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Abstract

We prove that for every n ∈ N \ {0, 1} there exists up to isomorphism a unique
isometric embedding of the near polygon Hn into the dual polar space DW (2n−1, 2)
and a unique isometric embedding of the near polygon Gn into the dual polar space
DH(2n− 1, 4).
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1 The main result

A point-line geometry S = (P ,L, I) with nonempty point set P , (possibly empty) line set
L and incidence relation I ⊆ P × L is called a partial linear space if every two distinct
points are incident with at most one line. If x1 and x2 are two points of a partial linear
space S, then the distance d(x1, x2) between x1 and x2 will be measured in the collinearity
graph of S. A set X of points of S is called a subspace if every line having two of its
points in X has all its points in X. If X is a subspace of S, then we denote by X̃ the
subgeometry of S induced on X by those lines of S that have all their points in X. If X
is a set of points of S such that the smallest subspace S(X) of S containing X coincides
with the whole point set, then X is called a generating set of S.

Let S1 and S2 be two partial linear spaces. An embedding of S1 into S2 is an injective
mapping ε from the point set of S1 to the point set of S2 satisfying the following two
properties:
• ε maps every line of S1 into a line of S2;
• ε maps distinct lines of S1 into distinct lines of S2.

An embedding ε of S1 into S2 will be denoted by ε : S1 → S2. An embedding e : S1 → S2

is called full if it maps lines of S1 to full lines of S2. The embedding ε is called isometric if
it preserves the distances between points. Two embeddings ε : S1 → S2 and ε′ : S1 → S ′2
of the same partial linear space S1 are called isomorphic if there exists an isomorphism θ
from S2 to S ′2 such that ε′ = θ ◦ ε.
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Suppose ε is an embedding of the partial linear space S1 into the partial linear space
S2. If θ1 and θ2 are automorphisms of respectively S1 and S2 such that θ2 ◦ ε = ε ◦ θ1,
then we say that θ1 lifts (through ε) to θ2. If every automorphism of S1 lifts (through ε)
to an automorphism of S2, then ε is called a homogeneous embedding.

In the present paper, we will meet two classes of dual polar spaces of rank n ≥ 2.
On the one hand, the symplectic dual polar space DW (2n − 1, q) associated with a
symplectic polarity of the projective space PG(2n − 1, q) and on the other hand the
Hermitian dual polar spaceDH(2n−1, q2) associated with a nonsingular Hermitian variety
H(2n− 1, q2) of PG(2n− 1, q2). For q 6= 2, Cooperstein [4, 5] showed that the dual polar
space DW (2n − 1, q) has a generating set of size 1

n+2

(
2n+2
n+1

)
=
(
2n
n

)
−
(

2n
n−2

)
and that the

dual polar space DH(2n− 1, q2) has a generating set of size
(
2n
n

)
. Neither of these results

remain valid for q = 2 and n ≥ 3. However in each of the two cases, it is still true that
there exists a set X of points in the dual polar space of the above-mentioned size such

that S̃(X) is a nice subgeometry.

(1) By Blokhuis and Brouwer [1, Section 2] and Brouwer et al. [2, Section 5], we know

that there exists a set X of 1
n+2

(
2n+2
n+1

)
points of DW (2n − 1, 2) such that S̃(X) is

isomorphic to the near 2n-gon Hn.

(2) By De Bruyn [8, Theorem 1.2], we know that there exists a set X of
(
2n
n

)
points of

DH(2n− 1, 4) such that S̃(X) is isomorphic to the near 2n-gon Gn.

Explicit constructions of the near 2n-gons Hn and Gn as well as the dual polar spaces
DW (2n− 1, q) and DH(2n− 1, q2) will be given in Section 2.

In each of the above cases, the embedding ε which realizes an isomorphism between

S ∈ {Hn,Gn} and S̃(X) is isometric. One can wonder whether this embedding is the
unique isometric embedding of S into the corresponding dual polar space. The following
theorem, which is the main result of this paper, answers this question affirmatively.

Theorem 1.1 Let n ∈ N \ {0, 1}.

(1) Up to isomorphism, there is a unique isometric embedding of Hn into DW (2n−1, 2).
Every isometric embedding ε of Hn into DW (2n − 1, 2) is homogeneous. More
precisely, every isomorphism of Hn lifts through ε to precisely one automorphism of
DW (2n− 1, 2).

(2) Up to isomorphism, there is a unique isometric embedding of Gn into DH(2n −
1, 4). Every isometric embedding ε of Gn into DH(2n− 1, 4) is homogeneous. More
precisely, every automorphism of Gn lifts through ε to precisely one automorphism
of DH(2n− 1, 4).

One of the motivations for studying isometric embeddings of Hn into DW (2n− 1, 2) and
of Gn into DH(2n − 1, 4) is the theory of valuations of dense near polygons introduced
by De Bruyn and Vandecasteele [11]. This theory of valuations is important for obtaining
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classification results regarding dense near polygons. If ε : S1 → S2 is an isometric em-
bedding between two dense near polygons S1 and S2, then ε will give rise to valuations
of S1. The valuations of a given dense near polygon S thus provide information on how
S can be isometrically embedded into another dense near polygon. Isometric embeddings
are also often useful for obtaining classification results regarding valuations themselves.
This was the case in the paper [9] of the author where isometric embeddings of Gn into
DH(2n− 1, 4) have been used to obtain a complete classification of all valuations of the
near 2n-gon Gn and this will also be the case in the paper [10] where isometric embed-
dings of Hn into DW (2n− 1, 2) will be used to obtain a complete classification of certain
valuations of the near 2n-gon Hn.

2 Dense near polygons

The aim of this section is to collect some known definitions and properties regarding
(dense) near polygons that will be useful during the proof of Theorem 1.1. Proofs of
these properties can be found in the literature, see e.g. the book [7] of the author. We
will also prove a number of new facts regarding isometric embeddings between dense near
polygons.

2.1 Near polygons

A near polygon is a partial linear space with the property that for every point x and every
line L, there exists a unique point πL(x) on L nearest to x. If d is the maximal distance
between two points of a near polygon S, then S is called a near 2d-gon. A near 0-gon
is a point and a near 2-gon is a line. Near quadrangles are usually called generalized
quadrangles.

Let S = (P ,L, I) be a near polygon. A subspace X of S is called convex if every point
on a shortest path between two points of X is also contained in X. Clearly, the whole
point set P is a convex subspace of S and the intersection of any number of (convex)
subspaces of S is again a (convex) subspace of S. If X is a non-empty convex subspace,

then X̃ itself is also a near polygon. If ∗1, ∗2, . . . , ∗k are k ≥ 1 objects of S, each being
a point or a nonempty set of points, then 〈∗1, ∗2, . . . , ∗k〉 denotes the smallest convex
subspace of S containing ∗1, ∗2, . . . , ∗k. The set 〈∗1, ∗2, . . . , ∗k〉 is well-defined since it
equals the intersection of all convex subspaces containing ∗1, ∗2, . . . , ∗k.

