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STRONGLY INTERNAL SETS AND GENERALIZED SMOOTH

FUNCTIONS

PAOLO GIORDANO, MICHAEL KUNZINGER, AND HANS VERNAEVE

Abstract. Based on a refinement of the notion of internal sets in Colombeau’s
theory, so-called strongly internal sets, we introduce the space of generalized
smooth functions, a maximal extension of Colombeau generalized functions.
Generalized smooth functions as morphisms between sets of generalized points
form a sub-category of the category of topological spaces. In particular, they
can be composed unrestrictedly.

1. Introduction

Colombeau’s nonlinear theory of generalized functions ([7, 8]) is based on viewing
generalized functions as equivalence classes of smooth maps, encoding degrees of
singularity in terms of asymptotic properties of nets of representatives. It thereby
lends itself in a quite straightforward manner to modelling irregular setups in par-
tial differential equations, geometry or applications, in particular in mathematical
physics ([9, 20, 16]). Basically, singular objects are modelled as nets of smooth
maps and classical operations are lifted to the generalized setting by applying them
component-wise to these nets. While successful in applications, this approach lacks
strong general existence theorems, comparable to the functional-analytic founda-
tions of distribution theory.

To remedy this situation, the past decade has seen a number of fundamental con-
tributions to the structure theory of algebras of generalized functions (particularly
relevant for the purposes of this paper are [1, 2, 3, 4, 5, 11, 12, 13, 15, 28, 29, 30]).
The unifying theme of these works is to consider Colombeau generalized functions
as set-theoretical functions on suitable spaces of generalized points and then to
work directly with these functions.

In the present work we continue these investigations by introducing a general-
ization of Colombeau-type generalized functions, which we call generalized smooth
functions (GSF). This terminology is intended to stress the conceptual analogy
between these generalized functions and the theory of standard smooth functions.
Generalized smooth functions are set-theoretic maps on sets of generalized points
that satisfy the minimal logical conditions necessary to obtain well-defined maps
obeying the standard asymptotic estimates of the Colombeau approach. They are
the natural extension of Colombeau generalized functions to general domains. At
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the same time, they display optimal set-theoretical properties. In particular, sets
of generalized points, together with generalized smooth maps form a subcategory
of the category of topological maps.

Our constructions strongly rely on the further development of the concept (itself
inspired by nonstandard analysis) of internal sets, see [21]. Just as in the case of
classical smooth functions, GSF are locally Lipschitz functions. Therefore, we also
study this notion for functions defined on and valued in generalized points.

2. Basic notions

In this section, we fix some basic notations and terminology from Colombeau’s
theory. For details we refer to [7, 8, 20, 16]. In the naturals N = {0, 1, 2, . . .} we
include zero. Let Ω be an open subset of Rn and denote by I the interval (0, 1]. The
(special) Colombeau algebra on Ω is defined as the quotient G(Ω) := EM (Ω)/N (Ω)
of moderate nets over negligible nets, where the former is

EM (Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ Nn ∃N ∈ N : sup
x∈K

|∂αuε(x)| = O(ε−N )}

and the latter is

N (Ω) := {(uε) ∈ C∞(Ω)I | ∀K ⋐ Ω ∀α ∈ Nn ∀m ∈ N : sup
x∈K

|∂αuε(x)| = O(εm)}.

Throughout this paper, every asymptotic relation is for ε → 0+. Nets in EM (Ω)
are written as (uε), and u = [uε] denotes the corresponding equivalence class in
G(Ω). For (uε) ∈ N (Ω) we also write (uε) ∼ 0. Ω 7→ G(Ω) is a fine and supple sheaf
of differential algebras and there exist sheaf embeddings of the space of Schwartz
distributions D′ into G (cf. [16, 23]).

The ring of constants in G is denoted by R̃ or C̃, respectively, and is called ring
of Colombeau generalized numbers (CGN). It is an ordered ring with respect to

[xε] ≤ [yε] iff ∃[zε] ∈ R̃ such that (zε) ∼ 0 and xε ≤ yε + zε for ε sufficiently small.
As usual x < y means x ≤ y and x 6= y. Even if this order is not total, we still have
the possibility to define the infimum [xε]∧ [yε] := [min(xε, yε)], and analogously the
supremum of two elements. More generally, the space of generalized points in Ω is

Ω̃ = ΩM/ ∼, where ΩM = {(xε) ∈ ΩI | ∃N ∈ N : |xε| = O(ε−N )} is called the set
of moderate nets and (xε) ∼ (yε) if |xε − yε| = O(εm) for every m ∈ N. By N we
will denote the set of all negligible nets of real numbers (xε) ∈ RI , i.e. such that
(xε) ∼ 0. If P(ε) is a property of ε ∈ I, we will also sometimes use the notation
∀0ε : P(ε) to denote ∃ε0 ∈ I ∀ε ∈ (0, ε0] : P(ε).

The space of compactly supported generalized points Ω̃c is defined by Ωc/ ∼,
where Ωc := {(xε) ∈ ΩI | ∃K ⋐ Ω ∃ε0 ∀ε < ε0 : xε ∈ K} and ∼ is the same

equivalence relation as in the case of Ω̃. The set of near-standard points of a given

set A ⊆ Rn is A• := {x ∈ Ã | ∃ limε→0+ xε =: x◦ ∈ A}. Any Colombeau generalized

function (CGF) u ∈ G(Ω) acts on generalized points from Ω̃c by u(x) := [uε(xε)]

and is uniquely determined by its point values (in R̃) on compactly supported
generalized points ([16, 19]), but not on standard points. A CGF [uε] is called
compactly-bounded (c-bounded) from Ω into Ω′ if for allK ⋐ Ω there existsK ′ ⋐ Ω′

such that uε(K) ⊆ K ′ for ε small. This type of CGF is closed with respect to
composition. Moreover, if u ∈ G(Ω) is c-bounded from Ω into Ω′ and v ∈ G(Ω′),
then [vε ◦ uε] ∈ G(Ω).
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Our notations for intervals are: [a, b] := {x ∈ R̃ | a ≤ x ≤ b}, [a, b]R := [a, b]∩R.

Moreover, for x, y ∈ R̃n we will write x ≈ y if x−y is infinitesimal, i.e. if |x−y| ≤ r
for all r ∈ R>0.

Topological methods in Colombeau’s theory are usually based on the so-called
sharp topology ([6, 24, 25, 3, 4, 18, 13]), which is the topology generated by balls

Bρ(x) = {y ∈ R̃n | |y−x| < ρ}, where |− | is the natural extension of the Euclidean

norm to R̃n, i.e. |[xε]| := [|xε|], and ρ ∈ R̃>0 is positive invertible ([1, 2, 15]).
Henceforth, we will also use the notation BE

ρ (x) = {y ∈ Rn | |y − x| < ρ} for

Euclidean balls and R̃∗ := {x ∈ R̃ | x is invertible}. The sharp topology can also

be defined by an ultrametric: Define a pseudovaluation on R̃ by

v : EM −→ (−∞,∞]

v((uε)) := sup{b ∈ R | |uε| = O(εb)}.

