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Abstract

In this paper an unconditionally stable, spatially and temporally implicit
time-domain discretization for nonuniform magnetized cold plasma is devel-
oped. The discrete dispersion relation is free of spurious solutions and ap-
proximates the continuous dispersion relation for well-resolved wavelengths
and frequencies (k∆� π, ω∆t � π). For a specific choice of parameters, the
discrete dispersion relation approximates the continuous dispersion relation
for all wavelengths and frequencies up to the Nyquist limit. A few examples,
amongst them one involving mode conversion, illustrate the new method.

Keywords: Cold plasma, time domain

1. Introduction

A lot of research has been performed into the time-domain simulation of
electrodynamics in non-trivial media [1, 2, 3, 4], including Lorentz dielectrics
[1], lasing media [5], unmagnetized plasmas [6], and magnetized plasmas [7].
Modelling such media is usually done using an extra differential equation
(ADE, auxiliary differential equation) in addition to the classical Maxwell’s
equations. In magnetized plasmas, this approach is especially difficult be-
cause of the nature of the ADE, which is naturally discretized on a collo-
cated grid, while Maxwell’s equations are usually discretized on staggered
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grids. Explicit solutions have been proposed [7] and are stable provided the
vacuum Courant condition is obeyed. This is problematic when simulating
phenomena whose wavelength is much shorter than the vacuum wavelength
λvac = 2πc/ω, like the waves that occur in mode conversion layers [7, 8, 9, 10].
In that case, to resolve the phenomena in space (i.e. the spatial discretiza-
tion length is a reasonable fraction of the wavelength) a very small time step
must be chosen, where the time step is a very small fraction of the period of
the sinusoidal source. In this paper, we present a fully implicit time-domain
approach which is unconditionally stable such that ∆, the space step, and
∆t, the time step, can be chosen independently.
Section 2 of this paper presents the cold magnetized plasma equations. The
new spatial and temporal implicit discretization we propose is explained in
Section 3.1 together with a detailed discussion of the time-stepping (Section
3.2) and a proof of its stability for periodic boundary conditions (Section 3.3).
A more general proof is as yet elusive but the numerical examples confirm
stability in other cases as well. Finally Section 3.4 discusses the discretized
version of the dispersion relation and the choice of the time step ∆t versus
the space step ∆. In Section 4 special attention is devoted to the efficient
solution of the set of equations that has to be solved at each time step. Nu-
merical examples are presented in Section 5 followed by the conclusions in
Section 6.

2. Basic equations

Smithe [7] proposes the following equations to describe the time-domain
behavior of cold magnetized plasmas

−∂
~B

∂t
= ~∇× ~E (1)

ε0
∂ ~E

∂t
= −

∑
s

~Js + 1/µ0
~∇× ~B (2)

∂ ~Js
∂t

= ε0ω
2
s
~E − ~Ωs × ~Js (3)

where ~Js is the current of the sth particle species (electron current, proton

current, ...), ωs =
√

nsqs2

msε0
is the corresponding plasma frequency (where ns is

the particle density, qs is the charge and ms the mass) and ~Ωs = qs ~B0/ms is
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the cyclotron frequency due to the background magnetic field ~B0. All of these
quantities may be position-dependent, but the background quantities ~B0 and
ns are time-independent (i.e. (1)-(3) represent small linearized changes on a
constant background).

By rescaling the fields, (1)-(3) can be rewritten in a convenient anti-
symmetric form

~B =
1
√
µ0

~B (4)

~E =
√
ε0 ~E (5)

~Js = ε
3/2
0 ωs ~Js (6)

∂ ~B
∂t

= −c~∇× ~E (7)

∂ ~E
∂t

= −
∑
s

ωs ~Js + c~∇× ~B (8)

∂ ~Js
∂t

= ωs~E − ~Ωs × ~Js (9)

which is what we will use throughout this paper.
Spurious solution-free discretization methods for Maxwell’s equations are

well-known [11]. However, in these equations a new difficulty arises: the con-
stitutive equation needs all current and electric field components at the same
position. This makes it difficult to combine with staggered approaches such
as the Yee cell. Injudiciously chosen interpolation schemes risk introducing
non-physical “spurious” modes by introducing a cosine factor in some parts
of the discrete dispersion relation.

Smithe [7] solves these problems in an explicit FDTD framework by re-
peatedly interpolating from Yee cell positions to collocated positions and
back.

Here, we will present an implicit time-domain discretization scheme that
solves these problems. By virtue of being implicit in time, the time step ∆t

does not have to obey the Courant limit. On the other hand, at every time
step a (sparse) set of equations has to be solved, which is a disadvantage
relative to explicit discretizations but we will show later in this paper that
this sparse system can be solved very efficiently. The proposed discretization
is also implicit in space, and has the remarkable property of being able to
reproduce the continuous dispersion relation for all resolvable k and ω and
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not only for sufficiently small k and ω. This is only true fo a specific choice
of ∆t, as discussed in the sequel.