A near polygon is called dense if every line is incident with at least three points and
if every two points at distance 2 have at least two common neighbors. If x and y are
two points of a dense near 2n-gon S at distance δ from each other, then by Shult and
Yanushka [14, Proposition 2.5] and Brouwer and Wilbrink [3, Theorem 4], 〈x, y〉 is the
unique convex subspace of diameter δ containing x and y. The convex subspace 〈x, y〉 is
called a max if δ = n− 1. A max M of a dense near polygon S is called big if every point
x of S not contained in M is collinear with a (necessarily unique) point πM(x) of M . If
M is a big max of S and x is a point not contained in M , then d(x, y) = 1 + d(πM(x), y)
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for every point y of M . If M1 and M2 are two disjoint big maxes of S, then the map
x 7→ πM2(x) defines an isomorphism between M̃1 and M̃2.

Suppose S = (P ,L, I) is a dense near polygon with three points on each line, and that
M is a big max of S. For every point x of M , we define RM(x) := x. For every point x
outside M , let RM(x) denote the third point on the line through x and πM(x). The map
RM : P → P defines an automorphism of S and is called the reflection about S. So, if F
is a convex subspace of S, then RM(F ) is a convex subspace of the same diameter as F .
If F is a big max, then also RM(F ) is a big max.

2.2 Dual polar spaces

Suppose Π is a thick polar space of rank n ≥ 2 (Tits [15]). With Π, there is associated a
dual polar space ∆ of rank n. This is the point-line geometry whose points are the (n−1)-
dimensional singular subspaces of Π, whose lines are the (n − 2)-dimensional singular
subspaces of Π and whose incidence relation is reverse containment. The dual polar space
∆ is a dense near 2n-gon. If P1 and P2 are two (n− 1)-dimensional singular subspaces of
Π, then the distance between the points P1 and P2 of ∆ is equal to n− 1− dim(P1 ∩P2).
There exists a bijective correspondence between the points of Π and the maxes of ∆. If
p is a point of Π, then the set of maximal singular subspaces of Π containing p is a max
Mp of ∆. We say that p is the point of Π corresponding to Mp and that Mp is the max
of ∆ corresponding to p. Every max of ∆ is big. If a max M and a convex subspace F
of diameter δ of ∆ have a point in common, then either F ⊆ M or F ∩M is a convex
subspace of diameter δ − 1. In the present paper, we will meet two classes of dual polar
spaces.

Let ζ be a symplectic polarity of the projective space PG(2n− 1, q), where n ≥ 2 and
q is a prime power. The subspaces of PG(2n− 1, q) totally isotropic for ζ define a polar
space W (2n− 1, q) whose associated dual polar space will be denoted by DW (2n− 1, q).
A line of PG(2n− 1, q) that is not totally isotropic with respect to ζ is called a hyperbolic
line of W (2n− 1, q).

Let H(2n− 1, q2) be a nonsingular Hermitian variety of the projective space PG(2n−
1, q2), where n ≥ 2 and q is a prime power. The subspaces of PG(2n − 1, q2) contained
in H(2n − 1, q2) define a polar space whose associated dual polar space will be denoted
by DH(2n− 1, q2). A line of PG(2n− 1, q2) intersecting H(2n− 1, q2) in precisely q + 1
points is called a hyperbolic line of H(2n− 1, q2).

Suppose Π is one of the polar spaces W (2n − 1, q) or H(2n − 1, q2) and that L =
{x1, x2, . . . , xq+1} is the set of q + 1 points of Π contained in some hyperbolic line of Π.
Let ∆ be the dual polar space associated with Π and for every i ∈ {1, 2, . . . , q + 1}, let
Mi denote the max of ∆ corresponding to xi. Then the maxes M1,M2, . . . ,Mq+1 are
mutually disjoint and each of the |M1| = |M2| lines meeting M1 and M2 intersects every
Mi, i ∈ {1, 2, . . . , q + 1}, in precisely one point.
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2.3 The dense near 2n-gon Hn

Let n ∈ N. With every set X of size 2n + 2, there is associated a point-line geometry
Hn(X): the points of Hn(X) are the partitions of X in n+ 1 subsets of size 2; the lines of
Hn(X) are the partitions of X in n−1 subsets of size 2 and 1 subset of size 4; a point p of
Hn(X) is incident with a line L of Hn(X) if and only if the partition corresponding to p is
a refinement of the partition corresponding to L. By Brouwer et al. [2], Hn(X) is a dense
near 2n-gon with three points on each line. The isomorphism class of the geometry Hn(X)
is obviously independent of the set X of size 2n + 2. We will denote by Hn any suitable
representative of this isomorphism class. The near polygon H0 consists of a unique point,
the near polygon H1 is a line of size 3 and the near polygon H2 is isomorphic to the
generalized quadrangle W (2) described in Payne and Thas [13, Section 3.1].

Let P1 and P2 be two points of Hn(X), i.e. P1 and P2 are two partitions of X in
n+ 1 subsets of size 2. Let ΓP1,P2 denote the graph with vertices the elements of X, with
two distinct vertices i and j adjacent whenever {i, j} is contained in P1 ∪ P2. Then the
distance between P1 and P2 in the near polygon Hn(X) is equal to n+ 1−C where C is
the number of connected components of ΓP1,P2 .

Suppose n ≥ 2. There exists a bijective correspondence between the subsets of size 2
of X and the maxes of Hn(X). If Y is a subset of size 2 of X, then the set of all partitions
P of X in n + 1 subsets of size 2 such that Y ∈ P is a max MY of Hn(X). We say
that MY is the max of Hn(X) corresponding to Y and that Y is the subset of size 2 of X

corresponding to MY . If M is a max of Hn(X), then M̃ ∼= Hn−1.
Suppose M1 and M2 are two distinct big maxes of Hn(X), n ≥ 2. Let {xi, yi},

i ∈ {1, 2}, be the subset of size 2 of X corresponding to Mi. If |{x1, y1} ∩ {x2, y2}| = 1,
say x1 = x2 and y1 6= y2, then M1 and M2 are disjoint and the subset of size 2 of X
corresponding to the big max RM1(M2) is equal to {y1, y2}. If {x1, y1} ∩ {x2, y2} = ∅,
then M1 ∩M2 6= ∅.

Every permutation of X determines in a natural way a permutation of the point set
of Hn(X) defining an automorphism of Hn(X), and every automorphism of Hn(X) is
obtained in this way.

2.4 The dense near 2n-gon Gn

Let n ∈ N\{0, 1}, let V be a 2n-dimensional vector space over F4 and let B = (ē1, ē2, . . . ,
ē2n) be an ordered basis of V . The set of all points 〈

∑2n
i=1Xiēi〉 of PG(V ) that satisfy

the equation
∑2n

i=1X
3
i = 0 is a nonsingular Hermitian variety H(V,B) ∼= H(2n − 1, 4)

of PG(V ). We denote the dual polar space associated with H(V,B) by DH(V,B) ∼=
DH(2n − 1, 4). The B-support Sp of a point p = 〈

∑2n
i=1Xiēi〉 of PG(V ) is the set of all

i ∈ {1, 2, . . . , 2n} for which Xi 6= 0. The number of elements of Sp is called the B-weight
of p. Let Y denote the set of all (n − 1)-dimensional subspaces of H(V,B) generated
by n points with B-weight 2 (whose B-supports are mutually disjoint). By De Bruyn

[6], Y is a subspace of DH(V,B) and Gn(V,B) := Ỹ is a dense near 2n-gon with three
points on each line. The isomorphism class of the geometry Gn(V,B) is independent of
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the 2n-dimensional vector space V and the ordered basis B of V . We will denote by Gn

any suitable representative of this isomorphism class. By [6], the generalized quadrangle
G2 is isomorphic to the generalized quadrangle Q−(5, 2) described in Payne and Thas [13,
Section 3.1]. By convention, G1 is the line with three points and G0 is the near 0-gon.