Then v is well-defined since v((uε) + (nε)) = v((uε)) for all (nε) ∈ N ; v(u) =
∞ if and only if u = 0, v(u · w) ≥ v(u) + v(w), v(u + w) ≥ v(u) ∧ v(w), and

v(u−w) = v(w− u). Letting | − |e : R̃ → [0,∞), |u|e := exp(−v(u)) it follows that
|u + v|e ≤ max(|u|e, |v|e), as well as |uv|e ≤ |u|e|v|e. This induces the translation
invariant complete ultrametric

ds : R̃× R̃ −→ R+

ds(u, v) := |u− v|e

on R̃, which in turn generates the sharp topology on R̃. We will call sharply open
any open set in the sharp topology.

Moreover, Garetto in [11, 12] extended the above construction to arbitrary locally
convex spaces by functorially assigning a space of CGF GE to any given locally
convex space E. The seminorms of E can then be used to define pseudovaluations

which in turn induce a generalized locally convex topology on the C̃-module GE ,
again called sharp topology.

Given S ⊆ I, by eS we will denote the equivalence class in R̃ of the characteristic
function of S. The eS are idempotents, and satisfy eS + eSc = 1 and eS 6= 0 if
and only if 0 ∈ S. They play a central role in the algebraic theory of Colombeau
generalized numbers (cf. [3, 29]).

Finally, we recall that if (Aε) is a net of subsets of Rn, then the internal set
generated by (Aε) is defined as

[Aε] =
{
[xε] ∈ R̃n | xε ∈ Aε for ε small

}
. (2.1)

This type of sets have been introduced in Colombeau theory in [21, 30] to deal
with domains of generalized functions and to study topological properties of sets of
generalized points.

3. Strongly internal sets generated by a topology

We start by defining a family of topologies on R̃n depending on a set of positive

and invertible generalized numbers. Recall that for any r ∈ R̃, r > 0, Br(x) denotes

the open ball with respect to the generalized Euclidean norm in R̃n.

Definition 1. We say that I is a set of radii if

(i) I ⊆ R̃∗
>0 is a non-empty subset of positive invertible generalized numbers.
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(ii) For all r, s ∈ I the infimum r ∧ s ∈ I.
(iii) k · r ∈ I for all r ∈ I and all k ∈ R>0.

Let I be a set of radii, then the family of subsets

UI(x) := {U ⊆ R̃n | ∃r ∈ I : Br(x) ⊆ U} (x ∈ R̃n)

is called the neighborhood system induced by I.

The legitimacy of this name is demonstrated by the following result, whose proof
follows from the corresponding definitions.

Theorem 2. If I is a set of radii, then the family UI is a non empty neighborhood

system on R̃n. The topology τI induced by this neighborhood system is called the

topology on R̃n induced by the set of radii I.

Example 3.

(i) If I = R̃∗
>0 then τI is the sharp topology. Among the balls Br(x) in this

topology we can also have cases where both r ∈ I and x ∈ R̃n are not near
standard.

(ii) If I = R>0 then τI is called the Fermat topology on R̃n. Among the balls
Br(x) in this topology we can only have cases where the radius is a standard
positive real number. For this reason, open sets in this topology are also
called large open sets. Let us note that if S ⊆ R•, i.e. if S consists of near-
standard points only (see Section 2), then the trace of the Fermat topology
on S is induced by the Fermat pseudometric dF(x, y) = |x◦ − y◦|. In fact,
if BF

r (x) = {y ∈ R• | |y◦ − x◦| < r} are the balls in this metric, then
Br/2(x) ∩ S ⊆ BF

r (x) ∩ S ⊆ Br(x) ∩ S. This justifies the name Fermat
topology (introduced in [15]) for the topology of large open sets.

(iii) Let a ∈ R>0, and set Ia := {[r · εb] ∈ R̃ | r ∈ R>0 , 0 < b < a}, then

Ia is a set of radii that generates a topology (on R̃n) strictly coarser than
the sharp and strictly finer than the Fermat ones. Open sets defined by Ia
cannot contain neighborhoods of radius smaller than [εa].

(iv) Let H ⊆ R̃∗
>0 be a non empty set of positive and invertible CGN, then JH :=

{
∧n

i=1 ri · hi | n ∈ N>0 , r ∈ Rn
>0 , h ∈ Hn} is the smallest set of radii con-

taining H . In particular, if H = {h} and h ≈ 0 then J{h} = {r · h | r ∈ R>0}
generates a topology strictly finer than the Fermat one and strictly coarser
than the sharp one. On the contrary, if h is infinite, i.e. |h| > s for all s ∈ R>0,
then it generates a topology strictly coarser than the Fermat one. Finally,
J{[εa]} generates a topology strictly finer than the topology generated by the
set of radii Ia described in (iii).

In the present work, we will only develop examples (i) and (ii).

Any topology on R̃n can be used to introduce an equivalence relation on R̃n

which permits to define a corresponding class of strongly internal sets:

Definition 4. Let τ be a topology on R̃n, and x, y ∈ R̃n, then we say that x, y
are identified by τ , and we write x ≍τ y if for all τ -open sets U ∈ τ

x ∈ U ⇐⇒ y ∈ U.

Clearly, ≍τ is an equivalence relation on R̃n.

Example 5.
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(i) If τ is the sharp topology, then x ≍τ y if and only if x = y.
(ii) If τ is the Fermat topology, then x ≍τ y if and only if x ≈ y.

The following notion concerns membership for ε-dependent objects; it assures
that the class of nets we will consider is always closed under choosing different
representatives with respect to ≍τ .

Definition 6. Let (Aε) be a net of subsets of Rn. Moreover, let (xε) be a net of
points in Rn

M , then we say that (xε) τ-strongly belongs to (Aε) and we write

xε ∈τ Aε

if

(i) xε ∈ Aε for ε sufficiently small;
(ii) If [x′

ε] ≍τ [xε], then also x′
ε ∈ Aε for ε sufficiently small.

Therefore, we can consider the set

〈Aε〉τ := {[xε] ∈ R̃n | xε ∈τ Aε} (3.1)

which, generally speaking, is a subset of the corresponding internal set

[Aε] =
{
[xε] ∈ R̃n | xε ∈ Aε for ε small

}
, (3.2)

as defined in [21, 30], because of our definition of strong membership. Subsets of

R̃n of the form (3.1) will be called τ-strongly internal. In particular we simply use
the name strongly internal set for the case where τ is the sharp topology and large
internal set for the case where τ is the Fermat topology. In the first one, we use
the notations ∈ε and 〈Aε〉; in the second one we use ∈F and 〈Aε〉F.