3. Spatial and temporal discretization

3.1. Generalities

Consider e.g. the y-component of (7)

∂Ex
∂z
− ∂Ez

∂x
= −1

c

∂By
∂t

(10)

We discretize space-time using 4D “cubical” cells of side ∆x,∆y,∆z,∆t. All
fields are written as linear combinations of products of 1D rooftop functions
centered on cell corners. It is important to emphasize here that all field
components are collocated at the cell corners. The basis-function associated
with a corner at (x0, y0, z0, t0) is

f(x, y, z, t, x0, y0, z0, t0) = r(x, x0,∆x)r(y, y0,∆y)r(z, z0,∆z)r(t, t0,∆t) (11)

where the “rooftop” function r(x, x0,∆) is defined as

r(x, x0,∆) =


0 x < x0 −∆
0 x > x0 + ∆

x−x0
∆

+ 1 x ∈ [x0 −∆, x0]
1− x−x0

∆
x ∈ [x0, x0 + ∆]

(12)

To “test” (10), we use the following testing functions

b(x, x′0 + ∆x/2,∆x)r(y, y
′
0,∆y)b(z, z

′
0 + ∆z/2,∆z)b(t, t

′
0 + ∆t/2,∆t) (13)

where a “pulse” function for the x-direction and centered at xc is given by

b(x, xc,∆) =


0 x < xc −∆/2
0 x > xc + ∆/2
1 x ∈ [xc −∆/2, xc + ∆/2]

(14)

and of course similarly for y, z and t. Note that derivatives of rooftop func-
tions are linear combinations of pulse functions. Further remark that (10)
features derivatives with respect to x, z and t and not with respect to y.
The testing function (13) is chosen such that one of its factors is a rooftop
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function with respect to this y-coordinate, while for the other coordinates
pulse functions are used.

Let us now return to (10). Representing Ex, Ez and By by expansions of
the form (11), we remark that at a given y = y0 coordinate, we can factor
out r(y, y0,∆y), allowing to rewrite (10) as

r(y, y0,∆y)

(
∂Ex
∂z
− ∂Ez

∂x
+

1

c

∂By
∂t

)
x,z,t

= 0 (15)

where the subscript indicates the remaining space- and time- dependence of
the quantity in brackets (Ex, Ez and By are no longer identical to their values
in (10) as we we have factored out the y-dependence, but the notation is
easily understood). Testing this with the proper testing function pertaining
to the y-direction, gives as a weighting factor an integral of the form∫ ∞

−∞
r(y, y0,∆y)r(y, y

′
0,∆y)dy ≈ ∆yδy0,y′0 (16)

if the integral is mass lumped. Trapezoidal integration, or “mass lumping”
is a convenient technique to make matrices sparser or easier to invert (the
impact of mass lumping in our approach will become clear in section 4). It
has been extensively used in FDTD and FE (e.g. [12]). The integral in
principle extends over the whole space (−∞ to ∞) but the integrands differ
from zero only in some finite region. The remaining weighting integral now
becomes ∫ ∞

−∞

(
∂Ex
∂z
− ∂Ez

∂x
+

1

c

∂By
∂t

)
x,z,t

b(x, x′0 + ∆x/2,∆x)

· b(t, t′0 + ∆t/2,∆t)b(z, z
′
0 + ∆z/2,∆z)dxdzdt (17)

Here, “pulse-pulse” and “pulse-rooftop” testing integrals do not need to be
mass lumped. The integrals can easily be calculated exactly and attempting
to mass lump them would sample points just at the edge of a pulse, where its
function value is not well-defined. We could easily remedy this by introducing
a limiting procedure into the mass lumping process, but it is far easier to
simply calculate the perfectly well-defined integrals (and this leads to the
same result anyway). Consider the first term of (17)∫ ∞

−∞

(
∂Ex
∂z

)
x,z,t

b(x, x′0 + ∆x/2,∆x)

· b(t, t′0 + ∆t/2,∆t)b(z, z
′
0 + ∆z/2,∆z)dxdzdt (18)
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where (
∂Ex
∂z

)
x,z,t

= r(x, x0,∆x)r(t, t0,∆t)

· (b(z, z0 −∆z/2,∆z)− b(z, z0 + ∆z/2,∆z)) /∆z (19)

This term becomes∫ ∞
−∞

r(x, x0,∆x)b(x, x
′
0 + ∆x/2,∆x)dx

·
∫ ∞
−∞

r(t, t0,∆t)b(t, t
′
0 + ∆t/2,∆t)dt

· 1

∆z

(∫ ∞
−∞

b(z, z0 −∆z/2,∆z)b(z, z
′
0 + ∆z/2,∆z)dz

−
∫ ∞
−∞

b(z, z0 + ∆z/2,∆z)b(z, z
′
0 + ∆z/2,∆z)dz

)
(20)

The x-integration gives either ∆x

2
or 0 (for x0 = x′0, x0 6= x′0, resp.), the t-

integration gives either ∆t

2
or 0, and the z integration (including the 1

∆z
factor)

gives either 1 (if z0 = z′0), −1 (if z0 = z′0 + ∆z) or 0 (otherwise). Hence the
testing integral for ∂Ex

∂z
for a specific Ex basis-function gives 0 if the testing

function does not overlap with the Ex basis-function and ±1
4
∆y∆x∆t if the

the testing function does overlap with the Ex basis-function. If we divide away
the testing function 4-volume ∆y∆x∆t∆z we get ±1

4
1

∆z
corresponding to 1

4

of the discretized derivative with respect to z. There are in total 8 Ex basis-
functions that overlap with any given test function (4 at t, 4 at t+ ∆t) and
the testing procedure averages their z−derivative (4 such derivatives, each
containing an extra factor 1

4
) at the center of a (x, z, t)-cube. There are also

8 basis-functions corresponding with each of the other two field components
(Ez and By) in (10) and their derivatives too, are interpolated to the cube
center. This finally leads to a discretized version of (10) that is implicit both
in space and in time.

