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Asymptotic ideals (ideals in the ring of Colombeau
generalized constants with continuous
parametrization)

A. Khelif* D. Scarpalezos! H. Vernaeve?

Abstract

We study the asymptotics at zero of continuous functions on (0, 1] by means
of their asymptotic ideals, i.e., ideals in the ring of continuous functions on
(0,1] satisfying a polynomial growth condition at 0 modulo rapidly decreasing
functions at 0. As our main result, we characterize maximal and prime ideals in
terms of maximal and prime filters.

1 Introduction

In this paper, we study the asymptotic ideals of continuous functions (0, 1] — K (where
K is one of the fields R or C), i.e., ideals in the ring of continuous functions ¢ satisfying
the following growth condition (usually called moderateness)

(AN € N)(3go > 0)(Ve < g9) |o(e)| < eV
modulo the ideal of continuous functions ¢ satisfying
(Vn € N)(Jeg > 0)(Ve < g¢) |p(e)] < e"

(usually called negligibility). Apart from the obvious interest of such a study to asymp-
totic analysis, such equivalence classes of functions also naturally arise in generalized
function theory as the ring of generalized constants K., of the algebra of Colombeau
generalized functions (see §2I).

The ring Kcnt of generalized constants with continuous dependence on the parameter
has been introduced and studied in [5], where it is also shown that this ring is iso-
morphic to the ring of generalized constants with smooth dependence. In fact, the
study of the ring K.,; amounts to the study of the asymptotics at zero of moderate
continuous functions on (0, 1].

In generalized function theory, the choice of continuous dependence comes from the ob-
servation that when one embeds distributions in an algebra of Colombeau generalized
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functions and when one solves nonlinear problems, one always encounters generalized
functions represented by continuous (even smooth) nets of smooth functions.

The algebraic properties of the ring Kcm are different from those of the ring K of
generalized constants without continuous dependence on the parameter, and many
tools used in the study of K cannot be used. Most strikingly, this is manifested by
the fact that K¢, does not have any nontrivial idempotent elements, in sharp contrast
with the ring K (which is a so-called exchange ring [13]). Thus the main tools used in
[1] and [13] to study K cannot be used.

In this paper, we study prime and maximal ideals by attaching a filter of closed subsets
of (0, 1] to each ideal. The filter is analogous to the filter {S C (0, 1] : egc € I'} attached
to an ideal I <K ([13, §6]), and thus allows us to overcome the difficulty of the lack
of idempotents. In this way, we obtain a classification of maximal and minimal prime
ideals in terms of maximal and prime filters. B

The methods used in this paper are inspired by the study of the ideals in K [I} [13]
and by the study of maximal ideals of rings of continuous functions by Gillman and
Jerison [7]. Compared to [7], the main novelty is the adaptation to the asymptotic
nature of the ring ]Kcnt.

2 Preliminaries

The ring K, with K = R or K = C (the field of real, resp. complex numbers), is defined
as My /N, where

My = {(z.). e KO (AN € N)(Feg > 0)(Ve < &) |z < e}
Nk = {(z2). e KO . (vn € N)(Teg > 0)(Ve < &) |z.| < ™).

We denote by [z.] € K the element with representative (z.). and we denote p := [e].
K is a complete topological ring with the so-called sharp topology, which can be defined
as follows. Let z = [z.] € K. Let

v(x) :=sup{a € R: (g > 0)(Ve < gq) |z| < %}

Then the ultrametric d(z,y) := e *@¥ induces a topology on K which is called the
sharp topology [12].

Denoting by C((0,1]) (resp. C*((0,1]) the set of continuous (resp. smooth) maps
in KO the ring Koy = (Mg N C((0,1]))/(Nkx N C((0,1])) and Ky := (Mg N
C>((0,1]))/(Nx N €=2((0,1])). Clearly, Kgn € Kene € K. In [5], it is shown that
I/Eicnt - ]Ksm

We denote I < Kcm for a proper ideal I of Kcm (e, I # Kcm)

K is an exchange ring [13], i.e., for each a € K there exists an idempotent e € K such
that a + e is invertible. Unhke K Kcm is not an exchange ring [5, Lemma 4.3].

Like JK, Kcnt is a Gelfand ring [5, Lemma 4.5], i.e., every prime ideal is contained in a
unique maximal ideal.

Like K, K.y is a Bezout ring [B, Prop. 4.26], i.e., every finitely generated ideal is
principal.

Like R, Ryt is an l-ring (or lattice-ordered ring) [5, Prop. 4.13].
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Let <Ky and 2 € I. Then |z| € I [5, Lemma 4.24].

Let I <Rey. Then I is an l-ideal (or absolutely (order) convex), i.e., if z € I, 2’ € Rep
and |2'| < |z|, then 2’ € I. [5, Prop. 4.25].

Let us point out explicitly the corollary that then also for I < (Ecnt, zel, 2 € @Cm,
2’| < |2| implies that 2" € I. Indeed, z € I implies |z| € I N Rey [, Lemma 4. 24]. As
INR, Q]cht, I ﬂcht is an l-ideal in R,,;. Hence |R2'| < |z| implies that Rz’ € [ MRy
Similarly, Sz’ € I N cht Thus 2 = '+ € 1.

Hence the bijective correspondence of ideals in Kcnt takes the same form as for ideals in
K ([13]) the map I < Ccm = ITNRey = {?Rz z €I} QRCm has as an inverse the map
J < cht — (J) = {2z € Copt : |2| € J} < Ceny (where (J) is also the ideal generated by
J in Ccnt) It is an inclusion- preservmg bijection between the lattice of ideals of (Ccnt
and the lattice of ideals of cht. In particular, arbitrary sums and intersections are
preserved. One easily checks that the isomorphism also preserves products of ideals,
principal, pseudoprime and irreducible ideals.

Let R be a commutative ring with 1. An ideal I <9 R is pure if [4, Prop. 7.2]
(Ve e IN(3y € I)(z = zy).

We denote by m(I) the pure part of I < R, i.e., the largest pure ideal contained in [
[4, Prop. 7.8]. By definition, [ is pure iff I = m(I). If R is a Gelfand ring, then [4]
§8.2-3]

m(l)={rxeR:Fyel)(x=uy)}
An ideal I < R is idempotent if 12 = I.
We denote the radical of I QR by VI ={z € R: (3n € N)z" € [} = ﬂpch P (e.g.,
see [7, 0.18]). ’
I <R is radical (or semiprime) if I = /T, or equivalently, if (Vo € R)(2> € [ = x € I).
I < R is pseudoprime if for each a,b € R, ab= 0 impliesa € I or b € I.
I <R is irreducible (or meet-irreducible) if for each J, K <R, [ = JN K implies [ = J
or I = K [10, §6].

