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Abstract: Organic solar cells have narrow absorption windows, compared to the 

absorption band of inorganic semiconductors. A possible way to capture a wider band of 

the solar spectrum—and thus increasing the power conversion efficiency—is using more 

solar cells with different bandgaps in a row, i.e., a multi-junction solar cell. We calculate 

the ideal material characteristics (bandgap combinations and absorption windows) for an 

organic tandem and triple-junction solar cell, as well as their acceptable range. In this way, 

we give guidelines to organic material designers. 

Keywords: organic solar cells; modeling; tandem solar cells; triple-junction solar cells; 

multi-junction solar cells; power conversion efficiency; bandgap; absorption window 

 

1. Introduction 

Photovoltaic (PV) solar cells based on organic compounds are promising candidates for solar 

energy conversion. They have the potential for cost effectiveness, mechanical flexibility and easy 

processing. Nowadays, a record efficiency of 10% is reached [1] for a single-junction cell of 1 cm2 and 

4.2% for a submodule (10 series cells) [2,3]. In order to compete with the traditional inorganic cells, 

higher power conversion efficiencies, certainly for larger cells, are desirable. 

A characteristic of organic solar cells is their narrow absorption window, compared to the 

absorption band of inorganic semiconductors [4]. A possible way to capture a wider band of the solar 

spectrum—and thus increasing the power conversion efficiency—is using more solar cells with 
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different bandgaps in a row, referred to as a tandem or multi-junction solar cell. In this article, we will 

focus on organic multi-junction solar cells with two or three cells in a row. We will refer to them as a 

tandem (2 subcells) and a triple-junction (3 subcells) solar cell. 

Organic tandem solar cells, where both single subcells are of the organic solar cell type, have 

already been fabricated by several research institutes [5–12] as well as fully organic triple-junction 

cells [13–15]. Nowadays, efficiencies of more than 10% are reached for organic tandem cells [16,17]. 

This maximum efficiency is about the same as the record efficiency of a single-junction organic cell, 

indicating that progress in the field of multi-junction organic solar cells is still possible. 

In this paper, we calculate the ideal material characteristics for an organic tandem and triple-

junction solar cell. In this way, we give guidelines to organic material designers and tell them what can 

be the expected result of their new developed material if it would be used in an organic multi-junction 

solar cell. More specifically: 

 We determine the optimal bandgap configurations of the subcells, as well as their acceptable 

range. 

 Previous excellent work on calculating the ideal configuration of organic (single and multi-

junction) solar cells has been done by multiple authors [18–26], but often, they do not take into 

account the narrow absorption window, characteristic for organic materials. In this work, we 

include the influence of different absorption windows for each subcell. 

 Moreover, our calculations with different absorption windows are not only presented for a 

stacked organic tandem and triple-junction cell, but also for a monolithic configuration. This 

has not been done before for organic triple-junction cells. 

 We calculate the theoretical upper-limit for the efficiency of organic tandem and triple-junction 

solar cells. Although this maximum efficiency itself is only interesting from a theoretical point 

of view, the ideal material characteristics obtained from these calculations are of importance. 

They tell material designers what the sufficient energy levels and absorption windows for 

organic photovoltaics are. 

 We also assume a more realistic scenario to predict efficiencies obtainable in the near future. 

The results presented in this paper are meant to increase the fundamental understanding of the 

relationship between on the one hand the energy levels of donor and acceptor and the absorption 

window of the subcells, and on the other hand the light harvesting potential of the configurations. This 

work is an extension of our earlier work on organic multi-junction cells [27,28]. 

2. Improving the Efficiency of Organic Solar Cells 

The active material in a single organic bulk heterojunction solar cell consists of an interpenetrating 

network of an n-type (electron acceptor, e.g., fullerene derivative) and a p-type (semi)conductor 

(electron donor, e.g., conjugated polymer), sandwiched between two electrodes with different work 

functions. The optical bandgap Eg is defined as the difference between the lowest unoccupied 

molecular orbital (LUMO) and the highest occupied molecular orbital (HOMO) of the absorber material. 

The power conversion efficiency of a solar cell can be significantly increased by using several solar 

cells with different bandgaps Eg in a row. We consider a tandem solar cell, consisting of two single 
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organic photovoltaic cells (Figure 1a). The organic cell with the highest optical bandgap is in front 

(side of the sun), thus Eg1> Eg2. High-energy photons with an energy h>Eg1 are absorbed by the first 

cell. The second cell, with a lower bandgap Eg2, absorbs the low-energy photons with an energy 

between Eg1 and Eg2. In this configuration, the photon energy is used more efficiently: the voltage at 

which electrical charge is collected in each subcell is closer to the energy of the photons absorbed in 

that subcell. 

Figure 1. (a) A stacked or 4-terminal tandem solar cell: the first single cell absorbs 

photons with an energy h higher than Eg1. The second cell absorbs photons with an energy 

between Eg1 and Eg2. Photons with an energy below Eg2 are not absorbed. The two subcells 

are electrically separated; (b) A monolithic or 2-terminal tandem solar cell: the single cells 

are electrically connected in series. 