Above, we have explained how the proposed spatial and temporal dis-
cretization works for the y-component of (10). Similarly, for all other com-
ponents of Maxwell’s equations a dedicated testing function similar to (13)
must be constructed in such a way that derivatives w.r.t. coordinates (includ-
ing time) occurring in the continuous equation give rise to the corresponding
pulse function factor in the testing function, and coordinates for which no
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derivatives occur in the continuous equation give rise to the correspond-
ing rooftop factor. In particular, in constitutive equation (9), only a time
derivative is present and its testing function will be a product of three spa-
tial rooftops and one temporal pulse function. Summarizing, the proposed
discretization scheme separately considers each scalar first-order partial dif-
ferential equation (i.e. one of the components of Maxwell’s curl equations or
one of the components of the constitutive equation), then constructs a 3D
cube (or line in the case of the constitutive equation) whose edges are the di-
rections along which the scalar PDE contains derivatives (including temporal
derivatives, the cube is not purely spatial). The derivatives occurring in the
PDE are then defined at centers of the edges of this cube. Next, all terms
of the scalar PDE are interpolated to the center of the cube. The resulting
equation at this point is the discretized end result. Note that the 6 scalar
PDE’s of Maxwel’s curl equations contain derivatives in different directions
and hence are discretized at the center of different cubes. For a concrete
example in 1D, see Fig. 1. In this figure we again consider (10) which in 1D
simplifies to ∂Ex

∂z
= −1

c

∂By
∂t

. In this case the (z, t) “cube” center is O. If O is
at z = n∆ and t = m∆t, field values in points 3 and 4 are at t = (m+1/2)∆t,
field values in points 1 and 2 are at t = (m − 1/2)∆t, field values in points
1 and 3 are at z = (n − 1/2)∆, while field values in points 2 and 4 are at
z = (n+ 1/2)∆.

As remarked by one of the reviewers, the results of our basis and test
function procedure, could, as in Fig. 1, be directly represented in terms of
a finite-difference interpolation scheme. We have chosen to introduce the
pulse-rooftop approach as this way of discretizing space is very well-known
in the electromagnetics community [13] and also because we believe this ap-
proach is more easily extendable to other coordinate systems, to higher-order
approximations and even to unstructured meshes. As further remarked by
another reviewer, researchers from the finite element community might prefer
to express our approximation in more rigorous terms [14]. In these terms the
basis or trial space consists of a C0-continuous P1 Lagrange basis in space-
time for all magnetic field, electric field and current components, yielding a
non-staggered approximation. The test space is slightly more complicated
due to the fact that the curl-operator features no i-th spatial derivative for
the i-th vector component. Consequently, for Maxwell’s curl equations the
test space consists of a C0-continuous P1 Lagrange basis in the spatial direc-
tions with missing derivative and a P0 basis for all other components. For the
constitutive equation, which contains no spatial derivatives, the test space
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Figure 1: discretization of (10) with only 1 spatial dimension (z). The discretized equation

for this cell is
(Ex,2−Ex,1)+(Ex,4−Ex,3)

2∆ = −1
c

(By,3−By,1)+(By,4−By,2)
2∆t

.

consists of a C0-continuous P1 Lagrange basis in all spatial directions and a
P0 basis in time.

The reader might wonder why we opted for the above discretization
scheme. Let us return to (10). After inserting a complex exponential wave
solution exp(jkxx) exp(jkyy) exp(jkzz) exp(jωt) for each of the field compo-
nents (as customary when investigating the dispersive behavior of the dis-
cretized equations), taking the discrete derivative and interpolating to the
center of the (x, z, t)-cube, the 3 terms turn out to be proportional to:

∂Ex
∂z
∝ sin(kz

∆z

2
) cos(kx

∆x

2
) cos(ω

∆t

2
) exp(ikxx) exp(ikyy) exp(ikzz) exp(iωt)

(21)

∂Ez
∂x
∝ sin(kx

∆x

2
) cos(kz

∆z

2
) cos(ω

∆t

2
) exp(ikxx) exp(ikyy) exp(ikzz) exp(iωt)

(22)

∂By
∂t
∝ sin(ω

∆t

2
) cos(kx

∆x

2
) cos(ky

∆y

2
) exp(ikxx) exp(ikyy) exp(ikzz) exp(iωt)

(23)

After dividing each term of the discretized equation (10), i.e. (21)-(23), by a
factor cos(kx

∆x

2
) cos(ky

∆y

2
) cos(ω∆t

2
), the only difference with the continuous
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counterpart for a complex exponential wave solution is that all ki (i = x, y, z)
and ω are replaced by tan(ki∆i/2)2/∆i or tan(ω∆t/2)2/∆t. This is precisely
why we used such unorthodox basis- and testing-functions : ki and ω are
replaced by tangent-functions, correctly approximating the continuous be-
havior for low values of ki and ω. This is the only change to the dispersion
relation. There are no further artifacts in the discretization scheme: purely
local interactions remain purely local. In contrast, testing (1)-(3) with clas-
sical staggered grid basis-functions (such as the ones used in [12]) leads to
factors of the form cos(ki

∆i

2
) in some terms but not in others, which may

cause spurious solutions at high wave numbers. It is also clear that there
are no spurious roots in the discrete dispersion relation, as will also become
clear from the examples in Section 4, despite warnings against using basis-
functions of the same order in all directions, e.g. in chapter 5 of [15]. We have
circumvented these problems by instead using testing functions of different
order in different directions.

