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Asymptotic ideals (ideals in the ring of Colombeau
generalized constants with continuous

parametrization)

A. Khelif∗, D. Scarpalezos†, H. Vernaeve‡

Abstract

We study the asymptotics at zero of continuous functions on (0, 1] by means
of their asymptotic ideals, i.e., ideals in the ring of continuous functions on
(0, 1] satisfying a polynomial growth condition at 0 modulo rapidly decreasing
functions at 0. As our main result, we characterize maximal and prime ideals in
terms of maximal and prime filters.

1 Introduction

In this paper, we study the asymptotic ideals of continuous functions (0, 1] → K (where
K is one of the fields R or C), i.e., ideals in the ring of continuous functions φ satisfying
the following growth condition (usually called moderateness)

(∃N ∈ N)(∃ε0 > 0)(∀ε ≤ ε0) |φ(ε)| ≤ ε−N

modulo the ideal of continuous functions φ satisfying

(∀n ∈ N)(∃ε0 > 0)(∀ε ≤ ε0) |φ(ε)| ≤ εn

(usually called negligibility). Apart from the obvious interest of such a study to asymp-
totic analysis, such equivalence classes of functions also naturally arise in generalized
function theory as the ring of generalized constants K̃cnt of the algebra of Colombeau
generalized functions (see §2).
The ring K̃cnt of generalized constants with continuous dependence on the parameter
has been introduced and studied in [5], where it is also shown that this ring is iso-
morphic to the ring of generalized constants with smooth dependence. In fact, the
study of the ring K̃cnt amounts to the study of the asymptotics at zero of moderate
continuous functions on (0, 1].
In generalized function theory, the choice of continuous dependence comes from the ob-
servation that when one embeds distributions in an algebra of Colombeau generalized
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functions and when one solves nonlinear problems, one always encounters generalized
functions represented by continuous (even smooth) nets of smooth functions.

The algebraic properties of the ring K̃cnt are different from those of the ring K̃ of
generalized constants without continuous dependence on the parameter, and many
tools used in the study of K̃ cannot be used. Most strikingly, this is manifested by
the fact that K̃cnt does not have any nontrivial idempotent elements, in sharp contrast
with the ring K̃ (which is a so-called exchange ring [13]). Thus the main tools used in

[1] and [13] to study K̃ cannot be used.
In this paper, we study prime and maximal ideals by attaching a filter of closed subsets
of (0, 1] to each ideal. The filter is analogous to the filter {S ⊆ (0, 1] : eSc ∈ I} attached
to an ideal I ⊳ K̃ ([13, §6]), and thus allows us to overcome the difficulty of the lack
of idempotents. In this way, we obtain a classification of maximal and minimal prime
ideals in terms of maximal and prime filters.
The methods used in this paper are inspired by the study of the ideals in K̃ [1, 13]
and by the study of maximal ideals of rings of continuous functions by Gillman and
Jerison [7]. Compared to [7], the main novelty is the adaptation to the asymptotic

nature of the ring K̃cnt.

2 Preliminaries

The ring K̃, with K = R or K = C (the field of real, resp. complex numbers), is defined
as MK/NK, where

MK = {(xε)ε ∈ K(0,1] : (∃N ∈ N)(∃ε0 > 0)(∀ε ≤ ε0) |xε| ≤ ε−N}
NK = {(xε)ε ∈ K(0,1] : (∀n ∈ N)(∃ε0 > 0)(∀ε ≤ ε0) |xε| ≤ εn}.

We denote by [xε] ∈ K̃ the element with representative (xε)ε and we denote ρ := [ε].

K̃ is a complete topological ring with the so-called sharp topology, which can be defined
as follows. Let x = [xε] ∈ K̃. Let

v(x) := sup{a ∈ R : (∃ε0 > 0)(∀ε ≤ ε0) |xε| ≤ εa}.

Then the ultrametric d(x, y) := e−v(x−y) induces a topology on K̃ which is called the
sharp topology [12].
Denoting by C((0, 1]) (resp. C∞((0, 1]) the set of continuous (resp. smooth) maps

in K(0,1], the ring K̃cnt := (MK ∩ C((0, 1]))/(NK ∩ C((0, 1])) and K̃sm := (MK ∩
C∞((0, 1]))/(NK ∩ C∞((0, 1])). Clearly, K̃sm ⊆ K̃cnt ⊆ K̃. In [5], it is shown that

K̃cnt = K̃sm.
We denote I ⊳ K̃cnt for a proper ideal I of K̃cnt (i.e., I 6= K̃cnt).

K̃ is an exchange ring [13], i.e., for each a ∈ K̃, there exists an idempotent e ∈ K̃ such

that a + e is invertible. Unlike K̃, K̃cnt is not an exchange ring [5, Lemma 4.3].

Like K̃, K̃cnt is a Gelfand ring [5, Lemma 4.5], i.e., every prime ideal is contained in a
unique maximal ideal.
Like K̃, K̃cnt is a Bezout ring [5, Prop. 4.26], i.e., every finitely generated ideal is
principal.
Like R̃, R̃cnt is an l-ring (or lattice-ordered ring) [5, Prop. 4.13].
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Let I E K̃cnt and x ∈ I. Then |x| ∈ I [5, Lemma 4.24].

Let IE R̃cnt. Then I is an l-ideal (or absolutely (order) convex), i.e., if x ∈ I, x′ ∈ R̃cnt

and |x′| ≤ |x|, then x′ ∈ I. [5, Prop. 4.25].

Let us point out explicitly the corollary that then also for I E C̃cnt, z ∈ I, z′ ∈ C̃cnt,
|z′| ≤ |z| implies that z′ ∈ I. Indeed, z ∈ I implies |z| ∈ I ∩ R̃cnt [5, Lemma 4.24]. As

I∩R̃cntER̃cnt, I∩R̃cnt is an l-ideal in R̃cnt. Hence |ℜz′| ≤ |z| implies that ℜz′ ∈ I∩R̃cnt.

Similarly, ℑz′ ∈ I ∩ R̃cnt. Thus z
′ = ℜz′ + iℑz′ ∈ I.

Hence the bijective correspondence of ideals in K̃cnt takes the same form as for ideals in
K̃ ([13]): the map IE C̃cnt 7→ I ∩ R̃cnt = {ℜz : z ∈ I}E R̃cnt has as an inverse the map

J E R̃cnt 7→ 〈J〉 = {z ∈ C̃cnt : |z| ∈ J}E C̃cnt (where 〈J〉 is also the ideal generated by

J in C̃cnt). It is an inclusion-preserving bijection between the lattice of ideals of C̃cnt

and the lattice of ideals of R̃cnt. In particular, arbitrary sums and intersections are
preserved. One easily checks that the isomorphism also preserves products of ideals,
principal, pseudoprime and irreducible ideals.

Let R be a commutative ring with 1. An ideal I E R is pure if [4, Prop. 7.2]

(∀x ∈ I)(∃y ∈ I)(x = xy).

We denote by m(I) the pure part of I E R, i.e., the largest pure ideal contained in I
[4, Prop. 7.8]. By definition, I is pure iff I = m(I). If R is a Gelfand ring, then [4,
§8.2–3]

m(I) = {x ∈ R : (∃y ∈ I)(x = xy)}.
An ideal I E R is idempotent if I2 = I.
We denote the radical of I ER by

√
I = {x ∈ R : (∃n ∈ N)xn ∈ I} =

⋂
I⊆P

P prime

P (e.g.,

see [7, 0.18]).
IER is radical (or semiprime) if I =

√
I, or equivalently, if (∀x ∈ R)(x2 ∈ I ⇒ x ∈ I).

I E R is pseudoprime if for each a, b ∈ R, ab = 0 implies a ∈ I or b ∈ I.
IER is irreducible (or meet-irreducible) if for each J,KER, I = J ∩K implies I = J
or I = K [10, §6].