Remark 7.

(i) R̃ = 〈(−e
1
ε , e

1
ε )〉 is strongly internal.

(ii) If Ω ⊆ Rn is any open set, then Ω̃c is a large open set. In fact, if x ∈ Ω̃c,
we have xε ∈ K ⋐ Ω for ε small. Since K is compact, d(K,Rn \ Ω) > 0.
Taking r ∈ R>0 strictly less than this distance, any [yε] ∈ Br(x) is compactly
supported as well.

(iii) It is easy to prove that 〈Aε ∩ Bε〉 = 〈Aε〉 ∩ 〈Bε〉, whereas the corresponding
property for internal sets is false in general.

(iv) Let P(−) be a property of generalized points in R̃n (i.e. P(−) has to be

thought of as a syntactical object), and set pPq := {x ∈ R̃n | P(x)} (i.e. pPq

is the set-theoretical interpretation of P). For x, y ∈ R̃n, we have that x ≍τ y
if and only if for each property P , if pPq ∈ τ then P(x) holds if and only if
P(y) holds. We can say that x and y are identified by τ if and only if these
generalized points have the same properties P(−) which can be interpreted
as open sets in the topology τ , i.e. such that the set-theoretical interpretation
pPq of the property P is an open set in τ . Moreover, if P is one of these
properties and P(x) holds, then we can say it is a τ -stable property, i.e. also
P(y) holds for y sufficiently near to x with respect to τ, i.e. if y ≍τ x.

The following result provides a certain geometrical intuition about this notion
of τ -strong membership and justifies its name. It also underscores the differences
with internal sets as studied in [21, 30].

Theorem 8. Let (Aε) be a net of subsets of Rn indexed for ε ∈ I, and let (xε) ∈
Rn

M . Then the following properties hold:
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(i) xε ∈ε Aε if and only if there exists some q ∈ R>0 such that d(xε, A
c
ε) > εq

for ε sufficiently small, where Ac
ε := Rn \Aε. Therefore, xε ∈ε Aε if and only

if [d(xε, A
c
ε)] is invertible in R̃.

(ii) xε ∈F Aε if and only if there exists some r ∈ R>0 such that d(xε, A
c
ε) > r for

ε sufficiently small.

Proof. We proceed for the sharp topology, since the case of the Fermat one can be
treated analogously. Let xε ∈ε Aε and suppose to the contrary that there exists a
sequence εk ց 0 such that d(xεk , A

c
εk
) ≤ εkk for all k ∈ N. For each k, pick some

x′
k ∈ Ac

εk
with |x′

k −xεk | < 2εkk and choose (x′
ε) ∼ (xε) such that x′

εk
= x′

k for all k.
Then x′

εk
6∈ Aεk for all k, contradicting xε ∈ε Aε. Conversely, let d(xε, A

c
ε) > εq for

ε small. Then in particular, xε ∈ Aε. Also, if (x
′
ε) ∼ (xε) then d(x′

ε, A
c
ε) > (1/2)εq

for ε small, so x′
ε ∈ Aε. Thus, xε ∈ε Aε. �

Hence for x = [xε] ∈ R̃n, xε ∈ε Aε if and only if [xε] is in the interior of 〈Aε〉
with respect to the sharp topology

Corollary 9. 〈Aε〉 = 〈Åε〉 is open in the sharp topology.

Note that even in the simplest case of a constant net Ω = Ωε, the corresponding

strongly internal set 〈Ω〉 is contained in Ω̃, but equality in general does not hold
(see (ii) in Example 10).

Example 10.

(i) Let (aε), (bε) ∈ RM , with aε < bε, then from Prop. 8 it is easy to prove that

〈[aε, bε]〉 = 〈(aε, bε)〉 = {x ∈ (a, b) | x− a, b− x ∈ R̃∗
>0}, where we recall that

R̃∗ := {x ∈ R̃ | x is invertible}.
(ii) We always have that 〈Aε〉 ⊆ ints([Aε]), where [Aε] is the internal set generated

by the net (Aε)ε in the sense of [21, 30] (see (3.2)) and ints(B) is the interior

of B ⊆ R̃n in the sharp topology. Indeed, 〈Aε〉 ⊆ [Aε] by definition, and 〈Aε〉
is open in the sharp topology by Corollary 9. However, the reverse inclusion

is false: let Aε = R \ {0}. Then 〈Aε〉 = R̃∗ ( ints([Aε]) = ints(R̃) = R̃.

We close this section with the following result, which provides a certain intuition
on the net of open sets Ωε ⊆ Rn that generates the strongly internal set 〈Ωε〉.
We recall that a net (Bε) of subsets of Rn is called sharply bounded if there exists
N ∈ R>0 such that

∀0ε ∀a ∈ Bε : |a| ≤ ε−N .

Theorem 11. Let (Ωε) be a net of subsets in Rn for all ε, and (Bε) a sharply
bounded net such that [Bε] ⊆ 〈Ωε〉, then

∀0ε : Bε ⊆ Ωε.

Proof. By contradiction assume that we can find sequences (εk)k and (xk)k such
that εk ↓ 0 and xk ∈ Bεk \ Ωεk . Defining xε := xk for ε ∈ (εk+1, εk], and xε ∈ Bε

otherwise, we have that x := [xε] is moderate since (Bε) is sharply bounded. Hence
x ∈ [Bε], but xεk /∈ Ωεk by construction, hence x /∈ 〈Ωε〉 by Def. 6, which is
impossible because [Bε] ⊆ 〈Ωε〉. �

Example 12. Let Ω ⊆ Rn be open and bounded. Then Ω̃c is not strongly internal.

Indeed, suppose that Ω̃c = 〈Ωε〉. Let (Kn)n be a compact exhaustion of Ω. Then
by the previous theorem, there exist εn such that Kn ⊆ Ωε, for each ε ≤ εn.
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W.l.o.g., (εn)n decreasingly tends to 0 and εn ≤ dn := d(Kn−1,K
c
n). Choose

xε ∈ Kn−1 \ Kn−2 for each εn+1 < ε ≤ εn. As Ω is bounded, (xε)ε is moderate.

Then [xε] /∈ K̃n, for each n ∈ N. On the other hand, [xε] ∈ 〈Ωε〉, since d(xε,Ω
c
ε) ≥ ε.

For, if |yε − xε| ≤ ε and εn+1 < ε ≤ εn, then |yε − xε| ≤ dn and xε ∈ Kn−1. Hence
yε ∈ Kn ⊆ Ωε.