3.2. Time-stepping

We have proposed a discretization scheme that is both implicit in space
and time and will now study in more detail how the time-stepping is per-
formed by turning to the set of equations that has to be solved at every time
step. To this end all field component are gathered in a vector V = [BEJs]T .
When applying our discretization procedure to the spatial derivatives only,
(7)-(9) can be rewritten as

∂

∂t
SA · V = SD · V (24)

where we have introduced the two relevant operators SA and SD. For the
electric and magnetic field, no spatial derivatives are present in the left hand
sides of (7)-(8), SA is an operator which interpolates or averages the fields in
space (according to the recipes of the previous subsection, also see Fig. 1).
For the currents, no spatial derivatives occur in the constitutive equation (9),
so they are not interpolated in space, and the current-current block of SA
is a unit matrix. The remaining discretized space derivatives in Maxwell’s
equations and the current-current interactions are handled using the operator
SD. For Maxwell’s curl equations, SD contains a combination of spatial
derivatives and interpolations. For the current-current and electric-current
interactions, it contains diagonal blocks containing ωs and Ω. Implicit time
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discretization of (24) gives:

SA(Vt+1 − Vt)/∆t = SD(Vt+1 + Vt)/2 (25)

This readily leads to the following relation between V at time steps n + 1
and n:

(SA − SD∆t/2)Vt+1 = (SA + SD∆t/2)Vt (26)

We may interpret (SA − SD∆t/2) as an operator which maps future fields
back into the past by half a time step, and (SA + SD∆t/2) as an operator
which maps past fields into the future by half a time step. Equation (26)
then demands that the past of the future equals the future of the past. We
now have to carefully investigate if (26) can be solved for Vt+1 when Vt is
known. In order for this set of equations to be square, half of the electric field
and magnetic field unknowns at the boundary of the studied domain must
be determined by boundary conditions. This is the case when using periodic
boundary conditions or PEC boundary conditions as in our examples.

3.3. Stability

Knowing that (26) can be solved for Vt+1 when Vt is known of course
allows to step through time, but we still have to proof that the obtained
time-domain sequence is stable. In all our numerical simulations late time
stability is indeed observed, but providing the most general proof turns out to
be as yet elusive. In the sequel a proof is provided for 1D-propagation through
a magnetized 1-specie plasma, when using periodic boundary conditions and
this proof is then extended to 2D and 3D in section 8.
Let the propagation direction be the x-direction and let us restrict ourselves
to the mode where only Ex, Ez,Jx,Jz and By are nonzero, i.e. the magnetic
field is perpendicular to the propagation direction. Furthermore, we will use
periodic boundary conditions in the x-direction, i.e. f(x = 0) = f(x = L)
with L the period and with f each of the field components.

10



We first define an interpolation matrix Mint and a derivative matrix Mder:

Mint =
1

2


1 1 0 0 0 . . .
0 1 1 0 0 . . .

...
. . .

1 0 0 . . . 0 1

 (27)

Mder =


1 −1 0 0 0 . . .
0 1 −1 0 0 . . .

...
. . .

−1 0 0 . . . 0 1

 (28)

For n discretization points these matrices are n×n matrices. They are circu-
lant [16] because of the periodic boundary conditions. With these matrices
the operators SA and SD become

SA =


1 0 0 0 0
0 Mint 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 Mint

 (29)

SD =


0 0 ωp 0 0
0 0 0 Mintωp

c
∆
Mder

−ωp 0 0 Ω 0
0 −ωp −Ω 0 0
0 c

∆
Mder 0 0 0

 (30)

while Vt = [Ex, Ez,Jx,Jz,By]Tt . Remark that all “elements” in these matri-
ces are themselves n × n matrices. Except for Mint and Mder, they are all
diagonal. Although ωp and Ω are diagonal, not all diagonal elements need
to be identical (i.e. the problem is not assumed to be uniform, the density
and background magnetic field may be position-dependent). Mass lumping
guarantees that ωp and Ω are diagonal, but for the purposes of this proof it
suffices that they are symmetric. We will now prove that all eigenvalues of
the time-stepping operator (SA − SD∆t/2)−1(SA + SD∆t/2) are on the unit
circle. Remark that

1. both Mint and Mder are circulant, so they are simultaneously diagonal-
isable using the Fourier basis [16]. We will call the n × n matrix that

11



diagonalises them F . Furthermore, a general formula for their eigen-
values exists [16]. The jth eigenvalue of a circulant n× n matrix with
elements mi,j is

λj =
n∑
k=1

m1,k exp

(
2πi

n
j(k − 1)

)
(31)

where j = 0, . . . , n− 1.
2. the eigenvalues of Mint are λj = 1

2

(
1 + exp(2πi

n
j)
)

or exp(−jπi
n

)λj =
cos(πj/n) (Note that a zero eigenvalue exists only if n is even. Mint is
invertible if n is odd.)

3. the eigenvalues ofMder are λj = 1−exp(2πi
n
j) or exp(−jπi

n
)λj = 2i sin(πj/n).