3 Characteristic sets

Definition 3.1. A set S ⊆ (0, 1] such that 0 ∈ S (closure in R) is called a charac-

teristic set [5]. We denote the set of all characteristic sets by S.
Let S, T ∈ S. We say that T is an extension of S if S ⊆ T ◦ (closure and interior
in (0, 1]) and denote this by S ≺ T (or equivalently, T ≻ S). It is straightforward to
check that ≺ is antireflexive and transitive on S \ {(0, 1]}, and hence defines a partial
order on S \ {(0, 1]}. Notice that (0, 1] ≺ (0, 1], which will turn out to be convenient.

Lemma 3.2. Let S, T ∈ S.

1. If S ≺ T , there exists U ∈ S such that S ≺ U ≺ T .
In particular, ≺ is a dense order on S \ {(0, 1]}.

2. S ≺ T iff T c ≺ Sc.
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Proof. 1. Let S ≺ T . By Urysohn’s lemma, there exists φ ∈ C((0, 1]) such that
0 ≤ φ ≤ 1, φ|S = 0 and φ|T c = 1. Let U := {ε ∈ (0, 1] : φ(ε) ≤ 1/2}. Then
S ≺ U ≺ T .
2. S ⊆ T ◦ ⇐⇒ (T c) = (T ◦)c ⊆ (S)

c
= (Sc)◦.

Definition 3.3. (cf. [5, 4.16]) Let x ∈ K̃cnt and S ∈ S. Then x|S = 0 if

(∀n ∈ N)(∃δ > 0)(∀ε ∈ S ∩ (0, δ))(|xε| ≤ εn).

where (xε)ε is any representative of x. We similarly write x|S = y|S for (x− y)|S = 0,
x|S = 1 for (x− 1)|S = 0, . . .

We say that x|S is invertible if there exists y ∈ K̃cnt such that (xy)|S = 1.

Lemma 3.4. Let S ∈ S.

1. Let x ∈ K̃cnt. Then the following are equivalent:

(a) x|S is invertible (in K̃cnt)

(b) x|S is invertible in K̃

(c) x|S is bounded away from zero, i.e., for some representative (xε)ε of x,

(∃n ∈ N)(∃δ > 0)(∀ε ∈ S ∩ (0, δ))(|xε| ≥ εn).

(the statement then automatically holds for any representative (xε)ε of x).

(d) for each characteristic set T ⊆ S, x|T 6= 0.

2. {x ∈ K̃cnt : x|S is invertible} is open.

3. x|S = 0 iff for each characteristic set T ⊆ S, x|T is not invertible.

Proof. 1. (b) ⇔ (c) ⇔ (d): by [13, Lemma 4.1].
(a) ⇒ (b): trivial.
(c) ⇒ (a): let T := {ε ∈ (0, 1] : |xε| > εn/2}. As (xε)ε is continuous, S ∩ (0, δ) ≺ T .
By Urysohn’s lemma, there exists φ ∈ C((0, 1]) such that 0 ≤ φ ≤ 1, φ|S∩(0,δ) = 1 and
φ|T c = 0. Let yε := φ(ε)/xε, if ε ∈ T and yε := 0, if ε ∈ T c. Then |yε| ≤ 2ε−n, (yε)ε ∈
is continuous and xεyε = 1 for each ε ∈ S ∩ (0, δ). Hence (yε)ε is a representative of

some y ∈ K̃cnt with (xy)|S = 1.
2. Let x|S be invertible. Let n ∈ N as in part 1(c). Then y|S is invertible for each

y ∈ K̃cnt with |x− y| ≤ ρn/2 (again by part 1(c)).

3. By [13, Lemma 4.1], since K̃cnt ⊆ K̃.

Proposition 3.5. Let x ∈ K̃cnt and S ∈ S.

1. If x|S = 0, then x|T = 0 for some T ≻ S.

2. If x|S is invertible, then x|T is invertible for some T ≻ S.
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Proof. 1. Let (xε)ε∈(0,1] be a (continuous) representative of x. Then for each n ∈ N,
there exist δn > 0 (w.l.o.g. strictly decreasing and tending to 0) such that |xε| ≤ εn

for each ε ∈ S, ε ≤ δn. Then let T :=
⋃

n∈N(δn+2, δn) ∩ {ε ∈ (0, 1] : |xε| ≤ 2εn}. Then
also x|T = 0. We show that S ≺ T . Let ε ∈ S. Then ε ∈ (δn+2, δn) for some n. By
continuity, also |xε| ≤ εn for each ε ∈ S, ε < δn. Hence ε belongs to the open set
(δn+2, δn) ∩ {ε ∈ (0, 1] : |xε| < 2εn} ⊆ T . Thus ε ∈ T ◦.
2. Let n ∈ N and δ > 0 as in lemma 3.4.1(c). Let T := {ε ∈ (0, 1] : |xε| > εn/2} ∪
(δ/2, 1). As (xε)ε is continuous, S ≺ T . By lemma 3.4.1(c), x|T is invertible.

Lemma 3.6. Let a, b ∈ K̃cnt and S ∈ S. If (ab)|S = 0, then there exist closed T, U
with S ⊆ T ◦ ∪ U◦ such that a|T = 0 and b|U = 0.

Proof. As a, b ∈ K̃, there exists V ⊆ S such that a|V = 0 and b|S\V = 0 [13]. As

a, b ∈ K̃cnt, there exist (w.l.o.g. closed) T , U with V ≺ T , S \V ≺ U such that a|T = 0
and b|U = 0 by Prop. 3.5.

4 Asymptotic filters

In [7], to any ideal I ⊳ C(X) (with X a topological space), a filter is associated
consisting of the zero-sets of all f ∈ I and conversely, to a filter F of zero-sets, an
ideal I is associated. Taking into account that there is no largest zero-set for x ∈ K̃cnt,
we proceed as follows:

Definition 4.1. A filter of closed subsets of (0, 1] is a family F of (relatively) closed
subsets of (0, 1] such that

1. ∅ /∈ F

2. if S, T ∈ F , then S ∩ T ∈ F

3. if S ∈ F , T ⊆ (0, 1] is closed and S ⊆ T , then T ∈ F .

A closed characteristic subset of (0, 1] is called an asymptotic subset. We denote
the set of all asymptotic subsets by A.
An asymptotic filter or a-filter is a filter of closed subsets of (0, 1] that contains
(0, δ] for each δ > 0. Notice that this implies that F ⊆ A.
We define as follows a topology on A. Denoting open intervals corresponding to ≺ by

(S, T )≺ := {U ∈ A : S ≺ U ≺ T},

the extension topology is the topology on A with base {(S, T )≺ : S, T ⊆ (0, 1]}. We
will call ≺-open, ≺-closed, . . . sets that are open, closed, . . . for this topology. Notice
that {(0, 1]} is ≺-open, which will turn out to be convenient.

Remark 4.2. A filter is called free (or non-principal) if
⋂

S∈F S = ∅. We can alterna-
tively define an a-filter as a free filter of closed subsets of (0, 1]. For, if F is a filter
of closed subsets of (0, 1] and (0, δ] /∈ F for some δ > 0, then S ∩ [δ, 1] 6= ∅ for each
S ∈ F . By compactness of [δ, 1], it would then follow that

⋂
S∈F S ∩ [δ, 1] 6= ∅.
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Definition 4.3. Let I ⊳ K̃cnt. Then

F(I) := {S ⊆ (0, 1] closed : (∃x ∈ I)(x|Sc is invertible)}

(here it is understood that x|S is trivially invertible if 0 /∈ S).
Let F be an a-filter on (0, 1]. Then

I(F) := {x ∈ K̃cnt : (∃S ∈ F)(x|S = 0)}.