The following theorem sheds some light on the relationship between internal sets
and strongly internal sets, implying e.g. that they generate the same σ-algebra:

Theorem 13. Let Aε ⊆ Rn. Then we have:

(i) 〈Aε〉 =
⋃

m∈N
[Am,ε], where Am,ε = {x ∈ Rn : d(x,Ac

ε) ≥ εm}.
(ii) [Aε] =

⋂
m∈N

〈Am,ε〉, where Am,ε = {x ∈ Rn : d(x,Aε) < εm}.

Proof. (i) Let [xε] ∈ R̃n. By Theorem 8, [xε] ∈ 〈Aε〉 iff d(xε, A
c
ε) ≥ εm for small ε,

for some m ∈ N.
(ii) Let [xε] ∈ R̃n. By [21, Prop. 2.1], [xε] ∈ [Aε] iff d(xε, Aε) ∼ 0 iff d(xε, Aε) <

εm for each m ∈ N (and for each representative (xε)). �

Theorem 14. Let (Aε) be sharply bounded. Then

〈Aε〉 ⊆ 〈Bε〉 ⇐⇒ sup
x∈Bc

ε

d(x,Ac
ε) ∼ 0.

Proof. ⇒: by the previous theorems, we have [Am,ε] ⊆ 〈Bε〉, and thus Am,ε ⊆ Bε,
i.e., Bc

ε ⊆ Ac
m,ε for small ε, for each m, where Am,ε = {x ∈ Rn : d(x,Ac

ε) ≥ εm}.
⇐: if x /∈ 〈Bε〉, then there exists a representative (xε) and εn → 0 such that xεn ∈
Bc

εn for each n. It is given that there exist x′
εn ∈ Ac

εn such that |xεn − x′
εn | ≤ νεn

with νε ∼ 0. Let x′
ε := xε if not yet defined. Then x = [x′

ε] /∈ 〈Aε〉. �

Corollary 15. If (Aε) and (Bε) are sharply bounded nets, then 〈Aε〉 = 〈Bε〉 if and
only if the Hausdorff distance dH(Ac

ε, B
c
ε) ∼ 0.

Definition 16. A ⊆ R̃n is convex if for each x, y ∈ A and t ∈ ˜[0, 1], tx+(1−t)y ∈ A.

Lemma 17. If A ⊆ R̃n is convex, internal and sharply bounded, then A has a
representative consisting of convex sets.

Proof. By [21], A = [Aε] for some sharply bounded net (Aε)ε. We show that A =
[conv(Aε)], where conv(X) denotes the convex closure of X . Let x ∈ [conv(Aε)].
Then xε ∈ conv(Aε) for sufficiently small ε and for some representative (xε) of x.
By Carathéodory’s theorem in convex geometry, there exist a0,ε, . . . , an,ε ∈ Aε

such that xε ∈ conv{a0,ε, . . . , an,ε}, i.e., there exist λ0,ε, . . . , λn,ε ∈ [0, 1]R such that
xε =

∑n
j=0 λj,εaj,ε. Since (Aε)ε is sharply bounded, [aj,ε] = aj for some aj ∈ A ⊆

R̃n. Hence x =
∑n

j=0 λjaj ∈ A (with λj = [λj,ε] ∈ ˜[0, 1] and ∑n
j=0 λj = 1), since

A ⊆ R̃n is assumed to be convex. �

4. Locally Lipschitz functions

Definition 18. Let U ⊆ R̃n. Then f : U → R̃m is called Lipschitz if there exists

some L ∈ R̃ such that |f(x) − f(y)| ≤ L|x − y| for all x, y ∈ U , where | | is the
natural extension of the Euclidean norm to generalized points, i.e. |[xε]| := [|xε|].
The function f is called locally Lipschitz with respect to some topology τ on U if
every x ∈ U possesses a τ -neighborhood in which f is Lipschitz in this sense.
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It is immediate from the definition that a map f : U → R̃m is Lipschitz if and
only if ∃N ∈ N : |f(x) − f(y)| ≤ [ε−N ]|x − y| for all x, y ∈ U . Moreover, any
locally Lipschitz function in the sharp topology (in particular any locally Lipschitz
function in the Fermat topology) is also continuous in the sharp topology.

Example 19. As we will see in the next section, any map u: Ω̃c −→ R̃ generated

by a CGF or any map u: R̃n −→ R̃ generated by a tempered generalized function
is locally Lipschitz for the Fermat topology.

The following result shows, in particular, that the composition of locally Lip-
schitz maps in the sharp topology is again locally Lipschitz, and gives sufficient
conditions for the corresponding property in the Fermat topology.

Lemma 20. Let A ⊆ R̃a, B ⊆ R̃b, C ⊆ R̃c, D ⊆ R̃d and f : A −→ B and
g : C −→ D be locally Lipschitz maps in the topology τ . Then, if τ is the Fermat
topology, we have

(i) If f is locally Lipschitz with respect to finite Lipschitz constants, then it is
also continuous in the Fermat topology.

(ii) If B = C and f is continuous in the Fermat topology, then g ◦ f is locally
Lipschitz.

(iii) If B = C and g is Lipschitz, then g ◦ f is locally Lipschitz.

Whereas if τ is the sharp topology and B = C, then g ◦ f is locally Lipschitz in the
same topology.

Proof. (i): one easily sees that f is continuous for the Fermat topology iff

∀x ∈ A∀ε ∈ R>0 ∃δ ∈ R>0 ∀y ∈ A : (|x− y| ≤ δ =⇒ |f(x)− f(y)| ≤ ε),

which is clearly satisfied if f satisfies the given conditions of (i).
The proofs of the other parts are formally equal to the standard ones in metric

spaces. �

Remark 21. We emphasize that our notion of Lipschitz map differs from the classical

definition in a metric space, e.g. with respect to the sharp metrics on R̃n, R̃m,
because both the Lipschitz constant L and the generalized metric |x − y| assume

values in R̃. On the other hand, it is the natural generalization of the classical

notion to the non-Archimedean ring R̃. In fact, if U ⊆ Rn and f : U −→ Rm

is Lipschitz in the usual sense, then it is also Lipschitz in the sense of Def. 18.
Moreover, if this f : U −→ Rm is locally Lipschitz in the usual sense with respect
to the Euclidean topology, then viewing f as a CGF (i.e. through the embedding

C0(U,Rm) ⊆ D′(U)m ⊆ G(U)m), it is easy to prove that the induced map f : Ũc −→

R̃m (which extends the original f) is locally Lipschitz with respect to the Fermat
topology with finite Lipschitz constant.