Using F , SA and SD can be transformed into S̃A = TSAT
−1 and S̃D =

TSDT
−1, with

T =


F 0 0 0 0
0 F 0 0 0
0 0 F 0 0
0 0 0 F 0
0 0 0 0 F

 (32)

S̃A is completely similar to SA with Mint replaced by Dint = FMintF
−1. After

some calculations, using the fact that c/∆ in (30) is scalar and commutes
with F and with Mint = F−1Dint, S̃D becomes

S̃D =


0 0 FωpF

−1 0 0
0 0 0 DintFωpF

−1 c
∆
Dder

−FωpF−1 0 0 FΩF−1 0
0 −FωpF−1 −FΩF−1 0 0
0 c

∆
Dder 0 0 0

 (33)

with Dder = FMderF
−1. Let us now go back to (26). It is readily seen that

(26) is equivalent to the very same equation in which SA and SD are replaced
by S̃A and S̃D. Multiplying both sides of this new equation with S̃−1

A gives:

(1− S̃−1
A S̃D∆t/2)Vt+1 = (1 + S̃−1

A S̃ ′D∆t/2)Vt (34)

Consider an eigenvector v of S̃−1
A S̃D with eigenvalue λ. This implies that

(1− S̃−1
A S̃D∆t/2)v = (1− λ∆t/2)v (35)

(1 + S̃−1
A S̃D∆t/2)v = (1 + λ∆t/2)v (36)
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hence v is an eigenvector of (1− S̃−1
A S̃D∆t/2)−1(1 + S̃−1

A S̃D∆t/2) with eigen-
value (1− λ∆t/2)/(1 + λ∆t/2). Provided that we can prove that λ is purely
imaginary, λ = iω, the eigenvalues of the fully discrete system become

2− iω∆t

2 + iω∆t

(37)

and are on the unit circle for all ∆t. In the above reasoning we had to invoke
the inverse of S̃A and hence, we must be sure that this inverse exists. If the
number of discretizations n is odd, this is always the case and for the further
proof we will stick to this case (in the other case, stability also remains intact
but a completely rigorous proof will not be provided here). What remains is
the calculation of S̃−1

A S̃D. The result is


0 0 FωpF

−1 0 0
0 0 0 FωpF

−1 c
∆
D−1
intDder

−FωpF−1 0 0 FΩF−1 0
0 −FωpF−1 −FΩF−1 0 0
0 c

∆
D−1
intDder 0 0 0

 (38)

Let us, e.g. take a closer look at FωpF
−1. Not only are F and ωp symmetric,

but the Fourier transform matrix F has the special property that F−1 = F ∗

(provided a 1/
√
N factor is used in both the DFT and its inverse, with N the

number of points; if not so, F−1 is proportional to F ∗ and the proof remains
valid). This implies that FωpF

−1 = FωpF
∗ and hence that (FωpF

−1)T =
(FωpF

−1)∗, i.e. the real part of FωpF
−1 is symmetric and its imaginary part

is anti-symmetric. The same holds for FΩF−1. The remaining quantity of
interest in (38) is c

∆
DderD

−1
int. Using the eigenvalues of Mint and Mder as

determined above, we have that

Dint = diag(1, exp(
2πi

n
(−1/2)), exp(

2πi

n
(−2/2)), . . . , exp(

2πi

n
(−(n− 1)/2)))−1

· diag(1, cos(π1/n), cos(π2/n), . . . , cos(π(n− 1)/n)) (39)

Dder = diag(1, exp(
2πi

n
(−1/2)), exp(

2πi

n
(−2/2)), . . . , exp(

2πi

n
(−(n− 1)/2)))−1

· diag(0, 2i sin(π1/n), 2i sin(π2/n), . . . , 2i sin(π(n− 1)/n)) (40)
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and hence

DderD
−1
int = diag(0, 2i sin(π1/n), 2i sin(π2/n), . . . , 2i sin(π(n− 1)/n))

· diag(1, cos(π1/n), cos(π2/n), . . . , cos(π(n− 1)/n))−1

= diag

(
0,
i

2
tan
(π
n

)
,
i

2
tan

(
2π

n

)
, . . . ,

i

2
tan

(
(n− 1)π

n

))
(41)

which is diagonal (symmetric) and purely imaginary. From all the above
we conclude that the matrix (38) is skew-hermitian and has only purely
imaginary eigenvalues λ = iω, as required.

Neither the amount of species nor the direction of the magnetic field were
essential for this proof. Configurations with multiple species or a differently
oriented ~B0 would merely give (much) larger matrices for SA and SD.
For an extension of the proof to 2D and even 3D we refer the reader to the
Appendix in Section 8.

3.4. Choice of ∆ and ∆t

As a consequence of our way to deal with the space and time discretiza-
tion, the discrete dispersion relation in vacuum is(

tan(k∆/2)

∆/2

)2

=
1

c2

(
tan(ω∆t/2)

∆t/2

)2

(42)

For sufficiently small ∆ and ∆t this dispersion relation reduces to the one
for the continuous equations. However, remark that if ∆ = c∆t(

tan(k∆t/2)

∆t/2

)2

/c2 =

(
tan(ω∆t/2)

∆t/2

)2

/c2 (43)

tan(kc∆t/2) = ± tan(ω∆t/2) (44)

kc = ±ω (45)

which is exactly equal to the continuous dispersion relation. The shortest
resolvable wavelength is λ = 2∆ corresponding to k = π/∆. For this wave-
length ω = ±π/∆t. These values of k and ω make the tangent infinite at
both sides (42). Thus, the discrete dispersion relation k = f(ω) starts at
k = ±ω/c for small k and ω and ends at k = π/∆, ω = π/∆t for large values
of ω (Fig. 2). In plasmas, too, high-frequency behaviour is vacuum-like and
one can set ∆ = c∆t to make the discrete dispersion relation approximate
the continuous dispersion relation even at high ill-resolved frequencies.
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While one of the advantages of an implicit approach is unconditional
stability, i.e. the freedom to choose both ∆ and ∆t independently to fit
frequencies and wavelengths under consideration, it may sometimes be useful
to set ∆ = c∆t to get correct high-frequency behaviour all the way up to the
Nyquist limit.