If P1 and P2 are two points of Gn(V,B), then the distance between P1 and P2 in
Gn(V,B) is equal to the distance between P1 and P2 in the dual polar space DH(V,B).

If n ≥ 3, then there exists a bijective correspondence between the points of PG(V )
with B-weight 2 and the big maxes of Gn(V,B). If p is a point of PG(V ) with B-weight
2, then the points of Gn(V,B) which, regarded as maximal singular subspaces of H(V,B),
contain p form a big max Mp of Gn(V,B). We will say that p is the point of H(2n− 1, 4)
corresponding to Mp and that Mp is the big max of Gn(V,B) corresponding to p. If M is

a big max of Gn(V,B), then M̃ ∼= Gn−1.
Now, suppose that M1 and M2 are two distinct big maxes of Gn(V,B), n ≥ 3, and

that xi, i ∈ {1, 2}, is the point with B-weight 2 of PG(V ) corresponding to Mi. We can
distinguish the following three cases.

• x1 = 〈ēi1 + αēi2〉 and x2 = 〈ēi1 + βēi2〉 for some i1, i2 ∈ {1, 2, . . . , 2n} with i1 6= i2
and some α, β ∈ F∗4 with α 6= β. Then M1 and M2 are disjoint. If γ is the unique
element in F4 \ {0, α, β} and M3 = RM1(M2), then 〈ēi1 + γēi2〉 is the point with
B-weight 2 corresponding to M3.

• x1 = 〈ēi1 + αēi2〉 and x2 = 〈ēi2 + βēi3〉 for some mutually distinct i1, i2, i3 ∈
{1, 2, . . . , 2n} and some α, β ∈ F∗4. Then M1 and M2 are disjoint. If M3 = RM1(M2),
then 〈ēi1 + αβēi3〉 is the point with B-weight 2 corresponding to M3.

• x1 = 〈ēi1 + αēi2〉 and x2 = 〈ēi3 + βēi4〉 for some mutually distinct i1, i2, i3, i4 ∈
{1, 2, . . . , 2n} and some α, β ∈ F∗4. Then M1 ∩M2 6= ∅.

If σ is a permutation of {1, 2, . . . , 2n}, if ψ is an automorphism of F4 and if λi ∈ F∗4 for
every i ∈ {1, 2, . . . , 2n}, then the unique semi-linear map of V with associated field auto-
morphism ψ that maps ēi to λi · ēσ(i) for every i ∈ {1, 2, . . . , 2n} induces an automorphism
of Gn(V,B). If n ≥ 3, then every automorphism of Gn(V,B) is obtained in this way.
(This is not true if n = 2.)

Proposition 2.1 The natural inclusion defines a full homogeneous isometric embedding
ε∗ of Gn(V,B) into DH(V,B).

Proof. We have already remarked above that the inclusion maps preserves distances. It
remains to show that every automorphism of Gn(V,B) lifts through ε∗ to an automorphism
of DH(V,B). This is obviously the case if n = 2 since both geometries then coincide.
If n ≥ 3, then the claim follows from the fact that every automorphism of Gn(V,B) is
induced by an automorphism of PG(V ) stabilizing the Hermitian variety H(V,B). �

Proposition 2.2 Only the trivial automorphism of DH(V,B) fixes each point of its sub-
geometry Gn(V,B).
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Proof. Obviously, this is the case if n = 2 since DH(V,B) and Gn(V,B) then coincide.
Suppose therefore that n ≥ 3. Suppose also that θ is an automorphism of DH(V,B)
fixing each point of Gn(V,B). Then θ is induced by an automorphism η of PG(V ).

We prove that η(〈ēi + λēj〉) = 〈ēi + λēj〉 for all i, j ∈ {1, 2, . . . , 2n} with i 6= j and all
λ ∈ F∗4. Since θ fixes each point of Gn(V,B), η fixes each (n − 1)-dimensional subspace
of PG(V ) of the form 〈ēσ(1) + λēσ(2), ēσ(3) + ēσ(4), . . . , ēσ(2n−1) + ēσ(2n)〉, where σ is some
permutation of {1, 2, . . . , 2n} satisfying σ(1) = i and σ(2) = j. Hence, η stabilizes the
intersection of all these subspaces. Since this intersection is 〈ēσ(1) + λēσ(2)〉 = 〈ēi + λēj〉,
we have η(〈ēi + λēj〉) = 〈ēi + λēj〉.

Hence, η stabilizes the line 〈ēi, ēj〉 for all i, j ∈ {1, 2, . . . , 2n} with i 6= j. If i, j, k are
distinct elements of {1, 2, . . . , 2n}, then since η stabilizes the lines 〈ēi, ēj〉 and 〈ēi, ēk〉, η
fixes the point 〈ēi〉.

So, η fixes each point of PG(V ) with B-weight 1 or 2. This implies that η is the
identity and hence that θ is the trivial automorphism of DH(V,B). �

Corollary 2.3 Let ε∗ denote the isometric embedding of Gn(V,B) into DH(V,B) induced
by the inclusion map. Then every automorphism θ of Gn(V,B) lifts through ε∗ to precisely
one automorphism of DH(V,B).

2.5 Isometric embeddings between dense near polygons

The following proposition, which was proved in Huang [12, Corollary 3.3], is often useful
for verifying whether a given embedding between two dense near polygons is isometric.

Proposition 2.4 ([12]) Let S1 = (P1,L1, I1) and S2 = (P2, L2, I2) be two dense near
polygons with respective distance functions d1(·, ·) and d2(·, ·) and respective diameters n1

and n2. Let ε be a map from P1 to P2 satisfying the following for any two points x and
y of P1: if d1(x, y) = 1, then also d2(ε(x), ε(y)) = 1. Then ε is an isometric embedding
of S1 into S2 if and only if there exist points x∗ and y∗ in S1 satisfying d1(x

∗, y∗) =
d2(ε(x

∗), ε(y∗)) = n1.

The following three propositions provide (structural) information regarding isometric em-
beddings between dense near polygons. We shall need that information later.

Proposition 2.5 Let S1 = (P1,L1, I1) and S2 = (P2,L2, I2) be two dense near polygons
and let ε be an isometric embedding of S1 into S2. Then for every nonempty convex
subspace F of S1, there exists a unique nonempty convex subspace F of S2 satisfying:
• F and F have the same diameter;
• F ∩ ε(P1) = ε(F ).

If F1 and F2 are two distinct nonempty convex subspaces of S1, then F1 and F2 are distinct.

Proof. Let δ be the diameter of F and let x, y be two points of F at maximal distance
δ from each other. Then the points ε(x) and ε(y) of S2 lie at distance δ from each other
and hence are contained in a unique convex subspace F ′ of diameter δ of S2. Note that
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if F is a convex subspace of diameter δ of S2 such that F ∩ ε(P1) = ε(F ), then F = F ′

since F contains the points ε(x) and ε(y).
Since F ′ is a convex subspace of diameter δ of S2, the set F ′′ := ε−1(ε(P1) ∩ F ′) is a

convex subspace of S1 of diameter at most δ. Since F ′′ contains the points x and y which
lie at distance δ from each other, the diameter of F ′′ equals δ and so F ′′ has to coincide
with F . So, we have F ′ ∩ ε(P1) = ε(F ).