Lemma 4.4. For I ⊳ K̃cnt,

F(I) = {S ⊆ (0, 1] closed : (∃x ∈ I)(x|Sc = 1)}.

Proof. If x ∈ I and x|Sc is invertible, then there exists y ∈ K̃cnt such that (xy)|Sc = 1,
and xy ∈ I.

Proposition 4.5. Let I ⊳ K̃cnt and F an a-filter on (0, 1].

1. F(I) is an a-filter on (0, 1].

2. I(F)⊳ K̃cnt.

3. F(I(F)) ⊆ F .

4. I(F(I)) ⊆ I.

Proof. 1. Since a proper ideal does not contain invertible elements, ∅ /∈ F(I).
If S, T ∈ F(I), then there exist x, y ∈ I such that x|Sc and y|T c are invertible. Hence

also |x|2 + |y|2 ∈ I and (|x|2 + |y|2)|Sc∪T c is invertible, so also S ∩ T ∈ F(I).
If S ∈ F(I), T ⊆ (0, 1] is closed and S ⊆ T , then clearly T ∈ F(I).

If δ > 0, then 0 /∈ (0, δ]c, hence x|(0,δ]c is (trivially) invertible for each x ∈ K̃cnt.
2. If x, y ∈ I(F), then x|S = 0 and y|T = 0 for some S, T ∈ F . Then also x+ y|S∩T = 0

and S ∩ T ∈ F , so x+ y ∈ I(F). For z ∈ K̃cnt, also xz|S = 0, so xz ∈ I(F). 1 /∈ I(F),
since 1|S 6= 0 for each S ∈ S.
3. Let S ∈ F(I(F)). Then there exists x ∈ I(F) such that x|Sc = 1. So there exists
T ∈ F such that x|T = 0. Then T ∩ (0, δ] ⊆ S for some δ > 0. For otherwise, one
constructs V ⊆ T ∩ Sc with 0 ∈ V such that x|V = 0, contradicting x|V = 1. Thus
S ∈ F .
4. Let x ∈ I(F(I)). Then there exists S ∈ F(I) such that x|S = 0. So there exists

y ∈ I such that y|Sc = 1. As x ∈ K̃cnt, |x| ≤ ρ−N for some N ∈ N. Then |x| ≤ ρ−N |y|.
As ρ−Ny ∈ I and ideals in K̃cnt are absolutely order convex [5, Prop. 4.25], x ∈ I.

Proposition 4.6. Let F be an a-filter on (0, 1]. Then

1. F◦ = {S ∈ A : (∃T ≺ S)(T ∈ F)} (F◦ denotes the ≺-interior).

2. F◦ is an a-filter.
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Proof. 1. ⊆: let X ⊆ F be ≺-open. If S ∈ X , then S ∈ (T, U)≺ ⊆ X , for some
T, U ⊆ (0, 1]. W.l.og., T is closed. We first show that there exists V ≺ S with V ∈ A.
Otherwise, T /∈ S, i.e., T ∩ (0, δ] = ∅ for some δ > 0. As S ∈ S, we can construct
W1,W2 ⊆ S with W1,W2 ∈ A and W1 ∩W2 = ∅. Then Wj ∪ [δ/2, 1] ∈ (T, U)≺ ⊆ F .
Hence also ∅ = W1 ∩W2 ∩ (0, δ/3] ∈ F , a contradiction.
Since ≺ is a dense order, T ≺ W ≺ S for some closed W . Hence also T ≺ V ∪W ≺ S,
and V ∪W ∈ A. Thus V ∪W ∈ (T, U)≺ ⊆ X ⊆ F . Hence X ⊆ {S ∈ A : (∃T ≺
S)(T ∈ F)}.
⊇: {S ∈ A : (∃T ≺ S)(T ∈ F)} ⊆ F and is ≺-open: if T ≺ S with T ∈ F , then also
S ∈ (T, (0, 1])≺ ⊆ {S ∈ A : (∃T ≺ S)(T ∈ F)}.
2. As F◦ ⊆ F , ∅ /∈ F◦.
If U ≺ S, V ≺ T with U, V ∈ F , then also U ∩ V ≺ S ∩ T with U ∩ V ∈ F .
The other defining properties of an a-filter are immediately checked using part 1.

Theorem 4.7.

1. For each a-filter F on (0, 1], F(I(F)) = F◦.

2. {F(I) : I ⊳ K̃cnt} is the set of ≺-open a-filters on (0, 1].

Proof. First, let I ⊳ K̃cnt. We show that F(I) is ≺-open:
Let S ∈ F(I). Then there exists x ∈ I such that x|Sc is invertible. By proposition 3.5,
there exists T ≻ Sc such that x|T is invertible. W.l.og. T is open. Then T c ∈ F(I)
and T c ≺ S.
In particular, F(I(F)) ⊆ F is ≺-open, and hence F(I(F)) ⊆ F◦.
Conversely, we show that F◦ ⊆ F(I(F)):
Let S ∈ F◦. Then there exists T ≺ S such that T ∈ F . By Urysohn’s lemma, there
exists x ∈ K̃cnt such that x|T = 0 and x|Sc = 1. Hence x ∈ I(F) and S ∈ F(I(F)).
Finally, if an a-filter F is ≺-open, then F = F◦ = F(I(F)), hence F = F(I) for some

I ⊳ K̃cnt.

Theorem 4.8.

1. For each I E K̃cnt, I(F(I)) = m(I).

2. {I(F) : F is an a-filter on (0, 1]} is the set of (proper) pure ideals in K̃cnt.

Proof. First, let F be an a-filter on (0, 1]. We show that I(F) is pure:
Let x ∈ I(F). Then there exists S ∈ F such that x|S = 0. By proposition 3.5,

x|T = 0 for some T ≻ S. By Urysohn’s lemma, there exists y ∈ K̃cnt such that y|S = 0,
y|T c = 1. Then (xy)|T = 0 and (xy)|T c = x|T c . Hence x = xy and y ∈ I(F).

In particular, I(F(I)) ⊆ I is pure for each I ⊳ K̃cnt, and hence I(F(I)) ⊆ m(I).

Conversely, we show that m(I) ⊆ I(F(I)) for each I ⊳ K̃cnt:
Let x ∈ m(I), i.e., there exists y ∈ I such that x = xy. As x(1−y) = 0, there exist (by
lemma 3.6) closed S, T ⊆ (0, 1] with S∪T = (0, 1] such that x|S = 0 and (1− y)|T = 0.
Hence y|Sc = 1, so S ∈ F(I), and x ∈ I(F(I)).

Finally, if I ⊳ K̃cnt is pure, then I = m(I) = I(F(I)), hence I = I(F) for some a-filter
F on (0, 1].
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5 Closed ideals and filters

We will denote I(F) := I(F) (closure in the sharp topology) and F(I) := F(I)
(≺-closure).

Proposition 5.1. Let F be an a-filter on (0, 1]. Then

1. F = {S ∈ A : (∀T ≻ S, T closed)(T ∈ F)}.

2. F is an a-filter.

Proof. 1. Call F∗ := {S ∈ A : (∀T ≻ S, T closed)(T ∈ F)}.
⊆: F ⊆ F∗ and F∗ is ≺-closed: if S ∈ A \ F∗, then there exists a closed T ≻ S with
T /∈ F , hence also (∅, T )≺ ⊆ A \ F∗.
⊇: let X ⊇ F be ≺-closed. Let S ∈ A \ X . Then S ∈ (T, U)≺ ⊆ A \ X for some
T, U ∈ A. As ≺ is a dense order, S ≺ V ≺ U for some closed V , and V ∈ (T, U)≺ ⊆
A \ X ⊆ A \ F . Thus S /∈ F∗. Hence F∗ ⊆ X .
2. ∅ /∈ F , since ∅ /∈ A.
Let S1, S2 ∈ F and let T ≻ S1 ∩ S2. Let

U1 = {ε ∈ (0, 1] : d(ε, S1) < d(ε, S2)}
U2 = {ε ∈ (0, 1] : d(ε, S2) < d(ε, S1)}.