Α = 1/2

Α = 1

Α = 3 � 2

0.0 0.2 0.4 0.6 0.8 1.0
0.92

0.94

0.96

0.98

1.00

1.02

1.04

1.06

ΩDt

kc
�Ω

Figure 2: Vacuum discrete dispersion relation (kω/c vs ω) for ∆ = αc∆t with α =
1/2, 1, 3/2. At low k, ω the behaviour is always approximately correct, but for α = 1 the
behaviour is exact for all ω.

4. Optimizing the implicit step : a direct solution

At first sight, a major drawback of the proposed method is the fact that we
need the inverse of (SA−SD∆t/2). However, let us partition (SA−SD∆t/2)
as follows (

EB JE
EJ JJ

)
(46)

Submatrix EB contains all electric/magnetic interactions, JE and EJ all
electric/current interactions, and JJ the current-current interactions due to
the background magnetic field. Thanks to mass lumping, the JJ part is
purely local and hence block-diagonal implying that (JJ)−1 can easily be
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calculated explicitly. The inverse of (SA − SD∆t/2) can then be expressed
using the Schur complement S = EB − (JE)(JJ)−1(EJ):(
EB JE
EJ JJ

)−1

=

(
S−1 −S−1(JE)(JJ)−1

−(JJ)−1(EJ)S−1 (JJ)−1 + (JJ)−1(EJ)S−1(JE)(JJ)−1

)
(47)

Note that the dimension of S (say m × m) is already smaller than that of
SA or SD. The size of S is independent of the number of particle species
Ns, while the number of elements of SA and SD increases proportional to
N2
s . In practice, a sparse LU decomposition1 of the Schur complement is

found to contain only O(m) nonzero elements, i.e. Sx = y can be solved
for x in O(m) if the LU decomposition is known. A direct solver based on
formula (47) and an LU decomposition of the Schur complement runs orders
of magnitude faster than a naive stabilized biconjugate gradient method to
solve (SA − SD∆t/2)x = y. This is especially true for c∆t � ∆. For
increasing c∆t the condition number of (SA − SD∆t/2) increases and hence
the amount of iterations needed for an iterative solution. However, this
increase of c∆t barely influences the time needed for a direct solution using
(47) and Sx = y at all. We will come back to this point in Section 5.2,
providing some data to illustrate the above considerations.

5. Numerical examples

5.1. A plasma wave beach in 1D and 2D

A first example of a non-uniform 1D problem in a 1-specie electron plasma
is shown in Fig. 3. The density of the plasma increases as x3 from ωp =√

n(x)q2

mε0
= 0 at the left (where n = 0m−3) to ωp = 8ω at the right (n =

3.4·1018m−3). The source frequency is ω = 1.3·1010s−1 and the discretization
length is ∆ = 1cm and ∆t = ∆/c (at the Courant limit, about 14 samples
per period). In an unmagnetized 1-specie plasma, waves only propagate if
ω > ωp, and indeed, in Fig. 3, we see that the waves propagate until they hit
the position where ω = ωp and they stop propagating [8]. In this example,
perfectly conducting (PEC) boundary conditions were used at x = 0 and at

1Good sparse LU decomposition algorithms use permutation degrees of freedom to
maximise the sparsity of the result while ensuring numerical stability, see e.g. [17]
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x = 200∆. This wave has only nonzero Ez, Jz and By. A hard Ez source
is located at x = 50∆. The source is implemented as follows: first , the
operator (SA+SD∆t/2) acts on the fields V , i.e. Vn+1/2 = (SA+SD∆t/2)Vn.
Then, we set a single Ez point in Vn+1/2 equal to our source value. Then we
solve (SA − SD∆t/2)Vn+1 = Vn+1/2.

A 2D 1-specie electron plasma wave beach is shown in Fig. 4. This
example uses an 101×101 grid of discretization points and periodic boundary
conditions (odd×odd guarantees the invertibility of SA and thus of (SA −
SD∆t

2
)). This wave has nonzero Ex, Ez, Jx, Jz and By. The physical size

is 1m × 1m. Again ∆t = ∆/c. The source frequency is ω = 1.3 · 1010s−1

and the density decreases like ωp = (8.0 · 1010s−1) exp(−(d/20)2) where d
is the distance from the center (i.e. from the point at (51∆, 51∆)). This
corresponds to a density of n = 2 · 1018m−3 at the center. At the edges, the
density is at least three orders of magnitude lower. The source has a length of
20∆ and is at the left of the simulation region (due to the periodic boundary
conditions, waves appear to enter the region from both sides). Again, we
see that the waves encounter a cutoff condition and stop propagating. This
example shows that it is in fact possible to use the proposed method in two
or more dimensions.

0 50 100 150 200

-2

-1

0

1

2

Propagation direction Hin units of D=1cmL

E
z

Figure 3: Waves in an unmagnetized 1-specie plasma with space-dependent density. As
the density becomes too large, the wave can no longer propagate and is reflected, forming
a standing wave to the left (low density) and zero electric fields to the right (high density).
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Figure 4: 2D configuration with waves propagating through a plasma whose density de-
creases radially (periodic boundary conditions).