While clearly on R (as in any metric space) from a local Lipschitz condition it is
possible to obtain a global one on compact sets, this is not directly translatable into

R̃ with the above concept of locally Lipschitz maps. In fact, this property already

fails on finite sets. E.g., let U = {0, eS} ⊆ R̃, where eS 6= 0 is a zero divisor, and
let f(0) := 0 and f(eS) := 1. Then f is locally Lipschitz for the Fermat topology,
but not globally Lipschitz, since 1 = |f(eS) − f(0)| ≤ C|eS − 0| = CeS does not

hold for any C ∈ R̃. We still have the following:
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Definition 22. Let U ⊆ R̃n. We call f : U → R̃m pointwise Lipschitz if for each

x, y ∈ U , there exists some C ∈ R̃ such that |f(y)− f(x)| ≤ C|y − x|.
We call f strongly locally Lipschitz w.r.t. the topology τ if every x, y ∈ U possess
τ -neighbourhoods Vx and Vy respectively such that f is Lipschitz on Vx ∪ Vy .

Theorem 23. Let τ be either the sharp topology or the Fermat topology. Let

K ⊆ R̃n be τ-compact.

(i) If f : K → R̃m is τ-strongly locally Lipschitz on K, then f is globally Lipschitz
on K.

(ii) Let f : K → R̃m be a τ-locally Lipschitz and pointwise Lipschitz map. Let for
each x, y ∈ K with x 6≍τ y necessarily |x− y| ≥ [εm] for some m ∈ N (if τ is
the sharp topology), resp. |x − y| ≥ r for some r ∈ R>0 (if τ is the Fermat
topology). Then f is globally Lipschitz on K.

Proof. (i) For each n ∈ N, call An the τ -interior of the set {(x, y) ∈ K × K :
|f(y) − f(x)| ≤ [ε−n]|y − x|}. Since f is strongly locally Lipschitz on K, every
(x, y) ∈ K ×K belongs to An for some n ∈ N. In fact, (An)n∈N is a τ -open cover
of K ×K. As K ×K is τ -compact, it follows that K ×K ⊆ AN for some N ∈ N.
Hence f is Lipschitz on K.

(ii): by (i), we only have to show that f is τ -strongly locally Lipschitz on K.
Thus consider any x, y ∈ K. Choose a τ -neighbourhood Vx of x (resp. Vy of y) on
which f is Lipschitz. If x = y, then Vx is also a τ -neighbourhood of y, and thus f
is trivially Lipschitz on Vx = Vx ∪ Vx. Otherwise, |x − y| ≥ [εm] for some m ∈ N
by assumption. By shrinking Vx and Vy , we may assume that Vx ⊆ B[εm]/3(x) and
Vy ⊆ B[εm]/3(y). Then there exists N ∈ N such that for any ξ ∈ Vx and η ∈ Vy

|f(η)− f(ξ)| ≤ |f(η)− f(y)|+ |f(y)− f(x)| + |f(x)− f(ξ)|

≤ [ε−N ]|η − y|+ [ε−N ]|y − x|+ [ε−N ]|x− ξ|

since f is Lipschitz on Vx and on Vy and pointwise Lipschitz. Now |x−ξ| ≤ [εm]/3 ≤
|x− y|/3 and |y − η| ≤ |x− y|/3. Hence

|η − ξ| ≥ |x− y| − |x− ξ| − |y − η| ≥ |x− y|/3

and thus |f(η) − f(ξ)| ≤ 5[ε−N ]|η − ξ|. For the Fermat topology one proceeds
similarly, using a suitable r ∈ R>0 instead of [εm]. �

Example 24. The function i(x) := 1 if x ≈ 0 and i(x) := 0 otherwise is globally
Lipschitz with constant 1 with respect to the | − |e norm, but it is not locally
Lipschitz with respect to the Fermat topology in the sense of Def. 18. In fact, if x ≈
0 and y 6≈ 0, then |i(x)−i(y)|e = 1 and the pseudo-valuation v(x−y) ≤ 0, otherwise
y would be infinitesimal. Therefore |x − y|e = e−v(x−y) ≥ 1 = |i(x) − i(y)|e. On
the other hand, i is locally Lipschitz in the sharp topology in the sense of Def. 18;
indeed, any point can be enclosed in an infinitesimal ball, where the function i is
constant. However, i is not locally Lipschitz in the Fermat topology. Assume that
it verifies

|i(0)− i(x)| ≤ L · |x| ∀x ∈ Br(0), (4.1)

where r ∈ R>0. It suffices to take as x any oscillating number with |x| ≤ r but with
xεk = 0 for some sequence (εk)k ↓ 0 and xηk

= r/2 along another sequence to get
that x 6≈ 0 but Lεk · |xεk | = 0. Finally, let us note that taking e.g. x = 1

n in (4.1) we
necessarily would have that L is infinite, as our intuition about the function i would
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suggest. We recall that the map i is smooth in the sense of [1], it is continuous in
the sharp topology and its derivative, in the sense of [1], vanishes everywhere.

Unfortunately, a large number of sets in which one is interested are not compact
for the sharp or Fermat topology. For a start, no infinite subset U ⊆ Rn is compact
w.r.t. to the sharp topology, since its relative topology on U is the discrete topol-
ogy. But also internal and strongly internal sets are almost never compact, as the

following theorem shows. We recall that U ⊆ R̃n is closed under finite interleaving
if for each x, y ∈ U and S ⊆ I also eSx + eScy ∈ U . Any internal set and any
strongly internal set is closed under finite interleaving.

Theorem 25. Let τ be either the sharp topology or the Fermat topology.

(i) Let U ⊆ R̃n be closed under finite interleaving. If there exist x, y ∈ U with
x 6≍τ y, then U is not τ-compact.

(ii) Let K ⋐ Rn and let U ⊆ K• with K ⊆ {x◦ : x ∈ U}. Then U is compact in

the Fermat topology on R̃n.

Proof. (i): if x 6= y, then there exists S ⊆ I with eS 6= 0 and m ∈ N such
that |x − y|eS ≥ [ε]meS . We can find (e.g. by extracting subsequences from S)
mutually disjoint Sn ⊆ (0, 1] such that S =

⋃
n∈N

Sn and eSn
6= 0 for each n. Call

zn := xeSn
+ yeSc

n
∈ U . If p 6= n, then

|zp − zn|eSn
= |y − x|eSn

≥ [ε]meSn
.