Suppose now that F1 and F2 are two nonempty convex subspaces of S1. If F1 = F2,
then F1 = ε−1(ε(P1) ∩ F1) = ε−1(ε(P1) ∩ F2) = F2. �

Proposition 2.6 Let ε∗ : S1 → S2 be a full homogeneous isometric embedding between
two dense near polygons S1 = (P1,L1, I1) and S2 = (P2,L2, I2). Suppose ε : S1 → S2

is a full isometric embedding such that there exists an automorphism θ of S2 such that
ε∗(P1) = θ(ε(P1)). Then ε is isomorphic to ε∗.

Proof. We have ε̃∗(P1) ∼= S1, ε̃(P1) ∼= S1 and θ defines an isomorphism between ε̃(P1)

and ε̃∗(P1). Now, (ε∗)−1 ◦ θ ◦ ε is an isomorphism θ′ of S1. So, ε∗ ◦ θ′ = θ ◦ ε. Since ε∗ is
homogeneous, there exists an automorphism θ′′ of S2 such that θ′′ ◦ ε∗ = ε∗ ◦ θ′. But then
ε = θ−1 ◦ θ′′ ◦ ε∗, showing that ε is isomorphic to ε∗. �

Proposition 2.7 Let ε : S1 → S2 be an isometric embedding between two dense near
polygons S1 and S2 of the same diameter n. If M1 and M2 are two disjoint big maxes of
S1, then M1 and M2 are two disjoint maxes of S2.

Proof. Let x1 and x′1 be two points of M1 at maximal distance n − 1 from each other.
Let x2 and x′2 denote the points of M2 collinear with x1 and x′1, respectively. Then

d(x2, x
′
2) = n− 1 since the map x 7→ πM2(x) defines an isomorphism between M̃1 and M̃2.

Let L be the line of S2 spanned by the points ε(x1) and ε(x2). Since πM2(x1) = x2 and
πM2(x

′
1) = x′2, we have d(x1, x

′
2) = 1 + d(x2, x

′
2) = n and d(x2, x

′
1) = d(x2, x

′
2) + 1 = n.

Hence, d(ε(x1), ε(x
′
2)) = d(ε(x2), ε(x

′
1)) = n. So, M1 contains neither of the points ε(x2)

and ε(x′2), and M2 contains neither of the points ε(x1) and ε(x′1).
Let u be an arbitrary point of M1. As M1 is convex and πL(u) is on a shortest path

between ε(x1) ∈M1 and u ∈M1, the point πL(u) is also contained in M1. If πL(u) 6= ε(x1),
this would imply that the line L is completely contained in M1, in contradiction with the
fact that ε(x2) 6∈M1.

So, we should have that πL(u) = ε(x1) for every u ∈ M1. In a similar way one proves
that πL(u) = ε(x2) for every u ∈ M2. Since ε(x1) 6= ε(x2), this implies that M1 and M2

are disjoint. �

3 An isometric homogeneous embedding of Hn into

DW (2n− 1, 2)

We will now define an isometric embedding of Hn into DW (2n − 1, 2) for every n ∈
N \ {0, 1}. The construction is due to Brouwer et al. [2, p. 356].
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Let n ≥ 2 and let V be a (2n + 2)-dimensional vector space over F2 with basis
B = {ē1, ē2, . . . , ē2n+2}. We denote by W the set of all vectors of the form

∑2n+2
i=1 Xiēi

where X1 + X2 + · · · + X2n+2 = 0. Put ē := ē1 + ē2 + · · · + ē2n+2 and R := 〈ē〉. Clearly,
R is a subspace of W . On the quotient vector space W/R, we will now define a certain
alternating bilinear form. For any two vectors x̄ =

∑2n+2
i=1 Xiēi and ȳ =

∑2n+2
i=1 Yiēi of W ,

we put f(x̄+R, ȳ +R) :=
∑2n+2

i=1 XiYi. Then:

(1) f is well-defined, i.e. replacing x̄ by x̄+ ē and/or ȳ by ȳ+ ē does not alter the value
of f(x̄+R, ȳ +R);

(2) f is bilinear;

(3) f is alternating since f(x̄ + R, x̄ + R) =
∑2n+2

i=1 X2
i =

(∑2n+2
i=1 Xi

)2

= 0 if x̄ =∑2n+2
i=1 Xiēi ∈ W ;

(4) f is nondegenerate. Indeed, if x̄ =
∑2n+2

i=1 Xiēi ∈ W \ R, then Xi1 6= Xi2 for some
i1, i2 ∈ {1, 2, . . . , 2n+ 2} and hence f(x̄+R, ēi1 + ēi2 +R) 6= 0.

The nondegenerate alternating bilinear form f determines a symplectic polarity ζ of
PG(W/R) and we denote by W (2n − 1, 2) and DW (2n − 1, 2) the corresponding po-
lar and dual polar spaces. For every point p = {{b̄1, b̄2}, {b̄3, b̄4}, . . . , {b̄2n+1, b̄2n+2}} of
Hn := Hn(B), let ε∗(p) be the (n−1)-dimensional subspace PG(〈b̄1+ b̄2, b̄3+ b̄4, . . . , b̄2n+1+
b̄2n+2〉/R) of PG(W/R). Clearly, ε∗(p) is totally isotropic with respect to ζ and hence is
a point of DW (2n− 1, 2). It is straightforward to verify that ε∗ is injective.

Suppose L = {p1, p2, p3} is some line of Hn. Then

p1 = {{b̄1, b̄2}, . . . , {b̄2n−3, b̄2n−2}, {b̄2n−1, b̄2n}, {b̄2n+1, b̄2n+2}},
p2 = {{b̄1, b̄2}, . . . , {b̄2n−3, b̄2n−2}, {b̄2n−1, b̄2n+1}, {b̄2n, b̄2n+2}},
p3 = {{b̄1, b̄2}, . . . , {b̄2n−3, b̄2n−2}, {b̄2n−1, b̄2n+2}, {b̄2n, b̄2n+1}}

for some vectors b̄1, b̄2, . . . , b̄2n+2 of V such that {b̄1, b̄2, . . . , b̄2n+2} = {ē1, ē2, . . . , ē2n+2}.
Clearly, the points

ε∗(p1) = PG(〈b̄1 + b̄2, . . . , b̄2n−3 + b̄2n−2, b̄2n−1 + b̄2n, b̄2n+1 + b̄2n+2〉/R),

ε∗(p2) = PG(〈b̄1 + b̄2, . . . , b̄2n−3 + b̄2n−2, b̄2n−1 + b̄2n+1, b̄2n + b̄2n+2〉/R),

ε∗(p3) = PG(〈b̄1 + b̄2, . . . , b̄2n−3 + b̄2n−2, b̄2n−1 + b̄2n+2, b̄2n + b̄2n+1〉/R)

are incident with the line PG(〈b̄1 + b̄2, . . . , b̄2n−3 + b̄2n−2, b̄2n−1 + b̄2n + b̄2n+1 + b̄2n+2〉/R)
of DW (2n− 1, 2), showing that ε∗ is a full embedding.