5.2. Mode conversion

A third example involves mode conversion from the fast wave to the ion-
cyclotron wave, a phenomenon of interest for Ion-Cyclotron Resonance Heat-
ing (ICRH) [9, 10]. This example is similar to the one used by Smithe [7].
In the simulations, we used PEC boundary conditions. As a matter of fact,
we consider a simplified model of the behavior of a toroidal mode by replac-
ing the angular dependence φ in the toroidal direction by the combination
of a sin kyy and cos kyy dependence. In our example, ky = 14.5m−1. Fur-
thermore, there is only an x-dependence and no z-dependence. This means
that we have to use two sets of basis functions (modes): those of the form
r(x, x0,∆x) sin(kyy) and those of the form r(x, x0,∆x) cos(kyy). The intro-
duction of this modal dependence adds additional elements to the matrices
(29) and (30), corresponding to the derivative in the y-direction. The plasma
itself has the following parameters:

• [B0x, B0y, B0z](x) = [0.15B(x) cos(π/4), B(x), 0.15B(x) sin(π/4)] where
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B(x) decreases like 1/x from 6.5T at the far left (High Field Side or
HFS) of the simulation domain to 5.5T at the far right (Low Field Side
or LFS). Further note that Bx and Bz cause coupling between the two
modes

• Species: electrons (ne = 2·1020m−1), protons (np/ne = 0.33), deuterons
(nd/ne = 0.44), 3He-nuclei (nHe3/ne = 0.115).

• Frequency 80.5 · 106 Hz

• ∆x = 8 · 10−4m

To get a better understanding of the physics of the problem, Fig. 5 shows
a space-dependent dispersion relation. It was obtained by substituting fields
with a exp(ikxx) exp(ikyy) exp(iωt) dependence into the continuous equa-
tions (7)-(9) in a uniform plasma, and then finding the values of kx for which
a nontrivial solution exists (this involves solving a general quartic equation)
with ky = 14.5m−1. At every position x, the plasma parameters are calcu-
lated and then kx(x) is obtained by assuming a uniform plasma with these
parameters. As such, Fig. 5 is an approximation; it tells us which wave-
length(s) to expect but does not give us the exact information (as would be
the case for a uniform plasma). As the waves propagate to the right (LFS),
shorter wavelengths (higher k) are excited.
Due to the presence of a background magnetic field that is not purely toroidal
(Bx, Bz 6= 0), the constitutive equation (9) enforces a relationship between
all current components and as a consequence all cartesian components of the
electric field, the magnetic field and currents are nonzero.

Despite there being only 200 discretization points in the x−direction, the
time-step matrices are of size 7200×7200: there are 6 vector fields to consider
(electric, magnetic and 4 currents of the 4-species), every field is described by
2 modes and has 3 scalar components. Thus, there are 2×3×200 unknowns
per field, or 36 × 200 = 7200 unknowns in total (36 degrees of freedom per
discretization point).

In Fig. 6, by way of example, one of the eigenmodes of the studied configu-
ration is shown at a frequency of 80.5·106 Hz. This result was obtained by cal-
culating an eigenvector of the time-stepping operator (SA−SD∆t/2)−1(SA+
SD∆t/2) (at c∆t = ∆x). Fig. 7 was obtained using time-stepping and a
sinusoidal source of 80.5 · 106 Hz multiplied with a Heaviside step at t = 0.
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In this figure, c∆t = 100∆x which is far above the vacuum Courant con-
dition (This choice of ∆t corresponds to 46∆t ≈ P = 2π/ω. Obeying the
vacuum Courant condition at the same ∆r would require 4600∆t ≈ P , i.e.
vastly more time steps per period). Nonetheless the system remains stable
as predicted. In both of the above figures we can clearly see the mode con-
version from the fast to the ion-cyclotron wave, i.e. the appearance of short
wavelength phenomena at the right.
For the above configuration we also investigated the efficiency of the algo-
rithms for solving the sparse set of equations at every time step. Starting
from a very crude discretization of 25 points in the x−direction, we gradually
refined the discretization to 2500 points. We kept ∆x constant and scaled the
magnetic field variation such that B(x) is always 6.5T at the left and 5.5T at
the right, i.e. the magnetic field decrease is far steeper for a small amount of
discretization points than for a large amount of discretization points. By do-
ing this we ensure that λ/∆x remains in some sense constant. From Fig. 8, it
is clear that the number of nonzero elements in the sparse LU-decomposition
of the Schur complement S (see (47)) is linear in the amount of discretization
points, and thus provides an efficient solution method. In Fig. 9 the time
needed for a direct solution (for 71 discretization points in the x−direction)
is compared to the time needed for an iterative solution (using the iterative
solvers and LU decomposition algorithms available in Matlab and ran on an
Intel Core 2Quad CPU Q9650 3GHz processor) and this as a function of
c∆t/∆x. It is clear that the time for the iterative solution increases as the
time step increases beyond the vacuum Courant limit while the time needed
for the direct solution stays constant.