 

In the ideal configuration, the subcells are electrically separated. This is called the stacked or  

4-terminal configuration (Figure 1a). However, the stacked configuration is to date economically 

irrelevant. Indeed, experimental and commercial tandem solar cells are usually of the monolithic 

(integrated or 2-terminal) type (Figure 1b). This means that they are not only optically in series, but 

also electrically in series. This configuration will never reach an efficiency that is higher than that of a 

stacked (4-terminal) tandem cell, because all single cells cannot operate at their optimal working point 

at the same time (unless they have an equal maximum-power current).  

Chemists are searching for suitable organic materials, and with appropriate actions (the tuning or 

molecular engineering of organic molecules), they improve the current materials for photovoltaic 

applications: And with success. The power conversion efficiency of organic single-junctions cells has 

improved from 1% in 1985 [29], to 5% in 2005 [30], and to 10% nowadays [1]. Appropriate actions to 

modify the properties of organic materials are, for example: 

 The substitution of, or addition on, side groups of the organic chain. 

 Changing the chain lengths between the atoms (e.g., by adding double bonds). 

 Changing the aromaticity of the bounds. 

 Modifying the spatial orientation (planarity). 

An example of tuning or molecular engineering of organic molecules is the insertion of extra 

double bounds in an oligothiophene structure, thus lowering the bandgap [31]. Not only the active 

material, but also the solar device itself is the subject of molecular engineering. A clear example can 
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the side of the sun), thus Eg1 > Eg2. The distance between the HOMO of the p-type and the LUMO of 

the n-type is considered as the thermodynamic limitation of the useful energy [36]. We call this value 

the interface bandgap Ei. For an organic solar cell with ohmic contacts, the open circuit voltage Voc is 

linearly dependent on the interface bandgap Ei. This linear relationship was proven for the variation of 

the HOMO-level of the donor [18,37,38] and of the LUMO-level of the acceptor [39–41]. For a cell 

with non-ohmic contacts, the Voc is dependent on the work function difference of the electrodes [42]. 

In our calculations, we assume a cell with ohmic contacts. 

For our simulations, the following fundamental assumptions are made about the stacked tandem cell 

(Figure 1a): 

 Every photon with an energy h higher than the bandgap Eg1 is absorbed by the first cell and 

leads to a useful energy Ei1. This assumption implies that each absorbed photon eventually 

leads to a free electron and a free hole, with an energy difference of Ei1 between them. 

 Every photon with an energy h between Eg1 and Eg2 is absorbed by the second cell and leads 

to a useful energy Ei2. 

 Photons with an energy h lower than Eg2 are fully transmitted. 

Figure 3. External quantum efficiency (EQE) as a function of the wavelength . Definition 

of the absorption window and the cut-off wavelengths g. Notice that the order of the first 

and second subcell can be changed if there is no overlap between both absorption windows. 

 

The maximum efficiency max is therefore given by: 
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(1) 

with N(E) the incident photon flux. For all our simulations, we use the AM 1.5 experimentally 

measured solar spectrum [43]. Note that the denominator is the total incident photon power density of 

the solar spectrum and does not depend on any bandgap. In this ideal scenario, the open circuit voltage 

Voc of the first and second subcell will be given by Ei1/q and Ei2/q respectively (with q the electric 

charge). The fill factor FF of both subcells is assumed to equal unity, as well as the external quantum 
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efficiency EQE of the first cell for wavelengths below the cut-off wavelength g1 (corresponding with 

Eg1, see Figure 3). The EQE of the second cell equals unity for wavelengths between cut-off 

wavelength g1 and g2 (corresponding with Eg2). Because these parameters are scalable, this 

idealization does not interfere with our goal to determine an acceptable range for the bandgap 

combinations and absorption windows. 

For now, our assumptions correspond with a typical inorganic cell where all energies above the 

bandgap are absorbed. We will now refine our model for organic solar cells by imposing a narrow 

absorption band as well as a difference between the LUMOs of donor and acceptor. In real organic 

materials, the optical absorption and hence the EQE are confined to a more or less narrow wavelength 

range, usually about 200 to 300 nm wide. We idealize this behavior by introducing the concept of 

absorption windows [34], which are defined in Figure 3, and will be treated further as a parameter. 

In a monolithic or integrated tandem solar cell (Figure 1b), the individual cells are electrically 

connected in series. This means that the total voltage over the cell is the sum of the voltages over each 

individual cell, and thus equals the sum of the interface bandgaps of both single cells. Furthermore, the 

same current flows through both single cells. Hence, the maximum efficiency max for a monolithic 

organic tandem cell is given by: 
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  (2) 

with min(x,y) the minimum of x and y. The open circuit voltage Voc of the whole monolithic tandem 

cell will be given by (Ei1+Ei2)/q, the fill factor FF equals unity, as does the external quantum 

efficiency EQE for wavelengths below the cut-off wavelength g2. 