3 Characteristic sets

Definition 3.1. A set S C (0,1] such that 0 € S (closure in R) is called a charac-
teristic set [J]. We denote the set of all characteristic sets by S.

Let S, T € S. We say that T is an extension of S if S C T° (closure and interior
in (0,1]) and denote this by S < T (or equivalently, T = S). It is straightforward to
check that < is antireflexive and transitive on S\ {(0, 1]}, and hence defines a partial
order on S\ {(0,1]}. Notice that (0,1] < (0, 1], which will turn out to be convenient.

Lemma 3.2. Let S, T € S.

1. If S < T, there exists U € § such that S < U < T.
In particular, < is a dense order on S\ {(0,1]}.

2.8 <Tiff T® < S°.



Proof. 1. Let S < T. By Urysohn’s lemma, there exists ¢ € C((0,1]) such that
0<¢ <1 ¢g =0and ¢pc = 1. Let U := {e € (0,1] : ¢(¢) < 1/2}. Then
S<U=T.

2. SCT° « (T°) = (T°)° C (5)" = (5°)°. O

Definition 3.3. (¢f. [3, 4.16]) Let x € Ken and S € S. Then x5 =0 of
(Vn e N)(39 > 0)(Ve € SN (0,0)) (x| < ™).

where (xc). is any representative of x. We similarly write x5 = y|s for (z —y) 5 =0,
zis =1 for (x —1)=0, ...
We say that x| is invertible if there exists y € Rcm such that (:L’y)|s =1.

Lemma 3.4. Let S € S.
1. Letx € Kcm. Then the following are equivalent:
(a) x|s is invertible (in Kent )
(b) w5 is invertible in K
(c) x5 is bounded away from zero, i.e., for some representative (z.). of x,

(In € N)(36 > 0)(Ve € S N (0,8))(|a] > ™).

(the statement then automatically holds for any representative (z:). of x).

(d) for each characteristic set T C S, xir # 0.
2. {x € Kcm D x|g 1S invertible} is open.
3. x5 = 0 iff for each characteristic set T' C S, |1 is not invertible.

Proof. 1. (b) < (¢) < (d): by [13, Lemma 4.1].

(a) = (b): trivial.

(c) = (a): let T :={e € (0,1] : |z| > €™/2}. As (). is continuous, SN (0,9) < T.
By Urysohn’s lemma, there exists ¢ € C((0,1]) such that 0 < ¢ < 1, ¢jsn0,6) = 1 and
Gre = 0. Let y. := ¢(e) /., if e € T and y. := 0, if e € T°. Then |y.| < 27", (y.)- €
is continuous and z.y. = 1 for each ¢ € SN (0,d). Hence (y.). is a representative of
some y € Kcm with (xy)|s =1.

2. Let g be invertible. Let n € N as in part 1(c). Then ys is invertible for each
y € Kene with |z — y| < p"/2 (again by part 1(c)).

3. By [13, Lemma 4.1], since K, C K. O

Proposition 3.5. Let x € ]Kcnt and S € S.
1. If 115 =0, then xjp = 0 for some T = S.

2. If x5 is invertible, then x| is invertible for some T = S.



Proof. 1. Let (:).c(0,1) be a (continuous) representative of x. Then for each n € N,
there exist d§,, > 0 (w.l.o.g. strictly decreasing and tending to 0) such that |z.| < "
for each ¢ € S, ¢ < 0,,. Then let T := |J,,c(On+2,0n) N {e € (0,1] : |z.| < 2¢"}. Then
also 7 = 0. We show that S < 7. Let ¢ € S. Then ¢ € (d,42,0,) for some n. By
continuity, also |z.| < " for each € € S, ¢ < §,. Hence ¢ belongs to the open set
(Ont2,0,) N{e € (0,1] : |z| <2e™} CT. Thus e € T°.

2. Let n € Nand 6 > 0 as in lemma B4l1(c). Let T := {e € (0,1] : |z.| > &"/2} U
(6/2,1). As (x.). is continuous, S < T. By lemma B.4l1(c), x| is invertible. O

Lemma 3.6. Let a,b € Kcm and S € §. If (ab)‘s = 0, then there exist closed T, U
with S € T°UU® such that ajr = 0 and by = 0.

Proof. As a,b € ]K, there exists V' C S such that ay = 0 and bs\yv = 0 [13]. As

a,b € Kepg, there exist (w.l.o.g. closed) T', U with V' < T', S\'V < U such that ajp =0
and by = 0 by Prop. B3 O]

4 Asymptotic filters

In [7], to any ideal I < C(X) (with X a topological space), a filter is associated
consisting of the zero-sets of all f € I and conversely, to a filter F of zero-sets, an
ideal I is associated. Taking into account that there is no largest zero-set for x € Ky,
we proceed as follows:

Definition 4.1. A filter of closed subsets of (0,1] is a family F of (relatively) closed
subsets of (0, 1] such that

1. 0¢F
2. ifS,T € F, then SNT € F
3. if Se€F, T C(0,1] is closed and S C T, then T € F.

A closed characteristic subset of (0,1] is called an asymptotic subset. We denote
the set of all asymptotic subsets by A.

An asymptotic filter or a-filter is a filter of closed subsets of (0,1] that contains
(0, 6] for each § > 0. Notice that this implies that F C A.

We define as follows a topology on A. Denoting open intervals corresponding to < by

(S, T)x:={Uec A:S<U=<T},

the extension topology is the topology on A with base {(S,T)< : S,T C (0,1]}. We
will call <-open, <-closed, ...sets that are open, closed, ... for this topology. Notice
that {(0,1]} is <-open, which will turn out to be convenient.

Remark 4.2. A filter is called free (or non-principal) if (\g. S = . We can alterna-
tively define an a-filter as a free filter of closed subsets of (0,1]. For, if F is a filter
of closed subsets of (0,1] and (0,d] ¢ F for some § > 0, then S N[J,1] # 0 for each
S € F. By compactness of [4, 1], it would then follow that (g S N [0, 1] # 0.