5.3. Dispersion relation in a uniform plasma

In Fig. 10, the numerical dispersion relation for a uniform magnetized
4-specie plasma like that to the high-field side (far left) of Fig. 5 is shown as
a function of the circular frequency ω. We used periodic boundary conditions
and calculated all eigenvectors and eigenvalues of the time-stepping operator.
Thanks to uniformity and periodicity, the eigenvectors are pure complex
exponentials, all with real kx (imaginary or complex kx cannot obey the
periodic boundary conditions). For comparison, the real roots of the exact
continuous dispersion relation in infinite space are shown too.
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Figure 5: Space-dependent dispersion relation: <(kx) as a function of n∆x with mode
conversion. Colours indicate the four solutions.
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Figure 6: Real part of components of the electric field for an eigenmode of a plasma-filled
cavity with mode conversion (at a frequency of 80.5 · 106 Hz).
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Figure 7: Ex after 1000 (top),2000, . . . , 10000 (bottom) time steps, at c∆t = 100∆x. No
attempt was made to filter out the desired mode at one particular frequency. This plot
contains contributions of all resolvable frequencies in the Heaviside(t) sin(ωt) source.
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Figure 8: Absolute number of nonzero (NNZ) elements in the sparse LU decomposition of
the Schur complement of (SA − SD∆t/2) versus total amount of unknowns Ntotal (left)
and relative number (right).
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Figure 9: Time needed for a direct solution (dashed) vs. a naive stabilized biconjugate
gradient (solid). (configuration of section 5.2, 71 discretization points). Initialisation time
needed to calculate the LU decomposition of the Schur complement (direct case) or an
incomplete LU preconditionner (iterative case) is not included on this graph.
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Figure 10: Green : Numerical value of |kx| versus ω obtained by calculating the eigen-
vectors of the system matrix and Fourier transforming them in space. The obtained kx is
always real. Black: Analytically determined |kx| for propagating (real kx) solutions of the
exact dispersion relation. Orange: Analytically predicted discrete dispersion relation by
replacing ω and kx by the relevant tangent functions in the continuous dispersion relation.
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6. Conclusion

In this paper we have presented an unconditionally stable time-domain
discretization of Maxwell’s equations complemented by a constitutive equa-
tion describing non-uniform magnetized cold plasma. The discrete dispersion
relation of this discretization is guaranteed to be free of spurious modes and to
approximate the continuous dispersion relation at well-resolved frequencies.
We have provided a stability proof assuming 1D propagation and periodic
boundary conditions and its extension to 2D and 3D. The method is implicit
and requires the solution of a sparse set of equations every time step, but
we have shown that this set of equations can, in practice, be solved very
efficiently. We have demonstrated the effectiveness of this method using a
number of examples, including a 1D and 2D plasma wave beach and mode
conversion from the fast wave to the ion cyclotron wave. In classical FDTD,
this last example would require very substantial oversampling in time due
to the very short wavelengths compared to vacuum. Using our method, we
can independently adapt the spatial and temporal discretizations to fit the
phenomena under consideration, and we demonstrated this by running the
mode conversion example at a time step c∆t = 100∆ far above the vacuum
Courant condition.
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8. Appendix: elaboration on the 2D and 3D case

It is fairly straightforward to extend the proof given in Section 2.3 to 2D
or even 3D. Consider an nx × nz problem like the one used in the 1D proof,
but we no longer restrict the propagation to the x-direction: there may be
propagation in the z-direction as well. Let Ix be the nx×nx identity matrix,
and Mix and Mdx nx × nx interpolation and derivative matrices as defined
in (27) and (28) and define Iz, Miz and Mdz in a similar way but now for
the z-coordinate and replacing nx by nz. The matrices (29) and (30) then
become

SA2D
=


Ix ⊗Miz 0 0 0 0

0 Mix ⊗ Iz 0 0 0
0 0 Ix ⊗ Iz 0 0
0 0 0 Ix ⊗ Iz 0
0 0 0 0 Mix ⊗Miz

 (48)

SD2D
=


0 0 ωpIx ⊗Miz 0 c

∆
Ix ⊗Mdz

0 0 0 ωpMix ⊗ Iz c
∆
Mdx ⊗ Iz

−ωp 0 0 Ω 0
0 −ωp −Ω 0 0

c
∆
Mix ⊗Mdz

c
∆
Mdx ⊗Miz 0 0 0


(49)

The pertinent derivative and interpolation matrices turn out to be Kronecker
products of the previously defined 1D matrices. For the properties of the
Kronecker product used here we refer to [18]. The plasma parameter matrices
Ω and ωp remain diagonal (and hence symmetric). Obviously Ix ⊗ Iz is the
(nxnz) × (nxnz) identity matrix. Like in the 1D case, SA2D

is invertible if
both nx and nz are odd. To proceed as we did in the 1D proof, we must
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diagonalize matrices of the form Ix ⊗Mcz (c = i, d),Mcx ⊗ Iz and Mcx ⊗Mcz

where Mcx and Mcz are circulant. The identity matrix Ix or Iz is circulant
too, thus it suffices to consider the most general case Mcx⊗Mcz. This product
is diagonalized by Kronecker products of DFT matrices. Indeed, if Fx is the
DFT matrix that diagonalizes Mcx and Fz the one that diagonalizes Mcz then

(Fx ⊗ Fz)(Mcx ⊗Mcz)(Fx ⊗ Fz)−1 = (FxMcx ⊗ FzMcz)(F
−1
x ⊗ F−1

z )

= (FxMcxF
−1
x ⊗ FzMczF

−1
z ) (50)

which is a Kronecher product of diagonal matrices and hence itself diago-
nal. Knowing this, we may proceed just as in the 1D case and verify that
S−1
A2D

SD2D
is anti-hermittian to prove stability. It is clear that the whole proof

can be extended to 3D.
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