In organic bulk heterojunction solar cells, light absorption does not immediately lead to free charge 

carriers. Instead, an exciton is created. In an ideal scenario, the highest efficiency is reached when the 

LUMO of the p-material is as close as possible to the LUMO of the n-material [34]. However, a 

necessary condition for efficient dissociation of the created excitons is that the difference between the 

LUMOs of donor and acceptor (LUMO, Figure 2) is higher than the exciton binding energy [44]. 

Thus, without a sufficient energy difference between the LUMOs of both materials, the solar cell 

cannot work. The value of the exciton binding energy (and the minimal LUMO) in different materials 

is a subject of discussion, and values in a large range from 0.1 eV to 2 eV have been 

published [39,41,45,46]. The excess of this necessary minimum of the LUMO-difference corresponds 

with an energy loss. We refer to our earlier work [34] for the influence of LUMO on the efficiency 

for different absorption windows for a single-junction. With a full absorption window, each additional 

difference of 0.1 eV between the LUMOs results in approximately an additional 10% relative 

efficiency loss. In the following calculations, we assume a difference of 0.2 eV between the LUMOs of 

each subcell in our organic solar cell. This value was put forward as an empirical threshold necessary 

for exciton dissociation [47] and is comparable with other studies [18,24]. Just because of this 

necessary energy difference between the LUMOs, the attainable efficiency for the organic bulk 

heterojunction tandem solar cell drops by 16%–17% in comparison with their inorganic counterpart, 
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purely because of the difficulties in exciton dissociation. Choosing another value for LUMO would 

lead to qualitative similar results. 

We also consider an organic triple-junction solar cell, i.e., three organic subcells in a row. We make 

completely analogous assumptions as for the tandem cell. Formulae (1) and (2) now become 
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for a stacked and  
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  (4) 

for a monolithic triple-junction configuration, respectively. 

In the next section, we first take a look at the special case where all the subcells of the solar cell 

have a maximum absorption window. Secondly, we discuss the case where the subcells have the same, 

narrow absorption window. Thirdly, an organic cell with different absorption windows for the subcells 

is considered. Finally, a more realistic scenario is discussed. 

4. Results 

4.1. Subcells with a Full Absorption Window 

Figure 4 shows the maximum efficiency in the ideal scenario for a stacked and monolithic organic 

tandem cell with bandgaps Eg1 and Eg2, a full absorption window for the subcells and a LUMO 

difference of 0.2 eV for each subcell between n- and p-type. A maximum efficiency of 54.0% and 

53.3% is reached for a stacked and monolithic tandem cell respectively. As mentioned already, the 

efficiency of a monolithic configuration will never be higher than that of a stacked configuration. In 

comparison with a single-junction organic cell with an optimal bandgap of 1.1 eV, adding a second 

subcell results in a relative gain of about 1/3rd in power conversion efficiency [34]. For higher 

bandgaps, less photons are being absorbed from the solar spectrum, but the useful output energy of 

each absorbed photon is higher. Hence, there is an optimum for each bandgap. This maximum occurs 

for the stacked and monolithic tandem cell at a configuration (Eg1, Eg2) of (1.7 eV, 0.9 eV) and (1.6 eV, 

0.9 eV) respectively [27]. Several organic donors with a bandgap of 1.6 or 1.7 eV are available (e.g., 

CuPc, P3OT and PBDTTT-CF) [24,47]. However, although organic materials with a bandgap of  

0.9 eV exist [33], they have not (yet) been applied successfully in an organic solar cell. 
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combinations (and thus material combinations) is much more limiting for a monolithic configuration 

than it is for a stacked configuration. 

Figure 5. The maximum efficiency in the ideal scenario for a stacked (a,b) and monolithic 

(c,d) organic triple-junction solar cell with bandgaps Eg1, Eg2 and Eg3, a full absorption 

window and a LUMO difference of 0.2 eV between n- and p-type. 

 

The current extracted from the monolithic configuration is almost equal to the photocurrent of the 

subcell that generates the lowest current. If one subcell generates much more current than another 

subcell, the excess of charge carriers cannot recombine at the intermediate contact between the subcells. 

This will cause a charging at the intermediate contact and will partially compensate the built-in voltage 

across the other cell until the current of the subcells matches. This will lower the power conversion 

efficiency and explains the inferior performance of monolithic cells for non-optimal bandgap 

configurations. Current matching is therefore necessary in a monolithic configuration. We want to 

stress that this is not implemented in the model presented in this paper. 



Materials 2012, 5            

 

 

1942

4.2. Subcells with the Same Absorption Window  

We now take into account the narrow absorption window which is characteristic for organic 

materials. For ease of presentation, we assume—for now—that all subcells of the multi-junction 

structure have the same absorption window in nm.  

First, as example, we consider the maximum efficiency for a stacked organic triple-junction solar 

cell with varying bandgap Eg1, optimal chosen bandgaps Eg2 and Eg3 and a LUMO difference of 0.2 eV 

between n- and p-type. We vary the absorption window from full absorption width to 100 nm 

absorption width (Figure 6a). We notice two important results. First, the efficiency remains quite high, 

until the absorption width decreases under 300 nm. Secondly, the smaller the absorption window, the 

higher the optimal bandgap Eg1 of the first cell. The same two conclusions can be drawn for the 

monolithic configuration (Figure 6b). Notice again that the monolithic cell is much less efficient than a 

stacked cell in a non-optimal bandgap configuration. For the optimal bandgap configuration, the 

difference is again negligible. 