Let V1 := U1 ∪ T ◦ and V2 := U2 ∪ T ◦. Then S1 = (S1 \ S2) ∪ (S1 ∩ S2) ⊆ U1 ∪ T ◦ = V1
since S2 is closed. Since V1 is open, S1 ≺ V1. Hence V1 ∈ F . Similarly, V2 ∈ F . As
V1 ∩ V2 ⊆ T , T ∈ F . We conclude that S1 ∩ S2 ∈ F .
The other defining properties of an a-filter are immediately checked using part 1.

Corollary 5.2. If F is an a-filter on (0, 1], then F◦ = F .

Proof. ⊇: since F◦ ⊆ F .
⊆: it suffices to show that F ⊆ F◦. Let S ∈ F . Let T ⊆ (0, 1] be closed such that
T ≻ S. Then T ∈ F◦. Hence S ∈ F◦.

Theorem 5.3. Let F be an a-filter. Then

I(F) = {x ∈ K̃cnt : (∀S ∈ A)(x|Sc invertible ⇒ S ∈ F)}.

Proof. Call I+(F) := {x ∈ K̃cnt : (∀S ∈ A)(x|Sc invertible ⇒ S ∈ F)}.
We first show that I+(F) is closed:

If a ∈ K̃cnt \ I+(F), then there exists S ∈ A\F such that a|Sc is invertible. By lemma
3.4, x|Sc is invertible for each x in a certain neighborhood of a. Then such x /∈ I+(F),

too. Hence K̃cnt \ I+(F) is open.
We now show that I(F) ⊆ I+(F):
Let x ∈ I(F). Then x|S = 0 for some S ∈ F . Let T ∈ A such that x|T c is invertible.

Then S ∩ (0, δ) \ T = ∅ for some δ > 0, for otherwise, 0 ∈ S \ T and x|S\T = 0 and
x|S\T is invertible, a contradiction. Hence S∩(0, δ) ⊆ T , and T ∈ F . Thus x ∈ I+(F).
Finally, we show that I+(F) ⊆ I(F):
Let x = [xε] ∈ I+(F). Consider the sets Ln := {ε : |xε| > εn}. As x|Ln

is invertible,
Lc
n ∈ F , for each n ∈ N. Further, Ln ≺ Ln+1 for each n ∈ N. By Urysohn’s

8



lemma, there exist yn ∈ K̃cnt such that yn|Ln
= 1 and yn|Lc

n+1
= 0 and 0 ≤ yn ≤ 1.

Then |xyn − x||Ln
= 0 and |xyn − x||Lc

n

≤ |x||Lc
n

≤ ρn. Hence |xyn − x| ≤ ρn, and
limn→∞ xyn = x. As (xyn)|Lc

n+1
= 0, xyn ∈ I(F), for each n.

Corollary 5.4. Let I ⊳ K̃cnt. Then I(F(I)) ⊆ I ⊆ I(F(I)) and I = m(I).

Proof. I ⊆ I(F(I)): let x ∈ I. Let S ∈ A such that x|Sc is invertible. Then S ∈ F(I).
Hence by theorem 5.3, x ∈ I(F(I)).
By proposition 4.5, I(F(I)) ⊆ I. Hence I = I(F(I)) = m(I) by theorem 4.8.

Theorem 5.5. Let I ⊳ K̃cnt. Then

F(I) = {S ∈ A : (∀x ∈ K̃cnt)(x|S = 0 ⇒ x ∈ I)}.

Proof. Call F+(I) := {S ∈ A : (∀x ∈ K̃cnt)(x|S = 0 ⇒ x ∈ I)}.
We show that F+(I) is closed:

Let S ∈ F+(I), i.e. S ∈ A and T ∈ F+(I), for each closed T ≻ S. Let x ∈ K̃cnt

such that x|S = 0. By lemma 3.5, there exists T ≻ S such that x|T = 0. W.l.o.g, T is
closed. Thus x ∈ I. Hence S ∈ F+(I).
We now show that F(I) ⊆ F+(I):

Let S ∈ F(I). Then there exists a ∈ I such that a|Sc = 1. Now let x ∈ K̃cnt such that

x|S = 0. Then x|T = 0 for some T ≻ S. By Urysohn’s lemma, there exists y ∈ K̃cnt

with y|S = 0 and y|T c = 1. Then (xya)|T = x|T = 0 and (xya)|T c = x|T c . Hence
x = xya ∈ I.
Finally, we show that F+(I) ⊆ F(I):

Let S ∈ F+(I) and let T ≻ S be closed. By Urysohn’s lemma, there exists y ∈ K̃cnt

such that y|S = 0 and y|T c = 1. As S ∈ F+(I), y ∈ I. Hence T ∈ F(I).

Theorem 5.6. If I, J ⊳ K̃cnt, then F(I) = F(J) ⇐⇒ m(I) = m(J) ⇐⇒ I = J .

Proof. 1. If F(I) = F(J), then m(I) = I(F(I)) = I(F(J)) = m(J) by theorem 4.8.
2. If m(I) = m(J), then I = m(I) = m(J) = J by corollary 5.4.

3. Let S ∈ F(I). Let E := {x ∈ K̃cnt : x|Sc is invertible}. Then I ∩E 6= ∅. By lemma
3.4, E is open, hence also I ∩ E 6= ∅, i.e., S ∈ F(I).
Hence, if I = J , then F(I) = F(I) = F(J) = F(J).

Corollary 5.7. If I ⊳ K̃cnt, then m(I) = m(I).

Theorem 5.8. Let F1,F2 be a-filters on (0, 1]. Then I(F1) = I(F2) ⇐⇒ F◦
1 =

F◦
2 ⇐⇒ F1 = F2.

Proof. 1. If I(F1) = I(F2), then F◦
1 = F(I(F1)) = F(I(F2)) = F◦

2 by theorem 4.7.
2. If F◦

1 = F◦
2 , then F1 = F◦

1 = F◦
2 = F2 by corollary 5.2.

3. Let x ∈ I(F). Then x|S = 0 for some S ∈ F . By proposition 3.5, there exists
T ≻ S (w.l.o.g. T closed) such that x|T = 0. So T ∈ F , and x ∈ I(F).
Hence, if F1 = F2, then I(F1) = I(F1) = I(F2) = I(F2).

Corollary 5.9. If F is an a-filter on (0, 1], then (F)
◦
= F◦.
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6 Maximal and prime ideals and filters

Definition 6.1. An a-filter F on (0, 1] is called prime if for each S, T ∈ A with
S ∪ T ∈ F , either S ∈ F or T ∈ F .
An a-filter F on (0, 1] is called pseudoprime if for each S, T ∈ A with S◦∪T ◦ = (0, 1],
either S ∈ F or T ∈ F .

Remark 6.2. 1. In the definition of (pseudo)prime a-filter, we may also ask the condi-
tion for each closed S, T ⊆ (0, 1] (instead of for each S, T ∈ A only). For, if S /∈ A,
then S /∈ S, i.e., (0, δ] ∩ S = ∅ for some δ > 0. Hence (S ∪ T ) ∩ (0, δ] ⊆ T . So if
S ∩ T ∈ F , then also T ∈ F . The case T /∈ A is symmetric.
2. An a-filter F on (0, 1] is prime if and only if for each S, T ∈ A with S ∪ T = (0, 1],
either S ∈ F or T ∈ F . For, if F satisfies the latter condition and S ∪ T ∈ F , we
consider

U := {ε ∈ (0, 1] : d(ε, S) ≤ d(ε, T )} and V := {ε ∈ (0, 1] : d(ε, T ) ≤ d(ε, S)}.