Proposition 3.1 The embedding ε∗ is a full isometric homogeneous embedding of Hn into
DW (2n− 1, 2).
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Proof. To show that ε∗ is isometric, it suffices by Proposition 2.4 to show that there
exist opposite points p1 and p2 in Hn which are mapped by ε∗ to opposite points ε∗(p1)
and ε∗(p2) of DW (2n − 1, 2). Take p1 = {{ē1, ē2}, {ē3, ē4}, . . . , {ē2n+1, ē2n+2}} and p2 =
{{ē2, ē3}, {ē4, ē5}, . . . , {ē2n, ē2n+1}, {ē2n+2, ē1}}. Since the subspace of W generated by
〈ē1 + ē2, ē3 + ē4, . . . , ē2n+1 + ē2n+2〉 and 〈ē2 + ē3, . . . , ē2n + ē2n+1, ē2n+2 + ē1〉 equals W , the
points ε∗(p1) and ε∗(p2) are indeed opposite points of DW (2n− 1, 2).

The fact that ε∗ is homogeneous follows from the fact that every automorphism of
Hn = Hn(B) is induced by a permutation of B and that every permutation of B extends
in a unique way to an element of GL(V ) which induces a linear map of W/R leaving the
form f invariant (and hence determines an automorphism of DW (2n− 1, 2)). �

Proposition 3.2 Only the trivial automorphism of DW (2n−1, 2) fixes each point of the
image of ε∗.

Proof. Let P denote the point set of Hn. Suppose θ is an automorphism of DW (2n−1, 2)
which fixes each point of ε∗(P). Then θ is induced by an element η of GL(W/R) which
leaves the form f invariant.

We prove that η(ēi + ēj + R) = ēi + ēj + R for all i, j ∈ {1, 2, . . . , 2n + 2} with
i 6= j. Since θ fixes each point of ε∗(P), η stabilizes each n-dimensional subspace of
W/R of the form 〈ēσ(1) + ēσ(2), ēσ(3) + ēσ(4), . . . , ēσ(2n+1) + ēσ(2n+2)〉/R, where σ is some
permutation of {1, 2, . . . , 2n + 2} satisfying σ(1) = i and σ(2) = j. So, η also stabilizes
the intersection of all these subspaces. Since this intersection is equal to 〈ēi + ēj +R〉, we
have η(ēi + ēj +R) = ēi + ēj +R.

Now, since every vector of W/R can be written as a sum of vectors of the form
ēi + ēj + R, we necessarily have that η is the trivial element of GL(W/R). So, θ is the
trivial automorphism of DW (2n− 1, 2). �

The following is an immediate consequence of Proposition 3.1 and 3.2.

Corollary 3.3 Every automorphism of Hn lifts through ε∗ to precisely one automorphism
of DW (2n− 1, 2).

4 Isometric embeddings of Hn into DW (2n− 1, 2)

Let n ≥ 2, let V be a 2n-dimensional vector space over the field F2 equipped with a
nondegenerate alternating bilinear form f , and let ζ denote the symplectic polarity of
PG(V ) corresponding to f . With ζ there is associated a polar space W (2n− 1, 2) and a
dual polar space DW (2n − 1, 2). Put Hn := Hn(X) where X = {1, 2, . . . , 2n + 2}. For
every subset {i, j} of size 2 of X, let Mi,j denote the big max of Hn corresponding to
{i, j}. Recall that if i, j and k are three distinct elements of X, then RMi,j

(Mi,k) = Mj,k.
Now, suppose that ε is an isometric embedding of Hn into DW (2n− 1, 2). For every

convex subspace F of Hn, there exists by Proposition 2.5 a unique convex subspace F of
DW (2n− 1, 2) having the same diameter as F and containing ε(F ).
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Lemma 4.1 If M1 and M2 are two disjoint big maxes of Hn, then also the maxes M1

and M2 of DW (2n− 1, 2) are disjoint, and RM2
(M1) = RM2(M1).

Proof. By Proposition 2.7, the maxes M1 and M2 are disjoint. Put M3 := RM2(M1).
Since every point of M3 lies on a line joining a point of M1 with a point of M2, we
have ε(M3) ⊆ RM2

(M1). Since ε(M3) and RM2
(M1) have the same diameter, we have

M3 = RM2
(M1). �

For every big max M of Hn, let xM denote the unique point of W (2n−1, 2) corresponding
to the max M of DW (2n− 1, 2).

Lemma 4.2 (1) If M1 and M2 are two distinct big maxes of Hn which meet each other,
then M1 ∩M2 6= ∅ and hence xM1xM2 is a singular line of W (2n− 1, 2).

(2) If M1 and M2 are two disjoint big maxes of Hn and M3 = RM1(M2), then
{xM1 , xM2 , xM3} is a hyperbolic line of W (2n− 1, 2).

Proof. (1) Since ε(M1 ∩M2) ⊆ M1 ∩M2, we have M1 ∩M2 6= ∅. Hence, xM1xM2 is a
singular line of W (2n− 1, 2).

(2) By Lemma 4.1, M1 and M2 are disjoint and RM2
(M1) = M3. So, {xM1 , xM2 , xM3}

is a hyperbolic line of W (2n− 1, 2). �

Lemma 4.3 Let x be a point of Hn and let M1,M2, . . . ,Mn+1 denote the n+ 1 big maxes
of Hn containing x. Then 〈xM1 , xM2 , . . . , xMn〉 = 〈xM1 , xM2 , . . . , xMn+1〉 is the maximal
singular subspace of W (2n− 1, 2) corresponding to the point ε(x) of DW (2n− 1, 2).

Proof. Observe that ε(x) ∈Mi for every i ∈ {1, 2, . . . , n+1}. We prove that the diameter
of M1 ∩M2 ∩ · · · ∩Mj is equal to n− j for every j ∈ {1, 2, . . . , n}. Suppose this claim is
not valid and let i be the smallest value of j for which this is the case. Then i 6= 1 and
M1 ∩M2 ∩ · · · ∩Mi−1 ⊆Mi. Now, there exists a point y ∈ (M1 ∩M2 ∩ · · · ∩Mi−1) \Mi,
since there exists a partition of X in n+ 1 subsets of size 2 containing all subsets of size
2 corresponding to M1,M2, . . . ,Mi−1, but not the subset of size 2 corresponding to Mi.
Clearly, ε(y) ∈M1 ∩M2 ∩ · · · ∩Mi−1 and hence ε(y) ∈Mi, contradicting Proposition 2.5.

Since Mi∩Mj 6= ∅, xMi
xMj

is a singular line of W (2n−1, 2) for all i, j ∈ {1, 2, . . . , n+
1} with i 6= j. Hence, 〈xM1 , xM2 , . . . , xMn〉 and 〈xM1 , xM2 , . . . , xMn , xMn+1〉 are singular
subspaces of W (2n−1, 2). If α is a maximal singular subspace of W (2n−1, 2) containing
〈xM1 , xM2 , . . . , xMn〉, then α regarded as point of DW (2n − 1, 2) is contained in each of
the maxes M1,M2, . . . ,Mn. Since M1 ∩M2 ∩ · · · ∩Mn has diameter 0, ε(x) is the unique
point in M1 ∩M2 ∩ · · · ∩Mn. It follows that α = ε(x) = 〈xM1 , xM2 , . . . , xMn〉. Hence, also
ε(x) = 〈xM1 , xM2 , · · · , xMn+1〉. �

Corollary 4.4 Let x and y be two opposite points of Hn. Let Mi, i ∈ {1, 2, . . . , n + 1},
denote the n+1 big maxes of Hn containing x. Let Ni, i ∈ {1, 2, . . . , n+1}, denote the n+1
big maxes of Hn containing y. Then 〈xM1 , xM2 , . . . , xMn , xN1 , xN2 , . . . , xNn〉 = PG(V ).

