are holomorphic in a neighborhood
of ω0 and vanish at ω0. From (11), it is clear that the zero
β0 of the function D(ω0, β) has multiplicity ν. The following
theorem describes the behavior of this zero as a function of
ω, in a neighborhood of ω0 on the real axis.

Theorem IV.1 (Behavior of a dispersion curve as a function
of frequency). Suppose that (ω0, β0) is a zero of D(ω, β)
of multiplicity ν, with ω0 ∈ R+

0 and Uε a neighborhood of
(ω0, β0) where (11) holds. If, for each ω in a real interval
(a, b) ⊂ (ω0 − ε, ω0 + ε) (with b > a), it holds that D(ω, β)
has exactly one zero (ω, β1(ω)) with multiplicity ν in Uε, then
the same holds for all ω ∈ B(ω0, ε), for which D(ω, β) has

1B(z0, ε) = {z ∈ C : |z− z0| < ε}, is the open disk centered at z0 with
radius ε, whereas B(z0, ε) denotes its closure.
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zeros inside Uε. Moreover, the dispersion curve of the zero
β1(ω) inside Uε will be smooth.

Proof. For ω ∈ (a, b), there is only one zero with multiplicity
ν inside Uε. This means that the term in brackets in (11) is
uniquely factorized in the following way, for ω ∈ (a, b):

(β − β0)ν +

ν−1∑
i=0

ci(ω)(β − β0)i = (β − β1(ω))ν (12)

=

ν∑
i=0

(
ν

i

)
(−1)ν−i(β − β0)i(β1(ω)− β0)ν−i. (13)

This implies that ci(ω) =
(
ν
i

)
(−1)ν−i(β1(ω) − β0)ν−i for

i = 0, 1, ..., ν − 1. Or, equivalently, the following relations
hold:

β1(ω) = β0 −
1

ν
cν−1(ω), (14)

ci(ω) =

(
ν

i

)(
cν−1(ω)

ν

)ν−i
. (15)

As the interval (a, b) contains a limit point, the relations (15)
will hold for all ω ∈ B(ω0, ε). Thus, the factorisation (12)
holds in the whole neighborhood Uε, implying that for all
ω ∈ B(ω0, ε), for which D(ω, β) has zeros inside Uε, the
zero is unique and has multiplity ν. From (14), it clear that
β1(ω) is holomorphic in B(ω0, ε) and thus smooth for ω ∈
(ω0 − ε, ω0 + ε).

Corollary IV.2 (Dispersion curves cannot split up by them-
selves). Suppose that β1(ω) is a complex-valued function of
real argument ω ∈ (ω0 − ε, ω0], representing a zero of the
determinant with constant multiplicity ν, i.e. D(ω, β1(ω)) = 0.
Then there exists a δ > 0 such that β1(ω) can be smoothly
extended to the interval ω ∈ (ω0 − ε, ω0 + δ), still obeying
D(ω, β1(ω)) = 0 with multiplicity ν. Therefore, dispersion
curves cannot split up by themselves. There has to be at least
an intersection with another curve or an intersection with a
branch cut Bi(ω).

V. NUMERICAL TECHNIQUES

The location of the propagation constants in the complex
plane, as found with the argument principle, is refined using
an adaptive quadrature scheme with adjustable accuracy. The
tracking of a propagation constant as a function of frequency
is eased by considering the derived theorems.