We show that the sharply open cover {B[ε]m/3(x) : x ∈ U} of U has no finite
subcover. For, suppose it had, then by the pigeon hole principle there would exist
n 6= p such that zn and zp belong to the same ball B[ε]m/3(x), whence |zp−zn|eSn

≤
2
3 [ε]

meSn
, a contradiction. For the Fermat topology one proceeds similarly, using a

cover {Br(x) : x ∈ U} with a suitable r ∈ R>0 instead.
(ii): let (Aj)j∈J be a cover of U by large open sets. Then for all x ∈ U we can
find rx ∈ R>0 and jx ∈ J such that Brx(x

◦) ⊆ Ajx . Therefore, the Euclidean balls(
BE

rx(x
◦)
)
x∈U

cover K and we extract a finite subcover BE
rx1

(x◦
1), . . . , B

E
rxn

(x◦
n).

Hence the balls with the same radius but taken with respect to the generalized
absolute value Brx1

(x◦
1), . . . , Brxn

(x◦
n) and the corresponding Ajx1

, . . . , Ajxn
cover

K• (and thereby U). �

In the next section, we will show that these restrictions can be overcome if one
restricts to certain maps f with ‘internal structure’.

5. The Colombeau algebra on a subset of R̃d

In this section we shall introduce a set of maps which are locally Lipschitz in the
sharp topology and includes CGF. We will first introduce the notion of a net (uε)

defining a generalized smooth map X −→ Y , where X ⊆ R̃n, Y ⊆ R̃d. This is a
net of smooth functions uε ∈ C∞(Ωε,Rd) which induces well defined maps of the
form [∂αuε(−)] : 〈Ωε〉 −→ Rd, for every multi-index α.

Definition 26. Let X ⊆ R̃n and Y ⊆ R̃d be subsets of generalized points. Let
(Ωε) be a net of open sets of Rn, and (uε) be a net of smooth functions, with
uε ∈ C∞(Ωε,Rd). Then we say that

(uε) defines a generalized smooth map X −→ Y

if:
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(i) X ⊆ 〈Ωε〉 and [uε(xε)] ∈ Y for all x = [xε] ∈ X
(ii) ∀[xε] ∈ X ∀α ∈ Nn : (∂αuε(xε)) ∈ Rd

M .

The notation

∀[xε] ∈ X : P{(xε)}

means

∀(xε) ∈ (Ωε)M : [xε] ∈ X =⇒ P{(xε)}

i.e. for all representatives (xε) of the point [xε] ∈ X the property P{(xε)} holds.

A generalized smooth map is simply a function of the form f = [uε(−)]|X :

Definition 27. Let X ⊆ R̃n and Y ⊆ R̃d, then we say that

f : X −→ Y is a generalized smooth function (GSF)

if there exists a net uε ∈ C∞(Ωε,Rd) defining f in the sense of Def. 26, such that
f is the map

f = [uε(−)]|X : [xε] ∈ X 7→ [uε(xε)] ∈ Y. (5.1)

We will also say that f is generated (or defined) by the net of smooth functions

(uε). The set of all GSF X → Y will be denoted by G̃(X,Y ).

Let us note explicitly that definitions 26 and 27 in fact state minimal logical
conditions to obtain a set-theoretical map defined by a net of smooth functions. In
particular, Proposition 30 below will show that the equality (5.1) is meaningful, i.e.
that we have independence from the representatives for all derivatives [xε] ∈ X 7→

[∂αuε(xε)] ∈ R̃d, α ∈ Nn.
We first show that we can always find globally defined representatives. The

generalization where the domains of representatives uε depend on ε (see [27] for a
recent survey concerning applications of this generalization) can thus be avoided
since it does not lead to a larger class of generalized functions. We will use it also
to compare CGF and GSF.

Lemma 28. Let X ⊆ R̃n and Y ⊆ R̃d. Then f : X −→ Y is a GSF if and only
if there exists a net vε ∈ C∞(Rn,Rd) defining a generalized smooth map X −→ Y
such that f = [vε(−)]|X .

Proof. The stated condition is clearly sufficient. Conversely, assume that f :
X −→ Y is defined by the net uε ∈ C∞(Ωε,Rd). For every ε ∈ I let Ω′

ε :={
x ∈ Ωε | d(x,Ωc

ε) > e−
1
ε

}
and choose χε ∈ C∞(Ωε) with supp(χε) ⊆ Ω′

ε/2 and

χε = 1 in a neighborhood of Ω′
ε. Set vε := χε · uε, so that vε ∈ C∞(Rn,Rd). If

x = [xε] ∈ X ⊆ 〈Ωε〉, then xε ∈ Ω′
ε for small ε by Th. 8, so for all α ∈ Nn we

get ∂αvε(xε) = ∂αuε(xε) for small ε. Therefore, (vε)ε defines a GSF X −→ Y and
clearly f = [uε(−)]|X = [vε(−)]|X . �

We also need to prove that for GSF certain moderateness conditions hold:

Lemma 29. Let (An)n∈N be a decreasing sequence of non-empty, internal, sharply

bounded subsets of R̃d. Let (uε) be a net of maps Rd → Rm. Then for any sharply
bounded representatives (An,ε)ε of An,

(i) For all [xε] ∈
⋂

n∈N
An we have (uε(xε))ε ∈ Rm

M if and only if ∃N ∈ N ∀0ε :

supx∈AN,ε+εN |uε(x)| ≤ ε−N .
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(ii) For all [xε] ∈
⋂

n∈N
An we have (uε(xε)) ∼ 0 if and only if ∀m ∈ N ∃N ∈

N ∀0ε : supx∈Aε+εN |uε(x)| ≤ εm.

Proof. (i) ⇒: By [21, Prop. 2.9], for each m ∈ N, there exists ηm ∈ I such that for
each ε ≤ ηm and x ∈ Am,ε, d(x,Ak,ε) ≤ εm, for each k ≤ m. W.l.o.g., (ηm)m∈N

decreasingly tends to 0. By contraposition, let

∀n ∈ N ∀η ∈ I ∃ε ≤ η : sup
x∈An,ε+εn

|uε(x)| > ε−n.

Then we can find a strictly decreasing sequence (εn)n∈N and xεn ∈ An,εn + εnn such
that εn ≤ ηn and |uεn(xεn)| > ε−n

n , ∀n ∈ N. Choose xε ∈ Am,ε, if ηm+1 < ε ≤ ηm
and ε /∈ {εn : n ∈ N}. Then for each n ∈ N, (d(xε, An,ε))ε ∼ 0. By [21, Prop. 2.1],
x̃ := [xε] ∈

⋂
n∈N

An ((xε)ε is moderate, since (An,ε)ε are sharply bounded). Yet
(uε(xε))ε /∈ Rm

M .
(i) ⇐: let [xε] ∈

⋂
n∈N

An. Let N ∈ N as in the statement. By [21, Prop. 2.1],

(d(xε, An,ε))ε ∼ 0 for each n ∈ N. In particular, xε ∈ AN,ε + εN for small ε. Hence
|uε(xε)| ≤ supx∈AN,ε+εN |uε(x)| ≤ ε−N for small ε.