Figure 6. The maximum efficiency in the ideal scenario for a stacked (a) and a monolithic 

(b) organic triple-junction solar cell with varying bandgap Eg1, optimal chosen bandgaps 

Eg2 and Eg3, and a LUMO difference of 0.2 eV between n- and p-type. The absorption 

window varies from full absorption width to 100 nm absorption width. 

 

A more general view can be found in Figure 7a and 8 which show the maximum efficiency and the 

optimum bandgaps in the ideal scenario for a stacked and monolithic configuration as a function of the 

absorption window width.  

Let us first focus on the tandem cell (Figure 7a). The broader the absorption window, the higher the 

efficiency. Notice that there is only a negligible difference between the stacked and the monolithic 

configuration. As explained above, the efficiency for non-optimal bandgap configurations of the 

monolithic tandem cell will be much lower than for the stacked cell. For example, if we look at an 

organic tandem cell with non-optimal bandgaps Eg1 = 2.5 eV and Eg2 = 1.5 eV and an absorption 

window of 100, 200 and 300 nm, the stacked cell still has a maximum efficiency of 20.2, 32.5 and 

41.5%, respectively, whereas the monolithic cell reaches only 18.0% for a 100 nm broad absorption 

window and 22.5% for an absorption window of 200 nm or more wide. Thus in the case of non-

optimal bandgaps, we can conclude that for increasingly smaller absorption windows, the advantage of 

the stacked solar cell over the monolithic cell decreases. 
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Figure 7. (a) The maximum efficiency is plotted in the ideal scenario (with LUMO = 0.2 

eV) for an organic stacked and monolithic tandem cell as a function of the absorption 

window. Also the optimum bandgaps Eg1 and Eg2 for a stacked cell are plotted as a function 

of the absorption window. The optimum bandgaps Eg1 and Eg2 for the monolithic cell are 

plotted if they differ from the stacked cell; (b) The green region and the black hatched 

region define the range of sufficient bandgap combinations (>90% of the maximum 

efficiency) of respectively a stacked and a monolithic organic tandem cell with absorption 

windows of 400 nm for the subcells. 

 

Figure 7a shows that the optimum bandgap of the cells shifts towards higher energies for lower 

absorption windows. For example, the optimum bandgap shifts from Eg1 = 1.6 eV and Eg2 = 0.9 eV for 

a full absorption band monolithic cell to Eg1 = 1.9 eV and Eg2 = 1.4 eV for a cell with an absorption 

window of only 200 nm. This is a satisfying result, because, as we already mentioned, the production 

of suitable low bandgap organic materials is difficult. 

For an absorption window of 400 nm or more, already 98% of the maximum attainable efficiency 

(for a full absorption band) is reached for the stacked and monolithic configuration. Hence, it would 

not pay off to try to develop organic materials with an absorption window broader than 400 nm, 

because hardly any efficiency gain can be achieved by widening the absorption window further. An 

absorption window of 400 nm is sufficient for an organic tandem cell. 

The optimum bandgaps with a sufficient absorption window of 400 nm are Eg1 = 1.7 eV and Eg2 = 

1.1 eV for both configurations. Fortunately, the maximum is quite broad, certainly for the stacked 

configuration, just as it was for Figure 4 for the full absorption band. If we consider a bandgap Eg2 of 

1.4 eV (Eg1 = 2.2 eV) we still obtain 90% relative of the maximum efficiency for the stacked cell.  

Figure 7b defines the range of sufficient energy levels for a good organic tandem solar cell. As 

mentioned earlier, a minimum absorption window of 400 nm is advised. We define this range as any 

bandgap combination which still achieves an efficiency of minimum 90% relative of the maximum 

efficiency at 400 nm. Figure 7b gives guidelines for the sufficient bandgap combinations for an 

organic tandem solar cell.  

For the triple-junction cell (Figure 8), similar conclusions can be drawn. The broader the absorption 

window, the higher the efficiency. Only at an absorption window of 700 nm, the efficiency decreases 

because—by imposing the absorption window—we also impose limits on the allowed bandgaps. 

Indeed, a bandgap of e.g., 2.0 eV corresponds with a cut-off wavelength of 620 nm and does therefore 

not leave enough room for an absorption window of 700 nm. 
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Figure 8. The maximum efficiency and the optimum bandgaps are plotted in the ideal 

scenario (with LUMO = 0.2 eV) for an organic stacked and monolithic triple-junction cell 

as a function of the absorption window. 