Definition 4.3. Let I <\ Koy Then
F(I):={S € (0,1] closed : (3x € I)(x|ge is invertible)}

(here it is understood that s is trivially invertible if 0 ¢ S ).
Let F be an a-filter on (0,1]. Then

I(F) = {2 € Koy : (35 € F) (w5 = 0)}.
Lemma 4.4. For I < Kcnt,
F(I)={5C(0,1] closed : (Fx € I)(xsc = 1)}.

Proof. If x € I and xs- is invertible, then there exists y € ]Kcnt such that (xy)wc =1,
and xy € I.

Proposition 4.5. Let I <\ Koy and F an a-filter on (0, 1].
F(I) is an a-filter on (0, 1].
I(F) < Ko
FU(F)) <

4. I(F(I) <.

Proof. 1. Since a proper ideal does not contain invertible elements, ) ¢ F(I).

If S,T € F(I), then there exist ,y € I such that z|ge and yjr. are invertible. Hence
also |z|> + |y|> € I and (|z|> + \y\Q)‘ScUTC is invertible, so also SNT € F(I).

If Se F(I), T C(0,1] is closed and S C T, then clearly T' € F(I).

If § > 0, then 0 ¢ (0, ], hence x| g0 is (trivially) invertible for each x € Kent.

2. Ifz,y € I(F), then 715 = 0 and y;7 = 0 for some S,T" € F. Then also x + y gy = 0

and SNT € F, 50 x4y € I(F). For z € Kuy, also xz)g=0,s0 xz € I(F). 1 ¢ I(F),
since 1jg # 0 for each S € S.

3. Let S € F(I(F)). Then there exists x € I(F) such that xse = 1. So there exists
T € F such that zp = 0. Then T'N (0,6] C S for some § > 0. For otherwise, one
constructs V. C T'N ¢ with 0 € V such that x|,y = 0, contradicting xy, = 1. Thus
SeF.

4. Let x € I(F(I)). Then there exists S € F(I) such that x;g = 0. So there exists
y € I such that yjgc = 1. Asx € Kent, |2] < p~ for some N € N. Then |z] < p~|y|.

As p~Ny € I and ideals in K., are absolutely order convex [5, Prop. 4.25], z € I. [

Proposition 4.6. Let F be an a-filter on (0,1]. Then
Fo={SeA: (3T <8)(T e F)} (F° denotes the <-interior).

2. F° is an a-filter.



Proof. 1. C: let X C F be <-open. If S € X, then S € (T,U)s C X, for some
T,U C (0,1]. W.log., T is closed. We first show that there exists V' < S with V € A.
Otherwise, T' ¢ S, i.e., TN (0,0] = 0 for some 6 > 0. As S € S, we can construct
Wy, Wy C S with Wy, Wy € Aand Wy N W, = 0. Then W,; U [§/2,1] € (T,U)x C F.
Hence also ) = W, N Wy N (0,9/3] € F, a contradiction.

Since < is a dense order, T' < W < S for some closed W. Hence also T' < VUW < S,
and VUW € A, Thus VUW € (T\U)x C X C F. Hence X C {S e A: (3T <
SWT € F)}.

2:{SeA:(IT <S)(T e F)} CFandis <-open: if T < S with T" € F, then also
Se(T,(0,1)xC{SeA: (3T <S)(TeF)}.

2. As FCPC F, 0 ¢ Fe.

U <SS, VTwithU,V éeF, thenalsoUNV <SNT withUNV e F.

The other defining properties of an a-filter are immediately checked using part 1. [

Theorem 4.7.
1. For each a-filter F on (0,1], F(I(F)) = F°.
2.{F(): I« Kcm} is the set of <-open a-filters on (0, 1].

Proof. First, let I < }Kcm. We show that F(I) is <-open:

Let S € F(I). Then there exists x € I such that z|g. is invertible. By proposition 3.3
there exists T = S°¢ such that zp is invertible. W.l.og. T"is open. Then T¢ € F(I)
and 7¢ < S.

In particular, F(I(F)) C F is <-open, and hence F(I(F)) C F°.

Conversely, we show that F° C F(I(F)):

Let S € F°. Then there exists 7" < .S such that 7" € F. By Urysohn’s lemma, there
exists © € Ky such that zp = 0 and xge = 1. Hence x € I(F) and S € F(I(F)).
Finally, if an a-filter F is <-open, then F = F° = F(I(F)), hence F = F(I) for some
I <Ky O

Theorem 4.8.
1. For each I QA Key, I(F(I)) = m(I).
2. {I(F): F is an a-filter on (0,1]} is the set of (proper) pure ideals in Kep.

Proof. First, let F be an a-filter on (0, 1]. We show that I(F) is pure:

Let € I(F). Then there exists S € F such that xg = 0. By proposition 3.3
xp = 0 for some T' = S. By Urysohn’s lemma, there exists y € Koy such that ys =0,
yire = 1. Then (zy),; = 0 and (zy),pc = @|7e. Hence x = zy and y € I(F).

In particular, I(F(I)) C I is pure for each I <t Key, and hence I(F(1)) C m(I).
Conversely, we show that m(I) C I(F(I)) for each I <1 Kep:

Let x € m([), i.e., there exists y € I such that x = zy. As x(1—y) = 0, there exist (by
lemma [3.0)) closed S, T C (0,1] with SUT = (0, 1] such that zs = 0 and (1 — y); = 0.
Hence yjgc = 1,50 S € F(I), and x € I(F(I)).

Finally, if I <\ Ky is pure, then I = m(I) = I(F(I)), hence I = I(F) for some a-filter
F on (0, 1]. O



5 Closed ideals and filters

We will denote I(F) := I(F) (closure in the sharp topology) and F(I) := F(I)
(<-closure).

Proposition 5.1. Let F be an a-filter on (0,1]. Then
1. F={Se€A: (VT = S, T closed)(T € F)}.
2. F is an a-filter.

Proof. 1. Call F*:={S e A: (VT > S, T closed)(T € F)}.

C: FC F*and F*is <-closed: if S € A\ F*, then there exists a closed T' > S with
T ¢ F, hence also (0, 7)< C A\ F*.

D: let X DO F be <-closed. Let S € A\ X. Then S € (T,U); C A\ X for some
T,U € A. As < is a dense order, S < V < U for some closed V, and V € (T,U)~ C
A\ X C A\ F. Thus S ¢ F*. Hence F* C X.