Then U , V are closed with U ∪ V = (0, 1]. Hence U ∈ F or V ∈ F . If U ∈ F , then
also (S ∪T )∩U ∈ F . As (S ∪T )∩U ⊆ S, also S ∈ F . The case V ∈ F is symmetric.
This motivates our (less obvious) definition of pseudoprime a-filter.

Lemma 6.3. Let S, T, U ⊆ (0, 1] be open and nonempty with U ⊆ S ∪ T . Then there
exist V ≺ S and W ≺ T such that U ⊆ V ∪W .

Proof. Let

V := {ε ∈ (0, 1] : max(d(ε, U), d(ε, T c)) ≤ d(ε, Sc)}
W := {ε ∈ (0, 1] : max(d(ε, U), d(ε, Sc)) ≤ d(ε, T c)}.

If ε ∈ V \ S, then ε ∈ T c ∩ U ⊆ T c ∩ (S ∪ T ) ⊆ S. Hence V ⊆ S. As V is closed and
S is open, also V ≺ S. Similarly W ≺ T .
Further, let ε ∈ U . Then either d(ε, T c) ≤ d(ε, Sc) (hence ε ∈ V ) or d(ε, Sc) ≤ d(ε, T c)
(hence ε ∈ W ). So U ⊆ V ∪W .

Lemma 6.4. Let F be a pseudoprime a-filter on (0, 1]. Then I(F) is pseudoprime.

Proof. Let xy = 0. By lemma 3.6, there exist closed T, U with T ◦ ∪ U◦ = (0, 1] such
that x|T = 0 and y|U = 0. As F is pseudoprime, T ∈ F or U ∈ F . Hence x ∈ I(F) or
y ∈ I(F).

Lemma 6.5. Let I ⊳ K̃cnt be pseudoprime. Then F(I) is pseudoprime.

Proof. Let S, T ∈ A with S◦∪T ◦ = (0, 1]. Let V ≺ S◦ andW ≺ T ◦ such that V ∪W =

(0, 1] (lemma 6.3 with U = (0, 1]). By Urysohn’s lemma, there exist x, y ∈ K̃cnt such
that x|V = 0, x|Sc = 1, y|W = 0 and y|T c = 1. Then xy = 0. As I is pseudoprime,
x ∈ I or y ∈ I. Hence S ∈ F(I) or T ∈ F(I).

Lemma 6.6. Every closed ideal I ⊳ K̃cnt is radical.

Proof. Let S ∈ F(
√
I). Then there exists x ∈ K̃cnt and n ∈ N with xn ∈ I and

x|Sc = 1. Then also xn|Sc = 1, hence S ∈ F(I). Thus F(
√
I) = F(I). By theorem

5.6, I ⊆
√
I ⊆

√
I = I = I.
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Proposition 6.7. Let I ⊳ K̃cnt. Then the following are equivalent:

1. I is pseudoprime

2. the set of ideals containing I is totally ordered (for ⊆)

3. I is irreducible

4.
√
I is prime

5. F(I) is pseudoprime.

For K̃cnt = R̃cnt, this is still equivalent with

6. R̃cnt/I is totally ordered.

Proof. 1 ⇒ 6 (for K̃cnt = R̃cnt): let a ∈ R̃cnt. Since a
2 = |a|2, we have (a−|a|)(a+|a|) =

0. As I is pseudoprime, a− |a| ∈ I or a+ |a| ∈ I. As R̃cnt is an l-ring, it follows that

a+ I ≥ 0 or −a + I ≥ 0 in R̃cnt/I (cf. [7, Thm. 5.3]).

6 ⇒ 2 (for K̃cnt = R̃cnt, cf. [8, 4.1]): the map J 7→ J/I is an order preserving bijection

between the (l-)ideals of R̃cnt containing I and the l-ideals of R̃cnt/I. As in any totally

ordered ring, the l-ideals in R̃cnt/I are totally ordered.

1 ⇒ 2 (for K̃cnt = C̃cnt): by the bijective correspondence of ideals in R̃cnt and in C̃cnt

(section 2).
2 ⇒ 3: let K = I ∩ J . Either I ⊆ J or J ⊆ I, whence K = I or K = J .
3 ⇒ 1: as in any commutative l-ring with 1 in which every ideal is an l-ideal, the
irreducibility of I E R̃cnt is equivalent with: for any x, y ∈ R̃cnt, xR̃cnt ∩ yR̃cnt ⊆ I
implies x ∈ I or y ∈ I [2, Prop. 8.4.1]. So let x, y ∈ R̃cnt with xy = 0. By lemma
3.6, there exist open T, U with T ∪ U = (0, 1] such that x|T = 0 and y|U = 0. Let

z ∈ xR̃cnt ∩ yR̃cnt. Then z|T = z|U = 0, hence z = 0. In particular, xR̃cnt ∩ yR̃cnt ⊆ I,

and hence x ∈ I or y ∈ I. The bijective correspondence of ideals in R̃cnt and C̃cnt

yields the result for C̃cnt.
2 ⇒ 4: the intersection of a chain of prime ideals is prime, hence

√
I =

⋂
I⊆P,P prime P

is prime.
4 ⇒ 5: by lemma 6.5, F(

√
I) is pseudoprime. By the proof of lemma 6.6, F(I) =

F(
√
I).

5 ⇒ 1: by lemma 6.4, m(I) = I(F(I)) is pseudoprime. Hence I ⊇ I(F(I)) is also
pseudoprime.

Theorem 6.8. Let I ⊳ K̃cnt. Then I is prime iff I is pseudoprime and radical.

Proof. ⇒: as I is prime,
√
I =

⋂
I⊆P,P prime P = I.

⇐: I =
√
I is prime by proposition 6.7.

Lemma 6.9. Every pure ideal I ⊳ K̃cnt is radical.

Proof. Let xn ∈ I for some x ∈ K̃cnt and n ∈ N. As I = m(I) = I(F(I)), there exists
S ∈ F(I) such that xn|S = 0. Hence also x|S = 0, and x ∈ I(F(I)) = I.

Proposition 6.10. For I ⊳ K̃cnt, the following are equivalent:
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1. I is pseudoprime

2. m(I) is prime

3. I contains a prime ideal.

Proof. 1 ⇒ 2: by lemmas 6.4 and 6.5, m(I) = I(F(I)) is pseudoprime. By lemma 6.9,
m(I) is radical. Hence m(I) is prime.
2 ⇒ 3: m(I) ⊆ I.
3 ⇒ 1: if P ⊆ I is prime and xy = 0, then xy ∈ P , so x ∈ P ⊆ I or y ∈ P ⊆ I.

Proposition 6.11. Let F be an a-filter on (0, 1]. Then the following are equivalent:

1. F is pseudoprime

2. I(F) is pseudoprime

3. I(F) is prime.

Proof. 1 ⇒ 2: by lemma 6.4, I(F) is pseudoprime.
2 ⇒ 3: as I(F) is pure, I(F) is radical (lemma 6.9). By theorem 6.8, I(F) is prime.
3 ⇒ 1: by lemma 6.5, F(I(F)) is pseudoprime. As F(I(F)) ⊆ F , also F is pseudo-
prime.

We now consider maximal ideals and a-filters:

Theorem 6.12. Let F be an a-filter.

1. if F is pseudoprime, then F is maximal.