 

The optimum bandgaps (Eg1, Eg2, Eg3) for a stacked cell shift from (1.9 eV, 1.2 eV, 0.7 eV) for a full 

absorption band to (2.4 eV, 1.8 eV, 1.4 eV) for a cell with an absorption window of only 200 nm. For 

an absorption window of 300 nm respectively, already 95% of the maximum attainable efficiency (for 

a full absorption band) is reached. Hence, it would not pay off to try to develop organic materials for 

triple-junction solar cells with an absorption window broader than 300 nm, because hardly any 

efficiency gain can be achieved by widening the absorption window further. The optimum bandgaps 

with a sufficient absorption window of 300 nm are (2.1 eV, 1.5 eV, 1.1 eV) for the stacked and (2.0 eV, 

1.5 eV, 1.1 eV) for the monolithic configuration.  

Figure 9. The green region and the black hatched region define the range of sufficient 

bandgap combinations (>90% of the maximum) of respectively a stacked and a monolithic 

organic triple-junction cell with absorption windows of 300 nm for the subcells. The grey 

hatched region defines the “still acceptable” range (>80% of the maximum) for a 

monolithic triple-junction. 

 

Especially the optimum bandgap Eg3 of the third subcell is quite low for organic materials. If we 

again consider a range of sufficient bandgap combinations (Figure 9), we notice that for a stacked 

configuration, an Eg3 of 1.3 eV is still very acceptable for different Eg1–Eg2 combinations. For a 

monolithic configuration however, this range is only narrow. We therefore also define a “still 

acceptable” range of bandgap combinations, which still achieves an efficiency of minimum 80% 
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relative of the maximum at 300 nm. Figure 9 gives guidelines for the sufficient bandgap combinations 

for an organic triple-junction solar cell.  

4.3. Subcells with an Unequal Absorption Window  

We now look at the situation where both subcells of a tandem structure have a different absorption 

window. In Figure 10 we plot the maximum efficiency for different absorption windows of the 

subcells. Each data point was calculated using the optimal bandgap configuration for this particular 

absorption window combination.  

One notices that a small absorption window for just one of the subcells of the stacked cell does not 

lead to a significant decrease in efficiency, as long as the absorption window of the other subcell is 

wide enough (Figure 10a). If one subcell has an absorption window of only 100 nm or 200 nm, the 

maximum efficiency is still about 80% or 90% respectively of the absolute maximum obtained in the 

case of full absorption windows, as long as the other subcell has an absorption window of at least 400 nm. 

This does not apply for the monolithic cell (Figure 10b). As soon as one subcell has a low 

absorption window, the efficiency decreases rapidly. A monolithic cell with an absorption window of 

100 nm or 200 nm for the first subcell, and 400 nm for the second subcell, only has a maximum 

efficiency of less than half and three quarters, respectively, of the absolute maximum for full 

absorption windows. At an absorption window of 700 nm, the efficiency decreases again because of 

the limits on the allowed bandgaps (by imposing the absorption window). 

Figure 10. The maximum efficiency in the ideal scenario for an organic stacked (a) and 

monolithic (b) tandem cell as a function of the absorption windows of the subcells. 

“Absorption window 1” refers to the first subcell with the highest absorber bandgap, i.e., 

the top cell directed at the sun. 

 

Again, the plots show for both configurations that absorption windows of more than 400 nm are not 

necessary for achieving good power conversion efficiency. Figures 10a and 10b are not symmetrical: 

for example, a monolithic tandem cell where the first subcell has an absorption window of 100 nm has 

a maximum attainable efficiency of 23.5%, whereas if it is the second subcell that has an absorption 
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window of 100 nm, the maximum attainable efficiency is 27.7%. The asymmetry is only minor, but is 

more present for a monolithic cell.  

Figure 11. The optimal bandgaps Eg1 (a,b) and Eg2 (c,d) in the ideal scenario for an 

organic stacked (a,c) and monolithic (b,d) tandem cell as a function of the absorption 

windows of the subcells. “Absorption window 1” refers to the first subcell with the highest 

absorber bandgap, i.e., the top cell directed at the sun. 

 

Figure 11 shows the optimal bandgap configurations for a stacked and monolithic organic tandem 

cell with unequal absorption windows. In general, the optimum bandgap of the cells shifts towards 

higher energies for lower absorption windows. In an organic stacked tandem cell, the optimal bandgap 

of the first subcell (Eg1) only reaches values higher than 2.0 eV when the absorption window of the 

first subcell is 200 nm wide or less (Figure 11a). Narrowing the absorption window of the first cell 

increases the optimal bandgap Eg1. The value of the bandgap Eg1 depends mainly on this first 

absorption window. It is not very dependent on the absorption window of the second subcell. In 

contrast with the stacked cell, the optimal bandgap Eg1 for a monolithic configuration depends on both 

absorption windows (Figure 11b). The lower the absorption windows of the subcells, the higher the 

optimal bandgap Eg1. 

The optimum of the bandgap of the second subcell (Eg2) is always such that the absorption window 

of the second subcell borders (or overlaps) the cut-off wavelength of the first subcell (not visible on the 



Materials 2012, 5            

 

 

1947

figures). This is the case for the stacked as well as the monolithic configuration. Only when the 

absorption window width of the second subcell is 100 nm or less, there is some significant space 

between both absorption windows, although never more than 50 nm. Hence, in all optimal bandgap 

configurations, (nearly) the entire solar spectrum between the outside borders of the absorption 

windows is absorbed. Please note that in our model, when the absorption windows overlap, the first 

subcell absorbs all the photons in the overlapping region, the second subcell none. 