Proof. The points ε(x) and ε(y) are opposite points of DW (2n−1, 2). Hence, by Lemma
4.3 〈xM1 , xM2 , . . . , xMn〉 and 〈xN1 , xN2 , . . . , xNn〉 are disjoint maximal singular subspaces
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of W (2n−1, 2). So, these maximal singular subspaces generate the whole projective space
PG(V ). �

For all i, j ∈ {1, 2, . . . , 2n + 2} with i 6= j, let xi,j denote the point of W (2n − 1, 2)
corresponding with the max Mi,j of DW (2n− 1, 2). By Lemma 4.2(2), we have

Corollary 4.5 If i, j and k are three distinct elements of {1, 2, . . . , 2n + 2}, then the
points xi,j, xj,k and xi,k form a line of PG(V ).

Lemma 4.6 We have PG(V ) = 〈x1,2, x1,3, . . . , x1,2n+1〉.

Proof. Let x and y be two opposite points of Hn. Let Mi (respectively Ni), i ∈
{1, 2, . . . , n+1}, denote the n+1 big maxes of Hn containing x (respectively y). Without
loss of generality, we may suppose that there exist a, b ∈ {1, 2, . . . , 2n + 1} such that
Mn+1 = Ma,2n+2 and Nn+1 = Mb,2n+2.

By Corollary 4.5, we have 〈x1,2, x1,3, . . . , x1,2n+1〉 = 〈xi,j | 1 ≤ i < j ≤ 2n + 1〉. By
Corollary 4.4, the subspace 〈xi,j | 1 ≤ i < j ≤ 2n+ 1〉 should coincide with PG(V ). �

Now, let {ē1,2, ē1,3, . . . , ē1,2n+1} be a basis of V such that x1,i = 〈ē1,i〉 for every i ∈
{2, 3, . . . , 2n+ 1}. We put ē1,1 equal to the zero vector of V .

Lemma 4.7 (1) For all i, j ∈ {2, 3, . . . , 2n + 1}, f(ē1,i, ē1,j) is equal to 0 if i = j and
equal to 1 otherwise.

(2) If P is the point set of Hn, then ε(P) consists of all maximal singular subspaces
of W (2n − 1, 2) of the form 〈ē1,i1 + ē1,i2 , ē1,i3 + ē1,i4 , . . . , ē1,i2n−1 + ē1,i2n〉 where
{i1, i2, . . . , i2n} is some subset of size 2n of {1, 2, . . . , 2n+ 1}.

Proof. (1) Since f is an alternating form we have f(ē1,i, ē1,i) = 0 for every i ∈
{2, 3, . . . , 2n + 1}. If i, j ∈ {2, 3, . . . , 2n + 1} with i 6= j, then M1,i and M1,j are dis-
joint since M1,i and M1,j are disjoint. Hence, f(ē1,i, ē1,j) = 1.

(2) By Corollary 4.5, xi,j = 〈ē1,i + ē1,j〉 for all i, j ∈ {1, 2, . . . , 2n+ 1}. The claim then
follows from Lemma 4.3. �

Proposition 4.8 Let P denote the point set of Hn. If ε1 and ε2 are two isometric embed-
dings of Hn into DW (2n− 1, 2), then there exists an automorphism θ of DW (2n− 1, 2)
such that θ(ε1(P)) = ε2(P).

Proof. By Lemma 4.7, there exists for every k ∈ {1, 2} a basis {ēk1,2, ēk1,3, . . . , ēk1,2n+1} of
V for which the following hold:

(1) for all i, j ∈ {2, 3, . . . , 2n + 1}, f(ēk1,i, ē
k
1,j) is equal to 0 of i = j and equal to 1

otherwise;

(2) εk(P) consists of all maximal singular subspaces of W (2n− 1, 2) of the form 〈ēk1,i1 +
ēk1,i2 , ē

k
1,i3

+ ēk1,i4 , . . . , ē
k
1,i2n−1

+ ēk1,i2n
〉 where {i1, i2, . . . , i2n} is some subset of size 2n

of {1, 2 . . . , 2n+ 1}.
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Here, ē11,1 and ē21,1 denote the null vector. Now, the linear automorphism of V determined
by ē11,i 7→ ē21,i, ∀i ∈ {2, 3, . . . , 2n + 1}, leaves the form f invariant and hence determines
an automorphism θ of DW (2n− 1, 2). Clearly, θ(ε1(P)) = ε2(P). �

The following corollary, which is precisely Theorem 1.1(1), is a consequence of Propositions
2.6, 3.1, 4.8 and Corollary 3.3.

Corollary 4.9 Up to isomorphism, there is a unique isometric embedding of Hn into
DW (2n− 1, 2). Every isometric embedding ε of Hn into DW (2n− 1, 2) is homogeneous.
More precisely, every automorphism of Hn lifts through ε to precisely 1 automorphism of
DW (2n− 1, 2).

5 Isometric embeddings of Gn into DH(2n− 1, 4)

Let n ≥ 3. Let V be a 2n-dimensional vector space over F4 and let B∗ = (ē∗1, ē
∗
2, . . . , ē

∗
2n−1,

ē∗2n) be a given ordered basis of V . Put Gn := Gn(V,B∗). For every point p of PG(V ) with
B∗-weight 2, let Mp denote the big max of Gn corresponding to p. If i, j ∈ {1, 2, . . . , 2n}
with i 6= j, let Mi,j = {Mp | p = 〈ē∗i + aē∗j〉 for some a ∈ F∗4}. The following hold:

(1) For every big max M of Gn, there exists precisely one subset {i, j} of size 2 of
{1, 2, . . . , 2n} such that M ∈Mi,j.

(2) Let {i, j} ∈ {1, 2, . . . , 2n} with i 6= j. If M1, M2 and M3 are the three elements of
Mi,j, then M1, M2 and M3 are mutually disjoint and M3 = RM1(M2).

(3) Let M and M ′ be two big maxes of Gn and let {i, j} and {i′, j′} be the unique subsets
of size 2 of {1, 2, . . . , 2n} such that M ∈Mi,j and M ′ ∈Mi′,j′ . If {i, j}∩{i′, j′} = ∅,
then M ∩M ′ 6= ∅. If |{i, j} ∩ {i′, j′}| = 1, say j = i′ and i 6= j′, then M ∩M ′ = ∅
and RM(M ′) = RM ′(M) ∈Mi,j′ .

(4) Let i, j and k be three distinct elements of {1, 2, . . . , 2n}. Then any two distinct
elements M1 and M2 ofMi,j ∪Mi,k∪Mj,k are disjoint. Moreover, also RM1(M2) =
RM2(M1) belongs to Mi,j ∪Mi,k ∪Mj,k. The point-line geometry with points the
elements of Mi,j ∪Mi,k ∪Mj,k and with lines all the subsets {M1,M2,RM1(M2)},
where M1 and M2 are two distinct elements ofMi,j ∪Mi,k ∪Mj,k is isomorphic to
the affine plane of order 3.