2. 0 ¢ F, since § ¢ A.

Let Sy, Sy € F and let T > S; N S,. Let

U = {e € (0,1]: d(e, S1) < d(z, S5)}
U2 = {8 € (0, 1] . d(é‘, 52) < d(&,Sl)}.

Let ‘/1 = U1UTO and ‘/2 = UQUTO. Then 51 = (Sl\SQ)U(SlﬁSQ) Q U1UTO = ‘/1
since S5 is closed. Since Vi is open, S; < Vi. Hence V; € F. Similarly, V5 € F. As
VinVy, CT, T e F. We conclude that S; NS, € F.

The other defining properties of an a-filter are immediately checked using part 1. [

Corollary 5.2. If F is an a-filter on (0,1], then F° = F.

Proof. D: since F° C F. o
C: it suffices to show that F C F°. Let S € F. Let T' C (0, 1] be closed such that
T > S. Then T € F°. Hence S € F°. O

Theorem 5.3. Let F be an a-filter. Then
I(F)={z € Kuy : (VS € A)(z)se invertible = S € F)}.

Proof. Call IT(F) := {z € Koy : (VS € A)(z|ge invertible = S € F)}.

We first show that I*(F) is closed:

If a € Kepe \ IT(F), then there exists S € A\ F such that ajse is invertible. By lemma
B4, x|s- is invertible for each x in a certain neighborhood of a. Then such ¢ I (F),
too. Hence Ky \ I1(F) is open.

We now show that I(F) C I (F):

Let « € I(F). Then zs = 0 for some S € F. Let T' € A such that x| is invertible.
Then SN (0,0) \ T = O for some § > 0, for otherwise, 0 € S\ T and zs\7 = 0 and
x)g\7 is invertible, a contradiction. Hence SN(0,0) C T, and T € F. Thus x € I (F).
Finally, we show that I (F) C I(F):

Let © = [z.] € IT(F). Consider the sets L, := {e : |z.| > €"}. As x|z, is invertible,
L e F, for each n € N. Further, L, < L,y for each n € N. By Urysohn’s
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lemma, there exist y, € Kcm such that Yn|L, = 1 and YniLe, | = 0and 0 <y, < 1.
Then |zy, — |, = 0 and [zy, — 2|, < |zf. < p". Hence |zy, — 2| < p", and
lim,, o0 Ty, = . As ('ryn)\LCH =0, zy, € I(]—"S, for each n. O

Corollary 5.4. Let I < Key. Then I(F(I)) €I CI(F(I)) and T =m(I).

Proof. 1 CI(F(I)): let x € I. Let S € A such that zg. is invertible. Then S € F(I).
Hence by theorem B3, x € I(F(I)). o
By proposition .5, I(F (1)) C I. Hence I = I(F(I)) = m(I) by theorem A8 O

Theorem 5.5. Let I < HN{Cm. Then
FI)={Se€A: (V& € Ko)(z)5 = 0=z € I)}.

Proof. Call F*(I):={Se€A: (Vx € ]Kcnt)(yqs =0=zel)}.

We show that F*(I) is closed:

Let S € Fr(I), ie. S € Aand T € Fr(I), for each closed T = S. Let z € Koy
such that rg = 0. By lemma .5 there exists T" = S such that zjp = 0. W.lo.g, T' is
closed. Thus x € I. Hence S € F*(I).

We now show that F(I) C F+(I):

Let S € F(I). Then there exists a € I such that ajgc = 1. Now let = € K.y such that
r)g = 0. Then zj7 = 0 for some T" = S. By Urysohn’s lemma, there exists y € Kcm
with yis = 0 and yjre = 1. Then (zya), = zr = 0 and (zya) . = zje. Hence
xr=uaya € I.

Finally, we show that F*(I) C F(I):

Let S € F™(I) and let T > S be closed. By Urysohn’s lemma, there exists y € Kent
such that yjg =0 and yjpe = 1. As S € F*(I),y € I. Hence T' € F(I). O

Theorem 5.6. If I,J <t Koy, then F(I) = F(J) < m(I)=m(J) < T=1].

Proof. 1. It F(I) = F(J), then m(I) = I(F(I)) = I(F(J)) = m(J) by theorem A8
2. If m(I) = m(J), then I =m(I) = m(J) = J by corollary 5.4

3. Let S € F(I). Let B = {z € Koy, : z|se is invertible}. Then I N E # . By lemma
B4, F is open, hence also INE # (), i.e., S € F(I).

Hence, if T = J, then F(I) = F(I):f(J):]:(J). O

Corollary 5.7. If I <\ Koy, then m(I) = m(I).

Theorem 5.8. Let Fi, Fy be a-filters on (0,1]. Then I(Fy) = I(F,) <— Fy =
.FQ < .Fl = FQ

Proof. 1. If I(Fy) = I(Fy), then F} = F(I(Fy)) = F(I(F2)) = F3 by theorem [4.7]
2. If 77 = F5, then F| = FY = F5 = JF; by corollary 5.2

3. Let x € I(F). Then x5 = 0 for some S € F. By proposition 3.5, there exists
T =S (w.lo.g. T closed) such that zj7 = 0. So T' € F, and x € I(F).

Hence, if F; = Fy, then I(F)) = I(Fy) = I[(F) = I(F). L

Corollary 5.9. If F is an a-filter on (0,1], then (F)° = F°.



6 Maximal and prime ideals and filters

Definition 6.1. An a-filter F on (0,1] is called prime if for each S,T € A with
SUT e F, either Se ForT e F.

An a-filter F on (0, 1] is called pseudoprime if for each S, T € A with S°UT° = (0, 1],
either S € F or'T € F.

Remark 6.2. 1. In the definition of (pseudo)prime a-filter, we may also ask the condi-
tion for each closed S, T C (0, 1] (instead of for each S,T € A only). For, if S ¢ A,
then S ¢ S, ie., (0,0]NS = ( for some § > 0. Hence (SUT)N (0,0] CT. So if
SNT € F, then also T' € F. The case T' ¢ A is symmetric.

2. An a-filter F on (0, 1] is prime if and only if for each S,T € A with SUT = (0, 1],
either S € F or T' € F. For, if F satisfies the latter condition and SUT € F, we
consider

U:={e€ (0,1 :d(e,S) <d(e,T)} and V:={e€(0,1]:d(e,T) <d(e,95)}.