The optimal bandgap Eg2 of the stacked cell (Figure 11c) shifts (quite symmetrically) towards 

higher energies for lower absorption windows of both the first and the second subcell. The explanation 

is that the optimal bandgap Eg2 is located in such a way that it (almost) borders the absorption window 

of the first subcell, as mentioned above. This is a satisfying result, taking into account the 

characteristic narrow absorption window of organics and the difficulty of producing suitable low 

bandgap organic materials. Unfortunately, this has a negative influence on the efficiency. 

Similar conclusions can be drawn for the triple-junction solar cell with different absorption 

windows for the three subcells. Again, for both configurations, absorption windows of more than 300 

nm are not necessary for achieving good power conversion efficiency of an organic triple-junction 

solar cell. We therefore take a look at the efficiencies in the ideal scenario for triple-junction cells 

whose subcells have either a sufficient (300 nm) or a too small (100 nm) absorption window. In Figure 12, 

the label “300 100 100” for example indicates a triple-junction whose first subcell has an absorption 

window of 300 nm and whose second and third subcell have an absorption window of 100 nm. As 

comparison, we also add the single-junctions and tandem cells with those absorption windows to 

Figure 12. 

One notices (Figure 12) that a small absorption window for just one of the subcells of the stacked 

cell does not lead to a big decrease in efficiency, as long as the absorption windows of the other 

subcells are wide enough. If one subcell has an absorption window of only 100 nm, the maximum 

efficiency is still about 85% of the absolute maximum obtained in the case of full absorption windows, 

as long as the other subcells have an absorption window of at least 300 nm. Even when only one 

subcell has a sufficient absorption window of 300 nm, and the other 2 have a small absorption window 

of 100 nm, the efficiency is still 75% relative of the absolute maximum.  

Similar to the tandem cell, this does not apply for the monolithic triple-junction cell (Figure 12). As 

soon as one subcell has a low absorption window, the efficiency decreases rapidly. A monolithic cell 

with an absorption window of 100 nm for the first subcell, and 300 nm for the other subcells, only has 

a maximum efficiency of about half of the absolute maximum for full absorption windows.  

Figure 12 also shows the optimal bandgaps for the different configurations. Similar conclusions 

regarding the bandgaps of the triple-junction can be drawn as for the organic tandem cell: 

 In general the optimum bandgap of the cells shifts towards higher energies for lower absorption 

windows. 

 The optimum of the bandgap Eg2 of the second subcell is always such that the absorption 

window of the second subcell borders (or overlaps) the cut-off wavelength of the first subcell, 

and analogous for Eg3. Hence, in all optimal bandgap configurations, (nearly) the entire solar 

spectrum between the outside borders of the absorption windows is absorbed.  
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Figure 12. The maximum efficiency in the ideal scenario for an organic stacked and 

monolithic solar cell as a function of the absorption windows of the subcells. The label 

“300 100 100” for example indicates a triple-junction whose first subcell has an absorption 

window of 300 nm and whose second and third subcell have an absorption window of 100 nm. 

As comparison, we also add the single-junctions (in red) and tandem cells (in green). The 

optimal bandgaps of the subcells in each configuration are given in eV. 

 

4.4. The Maximum Obtainable Efficiency in a More Realistic Situation 

For our calculations, we idealized some scalable parameters which were not relevant for 

determining guidelines for the bandgap combinations and absorption windows for organic tandem and 

triple-junction solar cells. To estimate the best obtainable efficiency in the near future however, we 

now assume the following realistic values, which are with the current state of technology nowadays 

reached in organic photovoltaics [3,24,47]. We assume an EQE of 75%, a fill factor FF of 75%, and a 

voltage factor f of 70%, with f defined by: 

i

oc

E

Vq
f




 
(5)

We consider that all subcells have the same EQE, FF and f. For the tandem cell, we assume an 

absorption window of 400 nm. This results in a maximum attainable efficiency of 20.9% and 20.5%, 

respectively, for stacked and monolithic organic solar cells, both at an optimal configuration (Eg1, Eg2) 

of (1.7 eV, 1.1 eV). For the triple-junction cell, we assume an absorption window of 300 nm. This 

results in an efficiency of 23.2% and 22.7%, respectively, for stacked and monolithic cells, at an 

optimal configuration (Eg1, Eg2, Eg2) of (2.1 eV, 1.5 eV, 1.1 eV) and (2.0 eV, 1.5 eV, 1.1 eV) 
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respectively. Again, several suitable organic materials with those bandgaps are available for the first 

and second subcell [24,33,49,50]. Because a narrow absorption window is sufficient, the optimal 

bandgap for the third subcell is now high enough to also have several material options of 1.1 eV 

bandgap available [24,33,49], e.g., carbazole copolymers [51].  