(ii) Similar. �

Theorem 30. Let X ⊆ R̃n. If (uε) defines a generalized smooth map X → R̃d,
then ∀[xε], [x

′
ε] ∈ X : [xε] = [x′

ε] ⇒ (uε(xε)) ∼ (uε(x
′
ε)).

Proof. W.l.o.g. uε ∈ C∞(Rn,Rd) by Lemma 28. Let [xε] ∈ X . Applying Lemma
29 to An = {[xε]} and to ∂juε (j = 1, . . . , n), we find N ∈ N such that for each
(x′

ε) ∈ Rn
M with |xε − x′

ε| ≤ εN for small ε,

|uε(x
′
ε)− uε(xε)| ≤ |x′

ε − xε| sup
|x−xε|≤εN

|∇uε(x)| ≤ ε−N |x′
ε − xε|, for small ε.

(5.2)
Choosing in particular [x′

ε] = [xε] ∈ X , then (x′
ε) ∼ (xε), hence also (uε(xε)) ∼

(uε(x
′
ε)) by (5.2). �

Consequently, the GSF f = [uε(−)]: X → Y is well-defined by its representative.
We now turn to the derivatives.

Theorem 31. Let X ⊆ R̃n. If f = [uε(−)] ∈ G̃(X, R̃d), then

(i) f : X → R̃d is locally Lipschitz in the sharp topology

(ii) If A ⊆ X, A internal, sharply bounded and convex, then f : A → R̃d is
Lipschitz

(iii) If x ∈ ints(X) and f(y) = 0, for each y in a sharp neighborhood of x, then
∂αuε(x) ∼ 0, ∀α ∈ Nn.

(iv) If X is sharply open and f = [vε(−)]|X , then for each α ∈ Nn, [∂αuε(−)] =
[∂αvε(−)].

Proof. (i): by the inequality (5.2), f is Lipschitz on B[εN ]([xε]) for some N .
(ii): similar to Thm. 30, now applying Lemma 29 to An = [Aε] with Aε convex

(by Lemma 17).

(iii): let N ∈ N such that y ∈ X and f(y) = 0, for each y ∈ R̃ with |y − x| ≤ εN .
Let x = [xε]. We have that (sup|x−xε|≤εN |uε(x)|)ε ∼ 0, since otherwise, one

constructs y ∈ X with |y − x| ≤ εN and f(x) 6= 0. Again by Lemma 29, we find
for each α ∈ Nd some N ∈ N such that sup|x−xε|≤εN |∂αuε(x)| ≤ ε−N , for small ε.

The statement now follows similar to [16, Thm. 1.2.3].
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(iv): apply (iii) to [uε − vε]. �

Consequently, the partial derivative ∂αf := [∂αuε(−)] on a sharply openX ⊆ R̃n

is itself a well-defined GSF, and thus satisfies itself the Lipschitz conditions from
the previous theorem. We can now show the relationship between GSF and the
discontinuous Colombeau differential calculus developed in [1]:

Proposition 32. Let a, b ∈ R with a < b and (̃a, b) ⊆ U ⊆ R̃, where U is open

in the sharp topology. Let f : U −→ R̃ be a generalized smooth map, then at every

point x ∈ (̃a, b) the function f is differentiable in the sense of [1] with derivative
f ′(x).

Proof. Let f be defined by the net of smooth functions (uε). Since (̃a, b) ⊆ U ⊆

〈Ωε〉, Prop. 11 yields (a, b) ⊆ Ωε for ε small. For all these ε and for y ∈ (̃a, b),
applying to uε the second order Taylor formula, we get

|f(y)− f(x)− f ′(x) · (y − x)|e = |[uε(yε)− uε(xε)− u′
ε(xε) · (yε − xε)]|e

=

∣∣∣∣
[
1

2
u′′
ε (ζε) · (yε − xε)

2

]∣∣∣∣
e

≤ |[u′′
ε (ζε)]|e · |(yε − xε)|

2
e,

where ζε ∈ [xε, yε] ∪ [yε, xε] ⊆ (a, b) ⊆ Ωε. The moderateness of [u′′
ε (ζε)] ∈ R̃

(condition (ii) of Def. 26) at [ζε] ∈ (̃a, b) ⊆ U ⊆ 〈Ωε〉 yields |[u′′
ε (ζε)]|e ≤ K for

some K ∈ R. Thus

lim
y→x

|f(y)− f(x)− f ′(x) · (y − x)|e
|(y − x)|e

= 0,

as claimed. �

Definition 33. Let X ⊆ R̃d. We call

EM (X, R̃n) =
{
(uε) ∈ C∞(Rd,Rn)I | ∀α ∈ Nd ∀[xε] ∈ X : (∂αuε(xε)) ∈ Rn

M

}
,

N (X, R̃n) =
{
(uε) ∈ EM (X, R̃n) | ∀[xε] ∈ X : (uε(xε)) ∼ 0

}
.

Since (uε) defines a smooth map X → R̃n iff (uε) ∈ EM (X, R̃n) and [uε(−)] =

[vε(−)] iff (uε−vε) ∈ N (X, R̃n), we can identify G̃(X, R̃n) with EM (X, R̃n)/N (X, R̃n).
As a result of Thm. 31, we can also write

N (X, R̃n) =
{
(uε) ∈ EM (X, R̃n) | ∀α ∈ Nd ∀[xε] ∈ X : (∂αuε(xε)) ∼ 0

}

if X is sharply open.

Remark 34.

(i) In general, if the GSF f : X −→ Y is defined by the net uε ∈ C∞(Ωε,Rd),
the function f may not be extensible to the whole of 〈Ωε〉 ⊇ X because
some derivative (∂αuε(−)) can grow stronger than polynomially on 〈Ωε〉 \X .
A simple example is given by u(x) := ex even for domains Ωε such that

X = R̃c ⊆ 〈Ωε〉. In fact, Th. 11 yields the existence of a sequence (εn)n ↓
0 such that [n − 1, n + 1] ⊆ Ωε for ε ∈ (0, εn]. Therefore, the point x

defined by xε := n for ε ∈ (εn+1, εn] lies in 〈Ωε〉 \ R̃c, but u(xε) = (exε) /∈

R̃M . This is a necessary limitation of this approach to generalized functions:
indeed, it is not difficult to prove that the only ordered quotient ring where
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infinitesimals and order are accessible (i.e. defined similarly to R̃, see [14])
and where every smooth operation is possible, is necessarily the Schmieden-
Laugwitz one ([26, 10, 22, 30]).