A. Argument Principle

As a first coarse estimate of the distribution of the prop-
agation constants for a fixed angular frequency ω, we use
Cauchy’s argument principle (as in [20]). The regions where
propagation constants are likely to be found are meshed into
rectangular boxes that contain no branch cuts. The argument
principle can then be used to determine the number of zeros
of the determinant function, counted with their multiplicity,
inside a rectangular box R in the β-plane with the sole
knowledge of the function values on the boundary. Indeed,
if R ⊂ (C \ ∪iBi(ω)) (no branch cuts through R) and
D(ω, β) 6= 0 for β ∈ ∂R (no zero on the boundary), then the

determinant function has the following number of zeros inside
R, where the contour integral is taken in counterclockwise
direction:

nR =
1

2πj

∮
∂R+

∂βD(ω, β)

D(ω, β)
dβ. (16)

The winding number nR of the determinant function along ∂R
and is equal to the number of times the curve {D(ω, β) | β ∈
∂R} circles around the origin. This last property can be
easily calculated numerically by inspecting the change in
argument of the determinant function between neighboring
sample points on the boundary [21].

B. Adaptive Quadrature Scheme

A more accurate estimate of the distribution of the propaga-
tion constants can be obtained by subsequently refining boxes
with nR > 0 and applying the argument principle. However,
this approach becomes infeasible if one wants to know the
location of the zeros up to a fixed (and high) accuracy. To
solve this issue, the coarse search with the argument principle
is followed by a refinement step, consisting of numerically
evaluating the following integral:

z =
1

2πnRj

∮
∂R+

β
∂βD(ω, β)

D(ω, β)
dβ. (17)

If there is only one zero with multiplicity nR inside R, then
z precisely represents the location of this zero. Otherwise, z
represents the centre of mass of the enclosed zeros, weighted
with their multiplicities. A sufficient refinement of the boxes
via the argument principle is able to exclude the latter case.
We have implemented a numerical quadrature scheme, capable
of evaluating (17) to a given precision of the real and imagi-
nary part, taking into account the rather high cost of evaluating
the determinant function in a point. These considerations lead
to a Gauss-Kronrod quadrature rule, as the addition of N + 1
Kronrod nodes to the N Gauss-Legendre nodes in order to
estimate the error of the original Gauss-Legendre rule, allows
to reuse the function values at the Gauss-Legendre nodes.
In this way, the integral in (17) is split up into four parts, with
each one corresponding to a segment of ∂R. The integrand
of such a segment integral is smooth (Theorem III.4) and
the derivative ∂βD(ω, β) at the 2N + 1 quadrature points is
numerically estimated by a linear transformation of the deter-
minant values at the nodes, which is essentially a projector
of the function values at the quadrature nodes onto a set of
orthogonal polynomials, followed by a derivative operator of
the polynomials at the same nodes. If the error of the segment
integral is too high to guarantee the accuracy of the end result,
the segment is divided into two equal segments where the same
procedure is performed [22]. The quadrature scheme can thus
be classified as an adaptive Gauss-Kronrod scheme.

C. Frequency sweep

The numerical procedure of tracking the dispersion curve
of a propagation constant as a function of frequency is greatly
facilitated by the use of previously derived theorems. At the
start of the frequency sweep, we choose a fixed mesh along
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the material boundaries that is fine enough to accurately rep-
resent the boundary and EM wave behavior at the considered
frequencies. In this way, the curve β(ω) we are looking for,
starting from a seed value β0 at ω0, will be smooth as a
function of frequency (Theorem IV.1). This allows the use
of an extrapolation method to accurately estimate the location
of the propagation constant at the next frequency point. This
prediction will then be refined by using the adaptive quadrature
scheme, discussed in the previous paragraph.
The property that the winding number of the curve β(ω) stays
constant, as a consequence of Theorem IV.1 (unless two curves
cross or a branch cut is met), is used to check if the box around
the estimation contains no extra propagation constants. If the
box around the estimated propagation constant at the next
frequency point is chosen too large, such that another zero
of the determinant lies inside it, formula (17) will give the
centre of mass of the enclosed zeros, and not the sought value.
However, this case can be detected as the winding number
increases, which signals the numerical procedure to reduce
the box.