Nevertheless, tandem and triple-junctions of more than 20 % efficiency are still not in range. Why 

not? Remember that our model is intended to define an acceptable range for the bandgap combinations 

and absorption windows. We therefore omitted a lot of other factors also influencing the performance 

of the solar cell, such as carrier mobility and carrier lifetime, active layer thickness, blend composition, 

morphology of the device, etc.[33,52,53]. The organic materials with suitable bandgaps do not have 

the same properties as the best organic materials like P3HT. Furthermore, not only a good donor, but 

also the existence of an appropriate good acceptor with ideal energy levels (such as a minimal 

LUMO with the donor) is important. 

5. Conclusions and Further Work 

We have determined the optimal bandgap configurations of the subcells for an organic tandem and 

triple-junction solar cell, as well as their acceptable range. The requirements for a close to optimal 

configuration of the stacked tandem cell are quite broad. This is not the case for the monolithic 

configuration. An important conclusion is that an absorption window for each subcell of 400 and 300 nm 

for respectively a tandem and triple-junction cell is more than sufficient. Furthermore, for a stacked 

organic tandem cell, it is not necessary that both subcells have a large absorption window. This does 

not apply for the monolithic cell. As soon as one subcell has a low absorption window, the efficiency 

decreases rapidly.  

In our model, we assumed full absorption in each subcell (and consequently leaving the thickness of 

the subcells aside). We neglected interference and optical coupling of the subcells. As future work, we 

would like to include the thickness of the layers, and thus the influence of a limited absorption in each 

subcell, as well as the influence of current matching for the monolithic configurations. Indeed, the 

active layers in organic solar cells have typically a thickness below 300 nm and, because the sun light 

has to be considered as coherent on a scale of one to two periods of the incident light wave, the optics 

of organic solar cells are in most cases dominated by interference effects caused by the reflecting back 

electrode [21]. Therefore, the position of the subcells to the reflecting electrodes can play an important 

role in organic multi-junction cells [54]. 

References 

1. Service, R.F. Outlook brightens for plastic solar cells. Science 2011, 332, 293–293. 

2. Miyake, K.; Uetani, Y.; Seike, T.; Kato, T.; Oya, K.; Yoshimura, K.; Ohnishi, T. Development of 

Next Generation Organic Solar Cell, 2010. Available online: http://ww.sumitomo-

chem.co.jp/english/rd/report/theses/docs/20100101_5cu.pdf (accessed on 18 October 2012 ) 

3. Green, M.A.; Emery, K.; Hishikawa, Y.; Warta, W.; Dunlop, E.D. Solar cell efficiency tables 

(version 39). Prog. Photovoltaics 2012, 20, 12–20. 

4. Winder, C.; Sariciftci, N.S. Low bandgap polymers for photon harvesting in bulk heterojunction 

solar cells. J. Mater. Chem. 2004, 14, 1077–1086. 



Materials 2012, 5            

 

 

1950

5. Hadipour, A.; de Boer, B.; Wildeman, J.; Kooistra, F.B.; Hummelen, J.C.; Turbiez, M.G.R.; 

Wienk, M.M.; Janssen, R.A.J.; Blom, P.W.M. Solution-processed organic tandem solar cells. Adv. 

Funct. Mater. 2006, 16, 1897–1903. 

6. Janssen, A.G.F.; Riedl, T.; Hamwi, S.; Johannes, H.H.; Kowalsky, W. Highly efficient organic 

tandem solar cells using an improved connecting architecture. Appl. Phys. Lett. 2007, 91, 

073519:1– 073519:3. 

7. Tvingstedt, K.; Andersson, V.; Zhang, F.; Inganas, O. Folded reflective tandem polymer solar cell 

doubles efficiency. Appl. Phys. Lett. 2007, 91, 123514:1– 123514:3. 

8. Gilot, J.; Wienk, M.M.; Janssen, R.A.J. Double and triple junction polymer solar cells processed 

from solution. Appl. Phys. Lett. 2007, 90, 143512:1–143512:3  

9. Kim, J.Y.; Lee, K.; Coates, N.E.; Moses, D.; Nguyen, T.-Q.; Dante, M.; Heeger, A.J. Efficient 

tandem polymer solar cells fabricated by all-solution processing. Science 2007, 317, 222–225. 

10. Sista, S.; Park, M.H.; Hong, Z.R.; Wu, Y.; Hou, J.H.; Kwan, W.L.; Li, G.; Yang, Y. Highly 

efficient tandem polymer photovoltaic cells. Advan. Mater. 2010, 22, 380–383. 

11. Riede, M.; Uhrich, C.; Widmer, J.; Timmreck, R.; Wynands, D.; Schwartz, G.; Gnehr, W.M.; 

Hildebrandt, D.; Weiss, A.; Hwang, J.; et al. Efficient organic tandem solar cells based on small 

molecules. Adv. Funct. Mater. 2011, 21, 3019–3028. 

12. Gevaerts, V.S.; Furlan, A.; Wienk, M.M.; Turbiez, M.; Janssen, R.A.J. Solution processed 

polymer tandem solar cell using efficient small and wide bandgap polymer: Fullerene blends. 

Advan. Mater. 2012, 24, 2130–2134. 