2. F is maximal if and only if F is prime and ≺-closed.

Proof. 1. Suppose F ( F ′ for some a-filter F ′. Let S ∈ F ′ \ F . Then there exists a
closed T ≻ S such that T /∈ F . As ≺ is a dense order, there exists an open V with
S ≺ V ≺ T . Since T ◦ ∪ (V c)◦ = (0, 1] and F is pseudoprime, V c ∈ F . But then
∅ = S ∩ V c ∈ F ′, a contradiction.
2. ⇒: we show that F is closed: as F ⊆ F , and F is an a-filter, F = F by
maximality. Further, we show that F is prime: let S, T ∈ A such that S ∪ T ∈ F .
Suppose there exists U ∈ F such that U ∩ S = ∅ and there exists V ∈ F such that
V ∩ T = ∅. Then ∅ = (U ∩ V ) ∩ (S ∪ T ) ∈ F , a contradiction. We may thus assume
that U ∩ S 6= ∅, for each U ∈ F . (The case U ∩ T 6= ∅, for each U ∈ F is similar.)
Then ∅ /∈ F ′ := {U ⊆ (0, 1] closed: (∃V ∈ F)(S ∩ V ⊆ U)}. As F ′ is an a-filter,
F = F ′ by maximality. Hence S ∈ F .
2. ⇐: by part 1, F = F is maximal.

Theorem 6.13. Let I ⊳ K̃cnt.

1. if I is pseudoprime, then I is maximal.

2. I is maximal if and only if I is prime and closed.
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Proof. 1. By proposition 6.7, F(I) = F(I) is pseudoprime. Thus by theorem 6.12,

F(I) is maximal. Now let I ⊆ J ⊳ K̃cnt. Then F(I) ⊆ F(J), and hence F(I) = F(J)
by maximality. Hence also m(I) = I(F(I)) = I(F(I)) = I(F(J)) = I(F(J)) = m(J),
and hence J ⊆ J = I by theorem 5.6.
2. ⇒: let E denote the set of invertible elements in K̃cnt. As I is a proper ideal,
I ∩E = ∅. As E is open, also I ∩E = ∅. Hence I is proper, and I = I by maximality.
Maximal ideals are prime in any commutative ring with 1.
⇐: by part 1, I = I is maximal.

Corollary 6.14.

1. The set of minimal prime ideals in K̃cnt equals

{I(F) : F is a max. a-filter on (0, 1]} = {I(F) : F is a pseudoprime a-filter on (0, 1]}.

2. The set of maximal ideals in K̃cnt equals

{I(F) : F is a max. a-filter on (0, 1]} = {I(F) : F is a pseudoprime a-filter on (0, 1]}.

Proof. 1.(a) Let I ⊳ K̃cnt be a minimal prime. Then F(I) is pseudoprime, and
I(F(I)) ⊆ I is a prime ideal. By minimality, I = I(F(I)) = I(F(I)) and F(I)
is maximal.
(b) Let F be a pseudoprime a-filter on (0, 1]. Then I(F) is prime by proposition 6.11.

If P⊳K̃cnt is prime with P ⊆ I(F), then F(P ) ⊆ F(I(F)) ⊆ F , and hence F(P ) ⊆ F .
As P is prime, F(P ) is pseudoprime, and hence F(P ) is maximal by theorem 6.12.
Hence F(P ) = F . Consequently, P ⊇ I(F(P )) = I(F(P )) = I(F) = I(F).

2.(a) Let I ⊳ K̃cnt be maximal. Then I is pseudoprime, hence F(I) is pseudoprime,
and thus F(I) is maximal. Further, I = I = m(I) = I(F(I)) = I(F(I)).
(b) Let F be a pseudoprime a-filter on (0, 1]. Then I(F) is pseudoprime, hence I(F)
is maximal.

Proposition 6.15. Let I ⊳ K̃. Then I =
⋂

I⊆M

M maximal

M .

In particular, an ideal I ⊳ K̃ is closed iff it is an intersection of maximal ideals.

Proof. ⊆: by theorem 6.13, maximal ideals are closed.
⊇: let x /∈ I = m(I) = I(F(I)) (corollary 5.4). By theorem 5.3, there exists S ∈
A \ F(I) such that x|Sc is invertible. Let E := {x ∈ K̃cnt : x|Sc is invertible}. As E

is closed under multiplication and E ∩ I = ∅, there exists a prime P ⊳ K̃cnt such that
I ⊆ P and E ∩ P = ∅ (e.g., [7, 0.16]). As E is open (lemma 3.4), also E ∩ P = ∅. In
particular, P is maximal and x /∈ P .

Remark 6.16. In the previous, we showed that maximal ideals of K̃cnt are in bijec-
tive correpondence with maximal a-filters, which are in bijective correspondence with
points of β(0, 1]\ (0, 1], where β(0, 1] denotes the Stone-Čech compactification of (0, 1]
(cf. [7, 6.5]).

7 Rapid a-filters

Definition 7.1. An a-filter F is called rapid if for each sequence (Sn)n in F with
S1 ≻ S2 ≻ . . . , there exists T ∈ F such that T \ Sn /∈ S.
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Theorem 7.2. Let F be an a-filter. Then I(F) is closed iff F is rapid.

Proof. ⇐: let a ∈ I(F) with continuous representative (aε)ε. For each n ∈ N, let
Sn := {ε ∈ (0, 1] : |aε| ≤ εn}. By theorem 5.3, Sn ∈ F , and also S1 ≻ S2 ≻ . . . . As F
is rapid, there exists T ∈ F such that T \ Sn /∈ S. Hence |a||T ≤ ρn, for each n ∈ N,
i.e., a|T = 0. Hence a ∈ I(F).
⇒: let Sn ∈ F , and also S1 ≻ S2 ≻ . . . . By Urysohn’s lemma, there exist φn ∈ C((0, 1])
such that 0 ≤ φn ≤ εn, φn|Sn+1

= 0 and φn|Sc
n
= εn. Let φ :=

∑∞
n=1 φn on (0, 1/2].

By uniform convergence, φ is continuous and εn+1 ≤ φ(ε) ≤ εn + εn+1 + · · · ≤ 2εn on

(0, 1/2]∩ Sn \ Sn+1. Extend φ to a continuous map on (0, 1]. Then a := [φ(ε)] ∈ K̃cnt.
Let T ∈ A be such that a|T c is invertible. Then there exists n ∈ N such that |φ(ε)| >
2εn for ε ∈ T c ∩ (0, δ] (some 0 < δ ≤ 1/2). Hence Sn ∩ (0, δ] ⊆ T , and T ∈ F . By
theorem 5.3, a ∈ I(F) = I(F). Thus there exists T ∈ F such that a|T = 0.
Let n ∈ N. Then |φ(ε)| < εn for each ε ∈ (0, δ] ∩ T (some 0 < δ ≤ 1/2). Hence
(0, δ] ∩ T \ Sn = ∅.

Remark 7.3. Recall that a filter F of subsets of N is called rapid if for any decreasing
sequence (Sn)n in F , there exists S ∈ F such that S \ Sn is finite for every n ∈ N. A
free ultrafilter U of subsets of N is called weakly selective (or δ-stable or P-point of
βN\N) if for each sequence (Sn)n in U , there exists S ∈ U such that S \Sn is finite for
each n ∈ N. There exist weakly selective free ultrafilters if we assume the continuum
hypothesis [11, 6] (in fact, it satisfies to assume weaker axioms, e.g. ZFC+Martin’s
axiom [3, §4]). By definition, a weakly selective free ultrafilter is rapid.

Lemma 7.4. There exists a rapid maximal a-filter, if we assume the continuum hy-
pothesis.

Proof. Let U be a rapid free ultrafilter on N. Let

F :=
{
S ∈ A : {n ∈ N : 1/n ∈ S} ∈ U

}
.