Now, suppose that ε is an isometric embedding of Gn into DH(2n−1, 4) = DH(V,B∗). If
ε is the inclusion map, then ε coincides with the natural embedding ε∗ of Gn = Gn(V,B∗)
into DH(2n − 1, 4) = DH(V,B∗). Let H(2n − 1, 4) denote the nonsingular Hermitian
variety H(V,B∗) of PG(V ). For every max M of Gn, let M denote the unique max of
DH(2n− 1, 4) containing ε(M).

Lemma 5.1 If M1 and M2 are two disjoint big maxes of Gn, then also the maxes M1

and M2 of DH(2n− 1, 4) are disjoint. Moreover, RM2
(M1) = RM2(M1).
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Proof. By Proposition 2.7, the maxes M1 and M2 are disjoint. Put M3 := RM2(M1).
Since through every point of M3, there is a line joining a point of M1 with a point of
M2, we have ε(M3) ⊆ RM2

(M1). Since ε(M3) and RM2
(M1) have the same diameter, we

necessarily have M3 = RM2
(M1). �

Let {i, j} be a subset of size 2 of {1, 2, . . . , 2n}. IfMi,j = {M1,M2,M3}, then by Lemma
5.1, M1, M2 and M3 are mutually disjoint maxes of DH(2n − 1, 4) satisfying M3 =
RM2

(M1). So, if xi, i ∈ {1, 2, 3}, denotes the point of H(2n− 1, 4) corresponding to Mi,
then there exists a hyperbolic line Li,j of H(2n − 1, 4) such that Li,j ∩ H(2n − 1, 4) =
{x1, x2, x3}.

Lemma 5.2 Let i, j and k be three distinct elements of {1, 2, . . . , 2n}. Then Li,j inter-
sects Li,k in a point of PG(V ) \H(2n− 1, 4).

Proof. PutMi,j = {M1,M2,M3},Mi,k = {M4,M5,M6} andMj,k = {M7,M8,M9}. Let
xi, i ∈ {1, 2, . . . , 9}, denote the point of H(2n− 1, 4) corresponding to Mi. Recall that an
affine plane can be defined on the setMi,j∪Mi,k∪Mj,k. This affine plane is generated by
the points M1, M2 and M4. Hence, there exists a plane α of PG(V ) containing the points
x1, x2, . . . , x9. Since Li,j ∩H(2n − 1, 4) = {x1, x2, x3}, Li,k ∩H(2n − 1, 4) = {x4, x5, x6}
and Li,j ∪ Li,k ⊆ α, Li,j ∩ Li,k is a singleton not contained in H(2n− 1, 4). �

Lemma 5.3 For every i ∈ {1, 2, . . . , 2n}, there exists a unique point x∗i ∈ PG(V )\H(2n−
1, 4) such that x∗i ∈ Li,j for every j ∈ {1, 2, . . . , 2n} \ {i}.

Proof. In view of Lemma 5.2, we need to show that Li,j1 ∩ Li,j2 = Li,j1 ∩ Li,j3 for any
three distinct elements j1, j2 and j3 of {1, 2, . . . , 2n} \ {i}.

Suppose the contrary. Then u1 6= u2 6= u3 6= u1, where u1, u2 and u3 are the unique
elements in Li,j1∩Li,j2 , Li,j1∩Li,j3 and Li,j2∩Li,j3 , respectively. Notice that Li,j1 \H(2n−
1, 4) = {u1, u2}, Li,j2 \H(2n− 1, 4) = {u1, u3} and Li,j3 \H(2n− 1, 4) = {u2, u3}. Now,
take a j4 ∈ {1, 2, . . . , 2n} \ {i, j1, j2, j3}. Since Li,j4 intersects each of the lines Li,j1 , Li,j2 ,
Li,j3 in a point outside H(2n − 1, 4), Li,j4 contains at least two of the points u1, u2, u3.
So, Li,j4 must coincide with one of the lines Li,j1 , Li,j2 , Li,j3 , a contradiction, since Mi,j4

is distinct from each of the sets Mi,j1 , Mi,j2 and Mi,j3 . �

Lemma 5.4 If i1, i2 ∈ {1, 2, . . . , 2n} with i1 6= i2, then x∗i1 6= x∗i2.

Proof. Let i3 be an element of {1, 2, . . . , 2n} distinct from i1 and i2. Put Mi1,i2 =
{M1,M2,M3}, Mi1,i3 = {M4,M5,M6} and Mi2,i3 = {M7,M8,M9}. Let xi, i ∈ {1, 2, . . . ,
9}, denote the point of H(2n−1, 4) corresponding to Mi. Notice that the points x1, x2, x3

are contained in a line U containing x∗i1 and x∗i2 . Similarly, the points x4, x5, x6 are
contained in a line U ′ containing x∗i1 and the points x7, x8, x9 are on a line U ′′ containing
x∗i2 . As indicated in the proof of Lemma 5.2, the points x1, x2, . . . , x9 are contained in a
plane α of PG(V ). Since M1,M2, . . . ,M9 are mutually disjoint, the points x1, x2, . . . , x9

are mutually noncollinear on H(2n − 1, 4) by Lemma 5.1. Hence, α ∩ H(2n − 1, 4) is
a unital of α which is equal to {x1, x2, . . . , x9}. Now, every point of α \ H(2n − 1, 4)
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is contained in precisely 2 lines which contain three points of α ∩ H(2n − 1, 4). Since
x∗i1 ∈ α \ H(2n − 1, 4) is contained in the lines U and U ′, x∗i1 6∈ U

′′. Since x∗i2 ∈ U
′′, we

have x∗i1 6= x∗i2 . �

The following is an immediate corollary of Lemmas 5.3 and 5.4.

Corollary 5.5 For all i, j ∈ {1, 2, . . . , 2n} with i 6= j, Li,j = x∗ix
∗
j .

Lemma 5.6 Let u be a point of Gn and let M1,M2, . . . ,Mn denote the n big maxes of Gn

containing u. Let xi, i ∈ {1, 2, . . . , n}, denote the point of H(2n− 1, 4) corresponding to
Mi. Then 〈x1, x2, . . . , xn〉 is the maximal singular subspace of H(2n− 1, 4) corresponding
to the point ε(u) of DH(2n− 1, 4).

Proof. Observe that ε(u) ∈ Mi for every i ∈ {1, 2, . . . , n}. We prove that the diameter
of M1 ∩M2 ∩ · · · ∩Mj is equal to n − j for every j ∈ {1, 2, . . . , n}. Suppose that this
claim is not valid and let i be the smallest value of j for which this is the case. Then
i 6= 1 and M1 ∩M2 ∩ · · · ∩Mi−1 ⊆ Mi. Now, there exists a point v ∈ (M1 ∩M2 ∩ · · · ∩
Mi−1) \Mi. Indeed, if yj, j ∈ {1, 2, . . . , n}, denotes the point of PG(V ) with B∗-weight
2 corresponding to Mj, then there exists a maximal singular subspace of H(2n − 1, 4)
containing y1, y2, . . . , yi−1, but not yi. For any choice of v ∈ (M1 ∩M2 ∩ · · · ∩Mi−1) \Mi,
we have ε(v) ∈M1 ∩M2 ∩ · · · ∩Mi−1 and hence ε(v) ∈Mi, contradicting Proposition 2.5.