(ii) Let K ⋐ Rn be a compact set such that K̃ ⊆ X ⊆ R̃n. Then the GSF

f : X −→ Y is uniquely determined on K̃ by its values on near standard

points (see Sec. 2), i.e. f = 0 on K̃ iff f(x) = 0 for all x ∈ K•. In fact,

suppose that f vanishes on K• but that f(x) 6= 0 for some x ∈ K̃. Then
there exist m ∈ N and (εk)k ↓ 0 such that |uεk(xεk )| > εmk , where (uε) is a
net that defines f . Since (xεk)k is a sequence in the compact set K, we can

extract a subsequence
(
xεkl

)
l
which converges to x̄ ∈ K. Set x′

ε := xεkl
if

ε ∈ (εkl+1
, εkl

], then x′ = [x′
ε] ∈ K• since limε→0+ x′

ε = liml→+∞ xεkl
= x̄ ∈

K, but f(x′) 6= 0, a contradiction. This generalizes the analogous property
of CGF proved in [17].

Our next aim is to clarify the relation between CGF and GSF.

Theorem 35. Let ∅ 6= A ⊆ R̃d be internal and sharply bounded. Then for each
sharply bounded representative (Aε) of A,

EM (A, R̃n) =
{
(uε) ∈ C∞(Rd,Rn)I | ∀α ∈ Nd ∃N ∈ N :

sup
x∈Aε+εN

|∂αuε(x)| ≤ ε−N , for small ε
}
.

N (A, R̃n) =
{
(uε) ∈ EM (A, R̃n) |

(
sup
x∈Aε

|uε(x)|
)
∼ 0

}
.

Proof. The characterization of EM (A, R̃n) follows immediately by the first part of
Lemma 29. By the second part of Lemma 29, it follows that

(
supx∈Aε

|uε(x)|
)
∼ 0

for each (uε) ∈ N (A, R̃n). For the converse inclusion, let x̃ ∈ A. Then x̃ = [aε],
with aε ∈ Aε for small ε. By hypothesis, (uε(aε)) ∼ 0. By Theorem 30, (uε(xε)) ∼ 0
for any representative [xε] of x̃. �

We have a similar characterization for more general domains:

Corollary 36. Let A =
⋃

λ∈ΛBλ ⊆ R̃d, where each Bλ is nonempty, internal and
sharply bounded. Let (Bλ,ε)ε be a sharply bounded representative of Bλ, for each λ.
Then

EM (A, R̃n) =
{
(uε) ∈ C∞(Rd,Rn)I | ∀α ∈ Nd ∀λ ∈ Λ

∃N ∈ N : sup
x∈Bλ,ε+εN

|∂αuε(x)| ≤ ε−N , for small ε
}
.

N (A, R̃n) =
{
(uε)ε ∈ EM (A, R̃n) | ∀λ ∈ Λ :

(
sup

x∈Bλ,ε

|uε(x)|
)
∼ 0

}
.

Proof. This follows by Theorem 35 because, by definition, EM (
⋃

λ∈Λ Bλ, R̃n) =⋂
λ∈Λ EM (Bλ, R̃n) and N (

⋃
λ∈ΛBλ, R̃n) =

⋂
λ∈Λ N (Bλ, R̃n). �

Theorem 37. Let Ω be an open subset of Rd. Then G(Ω) = G̃(Ω̃c).

Proof. Any u ∈ G(Ω) has a representative (uε) ∈ C∞(Rd)I by the cut-off procedure

in Lemma 28. Since Ω̃c =
⋃

K⋐Ω K̃, the result follows by Corollary 36. �
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Similarly, since R̃d =
⋃

n∈N
{x ∈ R̃d : |x| ≤ [ε]−n}, G̃(R̃d) coincides with the

definition of G(R̃d) given in [28], where it is also shown that Gτ (Rd) ⊆ G̃(R̃d).

Remark 38. Thus essentially, GSF have a greater flexibility in their domains com-

pared with CGF, which always have a domain of the form Ω̃c.

(i) The possibility to define a GSF using a net uε ∈ C∞(Ωε,Rd), permits to
obtain GSF which are defined on purely infinitesimal sets, e.g. starting from

Ωε = (−εq, εq), so that we can take X = 〈Ωε〉 ⊆ B[εq ](0) ⊆ R̃.
(ii) Vice versa, we can define GSF on unbounded sets of generalized points. A

simple case is the exponential map

e(−) : x ∈
{
x ∈ R̃ | ∃z ∈ R̃∗

>0 : |x| ≤ | log z|
}
7→ ex ∈ R̃.

The domain of this GSF cannot be of the form Ω̃c (which contains only finite
points). Analogously, the domain of the map

e
1

(−) :
{
x ∈ R̃ | ∃z ∈ R̃∗

>0 : |x−1| ≤ | log z|
}
7→ e

1
x ∈ R̃

contains a set of infinitesimals that is not of the form Ω̃c.

Contrary to the case of distributions and CGF, there is no problem in considering
the composition of two GSF:

Theorem 39. Subsets S ⊆ R̃s with the trace of the sharp topology, and generalized
smooth maps as arrows form a subcategory of the category of topological spaces. We

will call this category G̃, the category of GSF.

Proof. By Theorem 31.(i) we already know that every GSF is continuous; we have
hence to prove that these arrows are closed with respect to identity and composition
in order to prove that we have a concrete subcategory of topological spaces and
continuous maps.

If T ⊆ R̃t is an object, then uε(x) := x is the net of smooth functions that globally
defines the identity 1T on T . It is immediate that 1T is generalized smooth.

To prove that arrows of G̃ are closed with respect to composition, let S ⊆ R̃s, T ⊆
R̃t, R ⊆ R̃r and f = [uε(−)] : S −→ T , g = [vε(−)] : T −→ R be generalized smooth
maps, where we can choose uε ∈ C∞(Rs,Rt) and vε ∈ C∞(Rt,Rr) by Lemma 28.
Then vε ◦uε ∈ C∞(Rs,Rr). We show that (vε ◦uε)ε defines the GSF v ◦u: S −→ R.
For every x = [xε] ∈ S, f(x) = [uε(xε)] ∈ T and thus g(f(x)) = [vε(uε(xε))] ∈ R.
Consider any γ ∈ Ns. It remains to be shown that ∂γ(vε ◦ uε)(xε) ∈ Rr

M . We can
write

∂γ(vε ◦ uε)(xε) = p
[
∂α1uε(xε), . . . , ∂

αAuε(xε), ∂
β1vε(uε(xε)), . . . , ∂

βBvε(uε(xε))
]
,

(5.3)
where p is a suitable polynomial not depending on xε. Every term ∂αiuε(xε) and
∂βjvε(uε(xε)) is moderate by (ii) of Def. 26. Since moderateness is preserved by
polynomial operations, it follows that also ∂γ(vε ◦ uε)(xε) is moderate. �
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