Then U, V are closed with U UV = (0,1]. Hence U € F or V € F. If U € F, then
also (SUT)NU € F. As (SUT)NU C S, also S € F. The case V € F is symmetric.

This motivates our (less obvious) definition of pseudoprime a-filter.
]

Lemma 6.3. Let S,T,U C (0,1] be open and nonempty with U C SUT. Then there
exist V<S5 and W < T such that U CVUW.

Proof. Let

V:={e € (0,1] : max(d(e,U),

e, T9) < de, 59}
W :={e € (0,1] : max(d(e, U), <d

(e,T°)}.
IfeecV\S theneeT°NUCTN(SUT)CS. Hence V C S. As V is closed and
S is open, also V' < S. Similarly W < T

Further, let € € U. Then either d(e,T°) < d(g,5) (hence € € V) or d(g, S¢) < d(e,T°)
(hence e e W). SoU CVUW. O

Lemma 6.4. Let F be a pseudoprime a-filter on (0,1]. Then I(F) is pseudoprime.

Proof. Let zy = 0. By lemma B.6] there exist closed T, U with T° U U° = (0, 1] such
that ;0 = 0 and yjy = 0. As F is pseudoprime, T' € F or U € F. Hence x € I(F) or
y e I(F). O

Lemma 6.5. Let I <Ky be pseudoprime. Then F(I) is pseudoprime.

Proof. Let S,T € A with S°UT° = (0,1]. Let V< S° and W < T° such that VUW =

(0,1] (lemma B3 with U = (0,1]). By Urysohn’s lemma, there exist z,y € Ky such
that oy = 0, 2s5c = 1, yw = 0 and yjpe = 1. Then zy = 0. As [ is pseudoprime,
xe€loryel. Hence Se F(I)or T € F(I). O

Lemma 6.6. Fvery closed ideal I < Kcm 18 radical.

Proof. Let S € F(VI). Then there exists # € Koy and n € N with 2" € I and
zjsc = 1. Then also 2"sc = 1, hence S € F(I). Thus F(vI) = F(I). By theorem

o I CVICVI=T=1 0
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Proposition 6.7. Let [ < Kewe. Then the following are equivalent:
1. I is pseudoprime
2. the set of ideals containing I is totally ordered (for C)
3. I 1is 1rreducible
4. VT is prime
5. F(I) is pseudoprime.
For Rcm = ]@Cm, this is still equivalent with
6. ]@Cnt/[ is totally ordered.

Proof. 1= 6 (for Keny = Reng): let a € Reye. Since a2 = |al?, we have (a—|a|)(a+|a]) =
0. As I is pseudoprime, a — |a| € [ or a + |a| € I. As Re, is an [-ring, it follows that
a+1>00r —a+1>0inRe/I (cf. [7 Thm. 5.3]).

6 = 2 (for Koy = ]@Cm, cf. [8, 4.1]): the map J — J/I is an order preserving bijection
between the (I-)ideals of ]Rm . containing [ and the [-ideals of I@Cnt /I. As in any totally
ordered rlng, the l-ideals in cht /I are totally ordered.

1 =2 (for Kcnt = Ccnt) by the bijective correspondence of ideals in cht and in (Ccnt
(section [2).

2=3:let K =1NJ. Either I C Jor J C I, whence K =1 or K = J.

3 = 1: as in any commutative [-ring with 1 in which every ideal is an [-ideal, the
irreducibility of I < Ry is equivalent with: for any z,y € Rent, TRens N yRepy S 1
implies € [ or y € I [2, Prop. 8.4.1]. So let x,y € Rey with zy = 0. By lemma
B.6, there exist open T,U with T UU = (0, 1] such that zj7 = 0 and yjy = 0. Let
z € xRCm N yRCm Then 27 = 2y = 0, hence z = 0. In particular, xRCm N yRCm C I,
and hence z € I or y € I. The bijective correspondence of ideals in cht and (Ccnt
yields the result for C.y.

2 = 4: the intersection of a chain of prime ideals is prime, hence v/I =) 1CP.P prime I
is prime.

4 = 5: by lemma 65, F(V/I) is pseudoprime. By the proof of lemma 6.6, F(I) =
F/T).

5 = 1: by lemma 6.4 m(I) = I(F(I)) is pseudoprime. Hence I D I(F([)) is also
pseudoprime. O

Theorem 6.8. Let [ < Kcm. Then I is prime iff I is pseudoprime and radical.

Proof. =: as I is prime, /I = Nrcpp prime £ =1
«: I =+/T is prime by proposition O

Lemma 6.9. FEvery pure ideal I < Rcm 18 radical.

Proof. Let 2 € I for some z € Koy and n € N. As [ = m(I) = I(F(I)), there exists
S € F(I) such that 2™ g = 0. Hence also x|g = 0, and x € I(F()) = 1. O

Proposition 6.10. For I < Kcm, the following are equivalent:

11



1. I is pseudoprime
2. m(I) is prime
3. I contains a prime ideal.

Proof. 1 = 2: by lemmas[6.4land 6.5, m(/) = I(F(I)) is pseudoprime. By lemma[6.9]
m(I) is radical. Hence m([) is prime.

2=3:m(I)CI.

3= 1:if P C I is prime and zy =0, then zy € P,sox € PC lorye P C 1. O

Proposition 6.11. Let F be an a-filter on (0,1]. Then the following are equivalent:
1. F is pseudoprime
2. I(F) is pseudoprime
3. 1(F) is prime.

Proof. 1 =-2: by lemma [6.4] I(F) is pseudoprime.

2 = 3: as I(F) is pure, I(F) is radical (lemma [6.9). By theorem 6.8 I(F) is prime.
3 = 1: by lemma [6.5, F(I(F)) is pseudoprime. As F(I(F)) C F, also F is pseudo-
prime. U

We now consider maximal ideals and a-filters:
Theorem 6.12. Let F be an a-filter.
1. if F is pseudoprime, then F is maximal.
2. F is maximal if and only if F is prime and <-closed.

Proof. 1. Suppose F C F' for some a-filter F'. Let S € 7'\ F. Then there exists a
closed T' > S such that 7" ¢ F. As < is a dense order, there exists an open V with
S <V <T. Since T° U (V©)° = (0,1] and F is pseudoprime, V¢ € F. But then
0 =SNVee F. acontradiction.