From the fact that U is a filter, it is straightforward to check that F is an a-filter.
From the fact that U is rapid, resp. maximal, it is straightforward to check that F
is a rapid, resp. prime a-filter. By theorem 6.12, it suffices to show that F closed.
Let S ∈ F . As S is a closed set, there exists a closed T ≻ S such that {n ∈ N :
1/n ∈ T} = {n ∈ N : 1/n ∈ S}. Since T ∈ F , {n ∈ N : 1/n ∈ T} ∈ U . Hence also
S ∈ F .

Proposition 7.5. There exists a prime ideal in K̃cnt which is both minimal and max-
imal, if we assume the continuum hypothesis.

Proof. Let F be a rapid maximal a-filter. By theorem 7.2, I(F) is closed, hence I(F)
is both a minimal and maximal prime ideal by corollary 6.14.

8 z-ideals

As the notion of z-ideal in the ring C(X) of continuous functions on a topological space
X can be expressed by a purely algebraic condition [7, 4A], G. Mason [9] used this
condition to define a z-ideal of any commutative ring R with 1.
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Definition 8.1. Denoting by M(a) = {M max. ideals of R : a ∈ M}, I E R is a
z-ideal if

(∀a ∈ R)(∀b ∈ I)(M(a) = M(b) ⇒ a ∈ I).

We proceed to show a similar characterization as for z-ideals in K̃. As in [13], we
denote Z(a) := {S ∈ S : a|S = 0}.

Theorem 8.2. Let a, b ∈ K̃cnt. Then M(a) ⊆ M(b) ⇐⇒ Z(a) ⊆ Z(b).

Proof. ⇒: let S ∈ Z(a) \ Z(b), i.e., a|S = 0 and b|S 6= 0. By lemma 3.4, there exists
T ∈ S with T ⊆ S such that b|T is invertible. Let M be a maximal ideal containing

I := {x ∈ K̃cnt : x|T = 0}⊳ K̃cnt. Since a|S = 0, also a|T = 0, hence a ∈ M . Suppose
that b ∈ M . Since b|T is invertible, b|U is invertible for some U ≻ T . By Urysohn’s

lemma, there exists x ∈ K̃cnt such that x|T = 0 and x|Uc = 1. Hence x ∈ I ⊆ M ,

and x̄x+ b̄b = |x|2 + |b|2 ∈M would be invertible, a contradiction. We conclude that
M ∈ M(a) \M(b).

⇐: letM ∈ M(a)\M(b), so a ∈M and b /∈M . AsM is maximal, M + bK̃cnt = K̃cnt.

Let m ∈ M and c ∈ K̃cnt such that m+ bc = 1. As bc,m ∈ K̃, there exists S ⊆ (0, 1]
such that (bc)|S and m|Sc are invertible [13, Lemma 4.1]. Hence also b|S is invertible.

Suppose that a|S is invertible. Then āa+ m̄m = |a|2 + |m|2 ∈M would be invertible,
a contradiction. By lemma 3.4, there exists T ∈ S with T ⊆ S such that a|T = 0. We
conclude that T ∈ Z(a) \ Z(b).

Corollary 8.3. I E K̃cnt is a z-ideal iff

(∀a ∈ K̃cnt)(∀b ∈ I)(Z(a) = Z(b) ⇒ a ∈ I).

Proposition 8.4.

1. For I E K̃cnt,

Iz : = {x ∈ K̃cnt : (∃a ∈ I)(Z(x) = Z(a))} = {x ∈ K̃cnt : (∃a ∈ I)(Z(x) ⊇ Z(a))}
= {x ∈ K̃cnt : (∃a ∈ I)(M(x) = M(a))} = {x ∈ K̃cnt : (∃a ∈ I)(M(x) ⊇ M(a))}

is the smallest z-ideal containing I. We call it the z-closure of I. I is a z-ideal
iff I = Iz.

2. For I E K̃cnt, I ⊆
√
I ⊆ Iz. Hence (

√
I)z = Iz and every z-ideal is radical.

A (proper) z-ideal is prime iff it is pseudoprime.

Proof. As in [13, Prop. 4.3].

Proposition 8.5. Every closed ideal I ⊳ K̃cnt is a z-ideal.

Proof. I is an intersection of maximal ideals (proposition 6.15), hence a z-ideal [9].

Proposition 8.6.

1. For a family (Iλ)λ∈Λ of ideals IλE K̃cnt, (
∑

λ∈Λ Iλ)z =
∑

λ∈Λ (Iλ)z. In particular,
the sum of a family of z-ideals is a z-ideal.
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2. For I, J E K̃cnt, Iz ∩ Jz = (I ∩ J)z.

3. For I E K̃cnt, I
z := {x ∈ K̃cnt : (xK̃cnt)z ⊆ I} is the largest z-ideal contained in

I. We call it the z-part of I. I is a z-ideal iff I = Iz.

4. For a family (Iλ)λ∈Λ of ideals Iλ E K̃cnt,
⋂

λ∈Λ I
z
λ = (

⋂
λ∈Λ Iλ)

z. In particular,
the intersection of a family of z-ideals is a z-ideal.

5. For I E K̃cnt, m(I) ⊆ Iz ⊆ I
√ ⊆ I. In particular, every pure ideal of K̃cnt is a

z-ideal. If I ⊳ K̃cnt is pseudoprime, then Iz is prime.

Proof. 1. First, we show that (I + J)z = Iz + Jz.
Let x ∈ (I + J)z. Hence there exist a ∈ I, b ∈ J such that Z(x) = Z(a+ b). Let (αε)ε,
resp. (βε)ε, be representatives of |a|, resp. |b|, with αε 6= 0 and βε 6= 0 for all ε. Let
S := {ε ∈ (0, 1] : αε < 2βε} and T := {ε ∈ (0, 1] : βε < 2αε}. As αε 6= 0 and βε 6= 0,
S ∪ T = (0, 1]. By lemma 6.3, there exist V ≺ S, U ≺ T such that U ∪ V = (0, 1].

By Urysohn’s lemma, there exists y, z ∈ R̃cnt such that y|V = 1, y|Sc = 0, z|U = 1 and

z|T c = 0 and 0 ≤ y, z ≤ 1. Then y + z ≥ 1. Hence there exists u ∈ R̃cnt such that
(y + z)u = 1.
Now let W ∈ Z(a), i.e., a|W = 0. As |b||T ≤ 2|a||T , also b|T∩W = 0. Hence T ∩W ∈
Z(a + b) = Z(x), i.e. x|T∩W = 0. Hence xzu|W = xzu|(W∩T )∪(W\T ) = 0. Thus Z(a) ⊆
Z(xzu). As a ∈ I, xzu ∈ Iz. Similarly, xyu ∈ Jz. Hence x = xyu+ xzu ∈ Iz + Jz.
For arbitrary sums, the result follows as in [13, Prop. 4.4].
2–4. As in [13, Prop. 4.4].
5. We show that m(I) ⊆ Iz. Let x ∈ m(I) = I(F(I)). Then there exists S ∈ F(I)

such that x|S = 0. Let y ∈ (xK̃cnt)z. Then also y|S = 0, so y ∈ I(F(I)) ⊆ I.

Thus (xK̃cnt)z ⊆ I. The other statements follow as in [13, Prop. 4.4] (using [5, Prop.
4.29]).

Remark 8.7. There are z-ideals that are not closed (e.g., consider a minimal prime
ideal that is not maximal).

It is well known that K̃ is complete for the sharp topology [12]. Similarly, we have:

Theorem 8.8. K̃cnt is complete for the sharp topology.

Proof. Since K̃cnt ⊆ K̃ and K̃ is complete, we show that K̃cnt is closed in K̃. Let
xn ∈ K̃cnt with continuous representative (xn,ε)ε such that xn → x ∈ K̃. By taking a
subsequence, we may assume that for each n ∈ N,

|xn,ε − xε| ≤ εn, ∀ε ≤ εn.