So we know that M1 ∩M2 ∩ · · · ∩Mn consists of a unique point. Since ε(u) ∈ Mi

for every i ∈ {1, 2, . . . , n}, we have M1 ∩ M2 ∩ · · · ∩ Mn = {ε(u)}. Since ε(u) ∈ Mi,
i ∈ {1, 2, . . . , n}, ε(u) can be regarded as a maximal singular subspace of H(2n − 1, 4)
containing the point xi. If α is a maximal singular subspace of H(2n − 1, 4) containing
〈x1, x2, . . . , xn〉, then α regarded as point of DH(2n − 1, 4) is contained in each of the
maxes M1,M2, . . . ,Mn. It follows that α = ε(u) = 〈x1, x2, . . . , xn〉. �

Lemma 5.7 The points x∗1, x
∗
2, . . . , x

∗
2n generate PG(V ).

Proof. Let u be an arbitrary point of Gn and let M1,M2, . . . ,Mn denote the n big
maxes of Gn containing u. For every i ∈ {1, 2, . . . , n}, let M ′

i be an arbitrary element
of the set Mj,k \ {Mi}, where {j, k} is the unique subset of size 2 of {1, 2, . . . , 2n} such
that Mi ∈ Mj,k. If yi and y′i are the points of PG(V ) with B∗-weight 2 corresponding
to Mi and M ′

i , respectively, then yi and y′i are distinct and have the same B∗-supports.
Hence, the n maxes M ′

1,M
′
2, . . . ,M

′
n intersect in a unique point u′ = 〈y′1, y′2, . . . , y′n〉 of

Gn. This point u′ is opposite to u = 〈y1, y2, . . . , yn〉. Hence, also the points ε(u) and ε(u′)
of DH(2n− 1, 4) are opposite.

For every i ∈ {1, 2, . . . , 2n}, let xi and x′i denote the points of H(2n−1, 4) correspond-
ing to Mi and M ′

i , respectively. Notice that if Mi ∈ Mj,k, then 〈x∗j , x∗k〉 = 〈xi, x′i〉. Also,
if Mi1 ∈Mj1,k1 and Mi2 ∈Mj2,k2 with i1 6= i2, then {j1, k1}∩{j2, k2} = ∅. It follows that
〈x1, x

′
1, x2, x

′
2, . . . , xn, x

′
n〉 = 〈x∗1, x∗2, . . . , x∗2n〉.

By Lemma 5.6, ε(u) and ε(u′) considered as maximal subspaces of H(2n − 1, 4) are
respectively equal to 〈x1, x2, . . . , xn〉 and 〈x′1, x′2, . . . , x′n〉. Since ε(u) and ε(u′) are opposite

15



points of DH(2n−1, 4), we have PG(V ) = 〈ε(u), ε(u′)〉 = 〈x1, x2, . . . , xn, x
′
1, x
′
2, . . . , x

′
n〉 =

〈x∗1, x∗2, . . . , x∗2n〉. �

Now, choose an ordered basis B = (ē1, ē2, . . . , ē2n) in V such that x∗i = 〈ēi〉 for every
i ∈ {1, 2, . . . , 2n}.

Lemma 5.8 (1) No point of PG(V ) with B-weight 1 belongs to H(2n− 1, 4).
(2) The points of PG(V ) with B-weight 2 are precisely the points of H(2n − 1, 4)

corresponding to the maxes M of DH(2n− 1, 4), where M is a max of Gn.
(3) With respect to the reference system B, the Hermitian variety H(2n − 1, 4) has

equation X3
1 +X3

2 + . . .+X3
2n = 0.

Proof. (1) By Lemma 5.3, every point of PG(V ) with B-weight 1 does not belong to
H(2n− 1, 4).

(2) Let p be an arbitrary point of PG(V ) with B-weight 2. Then there exist i, j ∈
{1, 2, . . . , 2n} with i 6= j such that p ∈ x∗ix∗j \ {x∗i , x∗j}. So, p ∈ Li,j and p is the point of

H(2n− 1, 4) corresponding to a M , where M is one of the three maxes of Mi,j.
Conversely, let M be a big max of Gn and let {i, j} be the unique subset of size 2 such

that M ∈Mi,j. If p is the point of H(2n−1, 4) corresponding to M , then p ∈ Li,j = x∗ix
∗
j

and hence p ∈ x∗ix∗j \ {x∗i , x∗j}. So, p has B-weight 2.
(3) Let

∑
1≤i,j≤2n aijXiX

2
j = 0 be an equation of H(2n − 1, 4) with respect to the

reference system (ē1, ē2, . . . , ē2n). Without loss of generality, we may suppose that a2
ij = aji

for all i, j ∈ {1, 2, . . . , 2n}. Since no point of weight 1 belongs toH(2n−1, 4), we have aii 6=
0 for all i ∈ {1, 2, . . . , 2n}. Hence, aii = 1 since a2

ii = aii. Since 〈ēi + kēj〉 ∈ H(2n− 1, 4),
we have aii + ajj + (kaji) + (kaji)

2 = 0 for all k ∈ F∗4 and all i, j ∈ {1, 2, . . . , 2n} with
i 6= j. This implies that aij = 0 if i 6= j. �

Lemma 5.9 Let P denote the point set of Gn. The points of ε(P) are precisely the
maximal singular subspaces of H(2n−1, 4) which are generated by n points with B-weight
2 whose B-supports are mutually disjoint.

Proof. Let p be an arbitrary point of Gn. Then p is contained in precisely n big
maxes M1,M2, . . . ,Mn of Gn. Let xi, i ∈ {1, 2, . . . , n}, denote the point of B-weight 2 of
H(2n− 1, 4) corresponding to Mi. Since Mi and Mj meet each other, the B-supports of
xi and xj are disjoint for all i, j ∈ {1, 2, . . . , 2n} with i 6= j. Hence, 〈x1, x2, . . . , xn〉 is a
maximal singular subspace of H(2n−1, 4). By Lemma 5.6, 〈x1, x2, . . . , xn〉 is the maximal
singular subspace of H(2n−1, 4) corresponding to the point ε(p) of DH(2n−1, 4). Hence,
every point of ε(P) is a maximal singular subspace of H(2n− 1, 4) that is generated by n
points with B-weight 2 whose B-supports are mutually disjoint. The claim now follows
from the fact that there are as many points in Gn as there are maximal singular subspaces
of H(2n − 1, 4) which are generated by n points with B-weight 2 whose B-supports are
mutually disjoint. �

Proposition 5.10 The embedding ε is isomorphic to ε∗.
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Proof. Recall that ε∗ is a full isometric homogeneous embedding of Gn into DH(2n−1, 4).
So, in view of Proposition 2.6, it suffices to prove that there exists an automorphism θ
of DH(2n − 1, 4) mapping ε∗(P) to ε(P). But such an automorphism is induced by the
unique linear map of V that maps the ordered basis B∗ to the ordered basis B. �

Theorem 1.1(2) is an immediate consequence of Corollary 2.3 and Proposition 5.10. Ob-
serve also that Theorem 1.1(2) is valid for n = 2 since G2

∼= DH(3, 2) ∼= Q−(5, 2).
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