2. =: we show that F is closed: as F C F, and F is an a-filter, F = F by
maximality. Further, we show that F is prime: let S,T € A such that SUT € F.
Suppose there exists U € F such that U NS = () and there exists V € F such that
VAT =0. Then ) = (UNV)N(SUT) € F, a contradiction. We may thus assume
that U NS # 0, for each U € F. (The case UNT # (), for each U € F is similar.)
Then () ¢ F' := {U C (0,1] closed: (IV € F)(SNV C U)}. As F' is an a-filter,
F = F' by maximality. Hence S € F.

2. «: by part 1, F = F is maximal. O

Theorem 6.13. Let I < cht-
1. if I is pseudoprime, then I is mazimal.

2. I is mazimal if and only if I is prime and closed.

12



Proof. 1. By proposition 6.7, F(I) = F(I) is pseudoprime. Thus by theorem .12,
F(T) is maximal. Now let T C J <t Key. Then F(I) € F(J), and hence F(I) = F(J)
by maximality. Hence also m(I) = I(F(I)) = I(F(I)) = I(F(J)) = [(F(J)) = m(J),
and hence J C J =1 by theorem B

2. =: let F denote the set of invertible elements in K . As I is a proper ideal,
INE =10. As E is open, also I N E = (). Hence I is proper, and I = I by maximality.
Maximal ideals are prime in any commutative ring with 1.

«: by part 1, I = I is maximal. O

Corollary 6.14. B
1. The set of minimal prime ideals in Key equals

{I(F): F is a maz. a-filter on (0,1]} = {I(F) : F is a pseudoprime a-filter on (0, 1]}.
2. The set of mazximal ideals in Kcm equals
{I(F) : F is a maxz. a-filter on (0,1]} = {I(F) : F is a pseudoprime a-filter on (0,1]}.

Proof. 1.(a) Let I < K.y be a minimal prime. Then F (I) is pseudoprime, and
I(F(I)) C I is a prime ideal. By minimality, I = I(F(I)) = I(F(I)) and F(I)
is maximal.

(b) Let F be a pseudoprime a-filter on (0, 1]. Then I(F) is prime by proposition [6.11]
If P <Ky is prime with P C I(F), then F(P) C F(I(F)) C F, and hence F(P) C F.

As P is prime, F(P) is pseudoprime, and hence F(P) is maximal by theorem [6.12]
Hence F(P) = F. Consequently, P D I(F(P)) = I(F(P)) = I(F) = I(F).

2.(a) Let I < Keu be maximal. Then [ is pseudoprime, hence F (/) is pseudoprime,
and thus F(I) is maximal. Further, I =1 = m(I) = I(F(I)) = I(F(I)).

(b) Let F be a pseudoprime a-filter on (0, 1]. Then I(F) is pseudoprime, hence I(F)
is maximal. O
Proposition 6.15. Let I < K. Then T = N 1cu M.

M mazimal

In particular, an ideal I < K is closed iff it is an intersection of mazimal ideals.

Proof. C: by theorem [6.13] maximal ideals are closed.

D:let ¢ ¢ T =m(I) = I(F(I)) (corollary 5.4). By theorem (.3, there exists S €
A\ F(I) such that z|sc is invertible. Let £ := {x € Kent T|ge is invertible}. As E
is closed under multiplication and E'N I = (), there exists a prime P < ]Kcnt such that
ICPand ENP =0 (eg., [7 0.16]). As E is open (lemma B3.4), also EN P = (). In
particular, P is maximal and x ¢ P. O

Remark 6.16. In the previous, we showed that maximal ideals of Kcm are in bijec-
tive correpondence with maximal a-filters, which are in bijective correspondence with

points of 3(0, 1]\ (0, 1], where 5(0, 1] denotes the Stone-Cech compactification of (0, 1]
(ct. [T, 6.5]).

7 Rapid a-filters

Definition 7.1. An a-filter F is called rapid if for each sequence (S,), in F with
S1 = Sy > ..., there exists T € F such that T\ S, ¢ S.
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Theorem 7.2. Let F be an a-filter. Then I(F) is closed iff F is rapid.

Proof. <: let a € I(F) with continuous representative (a.).. For each n € N, let
Sy :={e € (0,1] : |a.| <e"}. By theorem 53] S,, € F, and also S; > Sy > .... As F
is rapid, there exists T' € F such that 7'\ S, ¢ S. Hence |a|; < p", for each n € N,
i.e., ajp = 0. Hence a € I(F).

=: let S, € F,and also S} = Sy > .... By Urysohn’s lemma, there exist ¢,, € C((0,1])
such that 0 < ¢, < €", dnjg,,, = 0 and @y g = " Let ¢ := 377 ¢, on (0,1/2].
By uniform convergence, ¢ is continuous and "™ < ¢(g) < e+ + ... < 2™ on
(0,1/2] N Sy \ Sps1. Extend ¢ to a continuous map on (0,1]. Then a := [¢(e)] € Ken.
Let T € A be such that ajp. is invertible. Then there exists n € N such that |¢(e)| >
2e™ for e € T°N (0,0] (some 0 < § < 1/2). Hence S, N (0,0] C T, and T € F. By
theorem [5.3] a € I(F) = I(F). Thus there exists T’ € F such that ajr = 0.

Let n € N. Then |¢(g)| < €™ for each € € (0,0] NT (some 0 < ¢ < 1/2). Hence
(0,8]NT\ S, = 0. 0

Remark 7.3. Recall that a filter F of subsets of N is called rapid if for any decreasing
sequence (S,), in F, there exists S € F such that S\ S, is finite for every n € N. A
free ultrafilter U of subsets of N is called weakly selective (or d-stable or P-point of
BN\ N) if for each sequence (S,), in U, there exists S € U such that S\ S, is finite for
each n € N. There exist weakly selective free ultrafilters if we assume the continuum
hypothesis [111, 6] (in fact, it satisfies to assume weaker axioms, e.g. ZFC+Martin’s
axiom [3], §4]). By definition, a weakly selective free ultrafilter is rapid.

Lemma 7.4. There exists a rapid maximal a-filter, if we assume the continuum hy-
pothesis.

Proof. Let U be a rapid free ultrafilter on N. Let
F={SeA:{neN:1/neS}el}.