VI. EXAMPLES

A. Complex Modes in a Shielded Dielectric Image Guide

In this example, the presented boundary element method is
employed to numerically determine the dispersion curves of
complex modes. These modes can arise in certain inhomoge-
neous waveguides, and have propagation constants with non-
zero real and imaginary part, even if all material regions in
the cross section are lossless. Consider the shielded dielectric
image guide of Figure 4, which is essentially a rectangular
waveguide loaded with a dielectric material region with rela-
tive permittivity εr = 9, located at the bottom conductor.
It is well-known that complex modes can exist in this type of
waveguide [5]. If the shielding conductor Ωc is a perfect elec-
tric conductor (PEC), there are no losses inside the structure,
which is reflected by the fact that complex modes exist in pairs
with conjugate propagation constants [23], [24]. In the lossless
case, the complex conjugate symmetry of the propagation
constants of the mode pair is nicely predicted by the numerical
framework (see Theorem III.5). If the dielectric load material
is lossy, the propagation constants are no longer each other’s
complex conjugate [5]. We will show that the same applies for
the case with non-perfectly conducting waveguide walls and
lossless dielectric load material.
To illustrate the applicability of the boundary element method
to a highly conductive region, consider a non-perfect shielding
conductor Ωc with electric conductivity σ and thickness t =
1 mm. In the numerical examples, we study the effect of the
conductivity by choosing two distinct values σa = 5.8e7 S/m
(copper) and σb = 10−4σa. We use the same geometry as in
[5], i.e. a = 2b = 15.798 mm, w = 6.9 mm and h = 3.2 mm.
Figures 5 and 6 show the normalized real and absolute value
of the normalized imaginary part of two propagation constant
curves, termed β1(f) and β2(f), for the two conductivities,
with the frequency f = ω/2π varying between 12 GHz and
15 GHz.
In the waveguide with PEC boundary, a true bifurcation of
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ǫ0, µ0 ǫr = 9

w

h

b
t

Fig. 4. Cross section of a shielded dielectric image guide
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Fig. 5. Real part of the normalized dispersion curves for different conduc-
tivities

the complex modes occurs around fb = 14.5 GHz, and the
modes are exactly each other’s complex conjugate before the
bifurcation, i.e. β1(f) = β2(f) if f < fb [5]. At first glance,
the bifurcation for a lossless waveguide with PEC boundary
seems to be in contradiction with Corollary IV.2. However,
this bifurcation happens on the branch cuts of the transversal
wave numbers of both lossless material regions (free space
and the dielectric load material), i.e. on the real axis in the
complex β-plane around 0.4k0, and Theorem IV.1 only holds
for (ω0, β0) ∈ O, i.e. outside the branch cuts Bi(ω).
For the considered case of a lossy shielding conductor, the
bifurcation disappears and the two modes are no longer
conjugate (Fig. 5 and 6). It was verified that by increasing the
conductivity of the shielding conductor, the dispersion curve
β1(f) converges to β2(f) for f < fb. This can be expected,
as a PEC boundary corresponds to the case σ → ∞. As the
curves β1(f) and β2(f) do not cross a branch cut, and because
they cannot cross each other (both lie on the opposite side of
the branch cuts), no bifurcation is allowed (Corollary IV.2).
Moreover, their curves in the complex plane are smooth, but
this is not really apparent from Figures 5 and 6. However,
Figures 7 and 8 clearly demonstrate this fact, by showing
the logarithm of the real part and the absolute value of the
normalized imaginary part of both curves.
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VII. CONCLUSION

Theorems were presented stating some properties of the
dispersion curves for general isotropic piecewise homogeneous
waveguides. These theorems were leveraged in a numerical
implementation of a set of boundary integral equations to de-
termine the waveguide eigenmodes and their propagation con-
stants. These boundary integral equations can handle highly
conductive materials (such as copper).
A challenging numerical example demonstrates the possibili-
ties of our tool. To the authors’ knowledge, this is the first
time that the effect of a lossy shielding conductor on the
complex modes of a shielded dielectric image guide has been
numerically investigated.
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