W.l.o.g., (εn)n is strictly decreasing and tends to 0. Then let u1,ε := x1,ε and

un,ε :=

{
xn,ε − xn−1,ε ε ≤ εn+1

0, ε > εn

in such a way that un,ε is continuous in ε and |un,ε| ≤ |xn,ε − xn−1,ε| for each ε ∈ (0, 1].
Then sε :=

∑∞
n=1 un,ε is a locally finite sum. Hence (sε)ε is continuous and for each
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ε ∈ (εn+1, εn],

|sε − xε| =
∣∣∣

n∑

k=1

uk,ε−xε
∣∣∣ ≤ |un,ε|+ |xn−1,ε − xε| ≤ |xn,ε − xε|+2 |xn−1,ε − xε| ≤ 3εn−1.

Hence x = [sε] ∈ K̃cnt.

Theorem 8.9. Let I E K̃cnt be a finitely generated ideal.

1. If I is radical (in particular, if I is closed, pure or a z-ideal), then I ∈ {0, K̃cnt}.

2. Iz = I

3. m(I) = Iz.

Proof. By [5, Lemma 4.5], I is principal, i.e. I = aK̃cnt for some a ∈ K̃cnt.

1. By [5, Prop. 4.28], I is idempotent. Hence a = a2b for some b ∈ K̃cnt. Thus ab
is idempotent. So either ab = 0, whence a = a2b = 0 and I = 0, or ab = 1, whence
I = K̃cnt.
2. Let x ∈ I, i.e. x = limn→∞ xn for some xn ∈ I. Let S ∈ Z(a), i.e. a|S = 0. Then
also xn|S = 0 for each n ∈ N, hence also x|S = 0, i.e. S ∈ Z(x). Thus x ∈ Iz. The
converse inclusion holds by proposition 8.5.
3. Let x ∈ K̃cnt \m(I) = I(F(I)). Then for each S ∈ F(I), x|S 6= 0. In particular,
let (aε)ε be a (continuous) representative of a and Ln := {ε ∈ (0, 1] : |aε| > εn}.
Then Lc

n ∈ F(I), so x|Lc
n
6= 0. By lemma 3.4, there exist Tn ∈ S with Tn ⊆ Lc

n+1

and x|Tn
is invertible. By lemma 3.5, there exist Sn ≻ Tn such that x|Sn

is invertible

(as Tn ≺ Lc
n, we may assume Sn ≺ Lc

n). By Urysohn’s lemma, there exist yn ∈ K̃cnt

with yn|Tn
= (

√
|a|)|Tn

, yn|Sc
n
= 0 and 0 ≤ yn ≤

√
|a|. As |yn||Sn

≤
√

|a||Sn
≤ ρn/2,

y :=
∑∞

n=1 yn ∈ K̃cnt exists (K̃cnt is a complete ultrametric space). We show that

y ∈ (xK̃cnt)z.
Let U ∈ Z(x), i.e., x|U = 0. Then 0 /∈ U ∩ Sn, since x|Sn

is invertible. Hence yn|U = 0.
Then also y|U = 0, i.e., U ∈ Z(y).

Also y /∈ I: |y||Tn
≥ |yn||Tn

=
√

|a||Tn
≥ (ρ−n/2 |a|)|Tn

for each n ∈ N. Hence |y| �
ρ−N |a| for any N ∈ N, and thus y /∈ I. Hence (xK̃cnt)z 6⊆ I, i.e., x /∈ Iz.

Let I ⊳ K̃cnt. Let I
⊥ = {x ∈ K̃cnt : xy = 0, ∀y ∈ I}. As in K̃, we have:

Proposition 8.10. Let I ⊳ K̃cnt. Then

1. I⊥ is closed.

2. I ⊆ I⊥⊥.

3. I ∩ I⊥ = {0}.

4. If I is pseudoprime, then I⊥ = {0}. In particular, I $ I⊥⊥ = K̃cnt.
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Proof. 1. Let x = limn→∞ xn, with xn ∈ I⊥. Then xny = 0, ∀n ∈ N, hence also
xy = 0, ∀y ∈ I. Thus x ∈ I⊥.
2. If x ∈ I, then xy = 0, ∀y ∈ I⊥, so I ⊆ I⊥⊥. By part 1, also I ⊆ I⊥⊥.
3. If x ∈ I ∩ I⊥, then x2 = 0, hence x = 0. Hence also I⊥ ∩ I ⊆ I⊥ ∩ I⊥⊥ = {0}.
4. Let x ∈ I⊥. If x 6= 0, then there exists T ∈ S such that x|T is invertible. By
lemma 3.5, there exists S ≻ T such that x|S is invertible. W.l.o.g. S is closed, T is
open and Sc ∈ S. As (T c)◦∪S◦ = (0, 1] and F(I) is pseudoprime, either T c ∈ F(I) or
S ∈ F(I). In the first case, there exists y ∈ I such that y|T = 1. As x ∈ I⊥, xy = 0,
contradicting the fact that (xy)|T is invertible. In the second case, there exists y ∈ I

such that y|Sc = 1. Hence xy = 0, and thus x|Sc = 0. As (xz)|S = 1 for some z ∈ K̃cnt,

and (xz)|Sc = 0, xz ∈ K̃cnt is idempotent, and hence xz = 0 (contradicting (xz)|S = 1)
or xz = 1 (contradicting (xz)|Sc = 0). Thus x = 0.

Lemma 8.11. There exists J ⊳ K̃cnt such that J 6= {0} and J⊥ 6= {0}.

Proof. Let S :=
⋃

n∈N(an, bn) with 1 > b1 > a1 > b2 > a2 > . . . and an → 0. Then

there exists x ∈ K̃cnt \ {0} such that x|S = 0 and there exists y ∈ K̃cnt \ {0} such that

y|Sc = 0. Let J = {x ∈ K̃cnt : x|S = 0}. Then x ∈ J and y ∈ J⊥.

Also as in K̃, the Hahn-Banach extension property does not hold in the following sense:

Theorem 8.12. Let J ⊳ K̃cnt with J 6= {0} and J⊥ 6= {0}. Let I := J + J⊥. Then

there exists a continuous K̃cnt-linear map φ: I → K̃cnt that cannot be extended to a
K̃cnt-linear map ψ: K̃cnt → K̃cnt.

Proof. Let φ(x + y) := x, for each x ∈ J and y ∈ J⊥. As J ∩ J⊥ = {0}, φ is

defined unambiguously and is K̃cnt-linear. Further, |φ(x+ y)|2 = |x|2 ≤ |x|2 + |y|2 =
(x+ y)(x̄+ ȳ) = |x+ y|2, for each x ∈ J and y ∈ J⊥. Hence φ is also continuous.

Now suppose that ψ: K̃cnt → K̃cnt is a K̃cnt-linear extension of φ. Then for any x ∈ J ,
xψ(1) = ψ(x) = φ(x) = x. Hence x(ψ(1) − 1) = 0. Thus ψ(1) − 1 ∈ J⊥. Hence

ψ(1)ψ(1) − ψ(1) = ψ(ψ(1) − 1) = φ(ψ(1) − 1) = 0. It follows that ψ(1) ∈ K̃cnt is
idempotent, hence ψ(1) = 0 or ψ(1) = 1. If ψ(1) = 0, then ψ = 0, and thus also

φ = 0, whence J = {0}. If ψ(1) = 1, then ψ(x) = x for each x ∈ K̃cnt, and thus also
φ(y) = y for each y ∈ J⊥, whence J⊥ = {0}.

Corollary 8.13. If I ⊳ K̃cnt with I 6= {0} and I⊥ 6= {0}, then I + I⊥ 6= K̃cnt.
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