From the fact that i/ is a filter, it is straightforward to check that F is an a-filter.
From the fact that U is rapid, resp. maximal, it is straightforward to check that F
is a rapid, resp. prime a-filter. By theorem [6.12] it suffices to show that F closed.
Let S € F. As S is a closed set, there exists a closed T = S such that {n € N :
I/neT}={neN:1/ne S} SinceT € F,{n e N:1/n e T} € U. Hence also
SeF. O

Proposition 7.5. There exists a prime ideal in Rcm which is both minimal and max-
imal, if we assume the continuum hypothesis.

Proof. Let F be a rapid maximal a-filter. By theorem [[.2] I(F) is closed, hence I(F)
is both a minimal and maximal prime ideal by corollary [6.14l 0
8 z-ideals

As the notion of z-ideal in the ring C(X) of continuous functions on a topological space
X can be expressed by a purely algebraic condition [7, 4A], G. Mason [9] used this
condition to define a z-ideal of any commutative ring R with 1.
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Definition 8.1. Denoting by M(a) = {M maz. ideals of R : a € M}, I <R is a
z-1deal if
(Va € R)(Vb € I)(M(a) = M(b) = a € I).

We proceed to show a similar characterization as for z-ideals in K. As in [13], we
denote Z(a) :={S € S : a5 =0}.

Theorem 8.2. Let a,b € Keye. Then M(a) C M(b) < Z(a) C Z(b).

Proof. =: let S € Z(a) \ Z(b), i.e., ais = 0 and bjg # 0. By lemma 3.4, there exists
T € § with T' C S such that by is invertible. Let M be a maximal ideal containing

I={x¢ Kcnt zr =0} < Kcm Since ajs = 0, also ajp = 0, hence a € M. Suppose
that b € M. Since by is invertible, b is invertible for some U = T'. By Urysohn’s
lemma, there exists x € Kcm such that zj7 = 0 and zye = 1. Hence v € I C M,
and Zz + bb = |z|* + |b|* € M would be invertible, a contradiction. We conclude that
M € M(a) \ M(D).

=:let M € M(a)\M(b),soa e Mandb¢ M. As M is maximal, M + 5Ky = Ken.
Let m € M and ¢ € Kcm such that m +bc =1. As be,m € R, there exists S C (0, 1]
such that (bc)‘ ¢ and myge are invertible [I3, Lemma 4.1]. Hence also bg is invertible.

Suppose that ajs is invertible. Then aa + mm = |a|” + [m|* € M would be invertible,
a contradiction. By lemma 3.4} there exists T € § with T' C S such that a7 = 0. We
conclude that T' € Z(a) \ Z(b). O

Corollary 8.3. I <Ky is a z-ideal iff
(Va € Kt )(Vb € 1)(Z(a) = Z(b) = a € I).
Proposition 8.4.
1. For I <Ky,
L:.={z¢ H:<cm t(Ja € I)(Z(x) = Z(a))} = {z € Kcit :(Ja € I)(Z(x) 2 Z(a))}
= {2 € Kene : (Ga € H(M(z) = M(a))} = {2 € Ke : (3a € I)(M(z) 2 M(a))}

is the smallest z-ideal containing I. We call it the z-closure of I. I is a z-ideal
iff 1 =1,.

2. ForI< Kcm, I CVICI.. Hence (\/7)2 = I, and every z-ideal is radical.
A (proper) z-ideal is prime iff it is pseudoprime.

Proof. As in [13], Prop. 4.3]. O]
Proposition 8.5. Every closed ideal I < Rcm 18 a z-ideal.

Proof. I is an intersection of maximal ideals (proposition [6.10]), hence a z-ideal [9]. O
Proposition 8.6.

1. For a family (I))aen of ideals I gﬁ{cm, (Qoxea V), = Dosen n),- In particular,
the sum of a family of z-ideals is a z-ideal.
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2. For1,J <Koy, I.OJ.=(INJ)

P

3. For I 4 Kcm, I :={x e ]Kcnt : (x]ﬁcm)z C I} is the largest z-ideal contained in
I. We call it the z-part of I. I s a z-ideal iff [ = I*.

4. For a family (I))xen of ideals I < Kcm, Maea 13 = (Maea I0)°- In particular,
the intersection of a family of z-ideals is a z-ideal.

5. For I < Kcm, m(I) C I C IV C 1. In particular, every pure ideal of Kcm 8 a
z-ideal. If I <Ky 1s pseudoprime, then I* is prime.

Proof. 1. First, we show that (I +J), = I, + J..

Let z € (I + J),. Hence there exist a € I, b € J such that Z(z) = Z(a+b). Let (c)-,
resp. (f3.)e, be representatives of |a|, resp. |b|, with a. # 0 and . # 0 for all €. Let
S:={e€(0,1]:a. <26.}and T := {e € (0,1] : B < 2a.}. As o # 0 and 5. # 0,
SUT = (0,1]. By lemma [6.3], there exist V' < S, U < T such that U UV = (0, 1].
By Urysohn’s lemma, there exists y, z € ]Rm such that yjy =1, yjse =0, 2y = 1 and
zre = 0and 0 < g,z < 1. Then y + 2 > 1. Hence there exists u € ]Rm such that
(y+ 2)u = 1.

Now let W € Z(a), i.e., aw = 0. As [b];; < 2|aly, also braw = 0. Hence TNW €
Z(a+b) = Z(x), i.e. zpow = 0. Hence zzupw = xzujownrumr) = 0. Thus Z(a) C
Z(xzu). As a € I, xzu € I,. Similarly, zyu € J,. Hence z = zyu + xzu € I, + J,.
For arbitrary sums, the result follows as in [I3, Prop. 4.4].

2-4. As in [13, Prop. 4.4].

5. We show that m(I) C I*. Let x € m(I) = I(F(I)). Then there exists S € F(I)
such that g = 0. Let y € (x]Kcnt)Z. Then also ys = 0, so y € I(F(I)) € I.
Thus (xﬁ{mt)z C I. The other statements follow as in [I3] Prop. 4.4] (using [5, Prop.
4.29)). 0

Remark 8.7. There are z-ideals that are not closed (e.g., consider a minimal prime
ideal that is not maximal).

It is well known that K is complete for the sharp topology [12]. Similarly, we have:

Theorem 8.8. ]Kcnt 1s complete for the sharp topology.

Pmof.~Since Rcm - K and K is complete, we show that Rcm is closed in K. Let
x, € Ky with continuous representative (z,..). such that z, — = € K. By taking a
subsequence, we may assume that for each n € N,

|Tpe — x| <", Ve<e,.

W.lo.g., (€,)y is strictly decreasing and tends to 0. Then let u; . := z; . and

X xn,a - xn—l,a € S 5n+1
Upe =
0, €> €,

in such a way that w, . is continuous in € and |u, .| < |2, — 2,—1| for each € € (0, 1].
Then s, := Zzozl Un is a locally finite sum. Hence (s.). is continuous and for each
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€€ (5n+17 8”]7

n
|5c — x| = ’Zukﬁ_we

k=1

S |un,5|+|xn71,e - xs| S ‘xn,s - xe‘ +2 ‘xnfl,e - xe‘ S 35”71-

Hence = = [s.] € Kcm. O
Theorem 8.9. Let [ < Kcm be a finitely generated ideal.
1. If I is radical (in particular, if I is closed, pure or a z-ideal), then I € {0, Ken }.
2.1, =1
3. m(I) = I*.

Proof. By [0, Lemma 4.5], I is principal, i.e. I = aKe for some a € K.

1. By [5, Prop. 4.28], I is idempotent. Hence a = a?b for some b € Kene. Thus ab
is idempotent. So either ab = 0, whence a = a’b = 0 and I = 0, or ab = 1, whence
I =Ky

2. Let x € 1, i.e. 2 = lim,_, 2, for some z,, € I. Let S € Z(a), i.e. ajs = 0. Then
also x,s = 0 for each n € N, hence also zg = 0, i.e. S € Z(z). Thus z € I,. The
converse inclusion holds by proposition 8.5

3. Let x € Koy \ m(J) = I(F(I)). Then for each S € F(I), xis # 0. In particular,
let (a.). be a (continuous) representative of a and L, := {¢ € (0,1] : |a.| > &"}.
Then Lj, € F(I), so xje # 0. By lemma [B.4] there exist 7, € S with T,, C Lf
and 7, is invertible. By lemma [3.5] there exist S,, = T}, such that z|g, is invertible
(as T,, < LS, we may assume S,, < L¢). By Urysohn’s lemma, there exist y, € Rcm

with yn\Tn = (\/ |Cﬂ)|Tn’ yn\S,CL io and 0 < Yn < V |a‘ As |yn||sn < ‘a||5n < pn/Z’
Yy = 22021 Yn € Koy exists (Kep is a complete ultrametric space). We show that

Yy € ("L‘Kcnt)z-

Let U € Z(x), i.e, xy = 0. Then 0 ¢ U N S, since s, is invertible. Hence y,; = 0.
Then also yjy = 0, i.e., U € Z(y).

Alsoy & It |yl = |ynlip, = |a||Tn > (p/? |al) g, for each n € N. Hence |y| %

p~Nla| for any N € N, and thus y ¢ I. Hence («T]Kcnt)z Z 1, ie., x¢l O
Let I <« Kcnt- Let [t = {z € Kcm caxy=0,Yy € I}. Asin }K, we have:
Proposition 8.10. Let I < Kcm. Then

1. T+ is closed.

2. 1C I+,

8. InI+={0}.

4. If I is pseudoprime, then I = {0}. In particular, I G I = Kep.
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Proof. 1. Let x = lim,_,o0 T, with 2, € I*+. Then z,y = 0, ¥n € N, hence also
xy=0,Vy € l. Thusz € I+

2. Ifx eI, then zy =0, Vy € I+, so I C I+, By part 1, also I C I+,

3. If z € IN T+, then 22 = 0, hence x = 0. Hence also It N1 C I+ NI+ = {0}.

4. Let x € I*+. If x # 0, then there exists T € S such that x|y is invertible. By
lemma [3.5], there exists S = T such that x5 is invertible. W.l.o.g. S is closed, T is
open and S¢ € S. As (T¢)°US° = (0, 1] and F(I) is pseudoprime, either T¢ € F(I) or
S € F(I). In the first case, there exists y € I such that yr =1. As z € I+, 2y = 0,
contradicting the fact that (:cy)‘T is invertible. In the second case, there exists y € [
such that g gc = 1. Hence zy = 0, and thus zgc = 0. As (xz)‘s =1 for some z € ]Kcnt,

and (z2)g. =0, 22 € Kep is idempotent, and hence 2z = 0 (contradicting (z2)g=1)
or zz = 1 (contradicting (z2)g. = 0). Thus z = 0. O

Lemma 8.11. There exists J < Kcm such that J # {0} and J+ # {0}.

Proof. Let S := |J,en(@n, bn) with 1 > by > a; > by > ay > ... and a, — 0. Then
there exists # € Ky \ {0} such that z1g = 0 and there exists y € Ky \ {0} such that
yse = 0. Let J = {x € Kepe : 79 = 0}. Then v € Jand y € Jt. O

Also as in JK, the Hahn-Banach extension property does not hold in the following sense:

Theorem 8.12. Let J < Koy with J # {0} and J* # {0}. Let I := J + J*. Then
there exists a continuous Key-linear map ¢: I — Ky that cannot be extended to a
Kent -linear map 1 Kepg — Kepg -

Proof. Let ¢(z + y) := x, for each z € J and y € J*. As JN Jt = {0}, ¢ is
defined unambiguously and is Key-linear. Further, |¢(z + y)[> = |z|* < |2* + |y|* =
(z+y)(Z+7) = |z +y|* for each z € J and y € J-. Hence ¢ is also continuous.

Now suppose that 1: Rcm — Kcm is a Kcm—linear extension of ¢. Then for any = € J,
(1) = Y(z) = ¢(x) = x. Hence x(p(1) — 1) = 0. Thus ¥(1) — 1 € J*. Hence
$)(1) — 9(1) = P((1) — 1) = G((1) — 1) = 0. Tt follows that (1) € Ky is
idempotent, hence ¥ (1) = 0 or ¥(1) = 1. If ¢(1) = 0, then ¢ = 0, and thus also
¢ =0, whence J = {0}. If ¢(1) = 1, then () =  for each # € Key, and thus also
#(y) = y for each y € J*, whence J+ = {0}. O

Corollary 8.13. If I <\ Koy with I # {0} and I+ # {0}, then I + I+ # K.
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