13. Triyana, K.; Yasuda, T.; Fujita, K.; Tsutsui, T. Tandem-type organic solar cells by stacking 

different heterojunction materials. Thin Solid Films 2005, 477, 198–202. 

14. Hadipour, A.; de Boer, B.; Blom, P.W.M. Organic tandem and multi-junction solar cells. Adv. 

Funct. Mater. 2008, 18, 169–181. 

15. Zhao, D.W.; Sun, X.W.; Jiang, C.Y.; Kyaw, A.K.K.; Lo, G.Q.; Kwong, D.L. An efficient  

triple-tandem polymer solar cell. IEEE Electron Dev. Lett. 2009, 30, 490–492. 

16. Heliatek, G. Heliatek sets new world record efficiency of 10.7% for its organic tandem cell. 2012. 

Available online: http://www.heliatek.com/wp-content/uploads/2012/09/120427_PI_Heliatek-

world-record-10_7-percent-efficiency.pdf (accessed on 27 April 2012). 

17. Li, G.; Zhu, R.; Yang, Y. Polymer solar cells. Nat. Photonics 2012, 6, 153–161. 

18. Scharber, M.C.; Wuhlbacher, D.; Koppe, M.; Denk, P.; Waldauf, C.; Heeger, A.J.; Brabec, C.L. 

Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion 

efficiency. Advan. Mater. 2006, 18, 789–794. 

19. Coakley, K.M.; McGehee, M.D. Conjugated polymer photovoltaic cells. Chem. Mater. 2004, 16, 

4533–4542. 

20. Dennler, G.; Forberich, K.; Ameri, T.; Waldauf, C.; Denk, P.; Brabec, C.J.; Hingerl, K.; Heeger, A.J. 

Design of efficient organic tandem cells: On the interplay between molecular absorption and layer 

sequence. J. Appl. Phys. 2007, 102, 123109:1– 123109:6. 

21. Persson, N.-K.; Inganas, O. Organic tandem solar cells—modelling and predictions. Solar Energy 

Mater. Solar Cells 2006, 90, 3491–3507. 



Materials 2012, 5            

 

 

1951

22. Dennler, G.; Scharber, M.C.; Ameri, T.; Denk, P.; Forberich, K.; Waldauf, C.; Brabec, C.J. 

Design rules for donors in bulk-heterojunction tandem solar cells-towards 15% energy-conversion 

efficiency. Advan. Mater. 2008, 20, 579–583. 

23. Rand, B.P.; Burk, D.P.; Forrest, S.R. Offset energies at organic semiconductor heterojunctions 

and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 2007, 75, 

115327:1–115327:11. 

24. Lunt, R.R.; Osedach, T.P.; Brown, P.R.; Rowehl, J.A.; Bulovic, V. Practical roadmap and limits 

to nanostructured photovoltaics. Advan. Mater. 2011, 23, 5712–5727. 

25. Moliton, A.; Nunzi, J.M. How to model the behaviour of organic photovoltaic cells. Polym. Int. 

2006, 55, 583–600. 

26. Koster, L.J.A.; Mihailetchi, V.D.; Blom, P.W.M. Ultimate efficiency of polymer/fullerene bulk 

heterojunction solar cells. Appl. Phys. Lett. 2006, 88, 093511:1–093511:3. 

27. Minnaert, B.; Burgelman, M.; De Vos, A.; Veelaert, P. Simulation of the influence of the 

absorption window for stacked and monolithic organic tandem solar cells. Solar Energy Mater. 

Solar Cells 2010, 94, 1125–1131. 

28. Minnaert, B.; Veelaert, P. Modelling of Organic Triple-Junction Solar Cells. In Organic 

Photonics V, Proceeding of SPIE 8435, Brussels, Belgium, 16 April 2012; Rand, B.P., Adachi, C., 

van Elsbergen, V., Eds.; SPIE: Bellingham, WA, USA, 2012; Volume 8435, doi:10.1117/12.921779. 

29. Tang, C.W. Two-layer organic photovoltaic cell. Appl. Phys. Lett. 1986, 48, 183–185. 

30. Reyes-Reyes, M.; Kim, K.; Carroll, D.L. High-efficiency photovoltaic devices based on annealed 

poly(3-hexylthiophene) and 1-(3-methoxycarbonyl)-propyl-1-phenyl-(6,6)c-61 blends. Appl. Phys. 

Lett. 2005, 87, 083506:1–083506:3. 

31. Frere, P.; Raimundo, J.M.; Blanchard, P.; Delaunay, J.; Richomme, P.; Sauvajol, J.L.; Orduna, J.; 

Garin, J.; Roncali, J. Effect of local molecular structure on the chain-length dependence of the 

electronic properties of thiophene-based pi-conjugated systems. J. Org. Chem. 2003, 68, 7254–7265. 

32. Roquet, S.; Cravino, A.; Leriche, P.; Aleveque, O.; Frere, P.; Roncali, J. Triphenylamine-

thienylenevinylene hybrid systems with internal charge transfer as donor materials for 

heterojunction solar cells. J. Am. Chem. Soc. 2006, 128, 3459–3466. 

33. Bundgaard, E.; Krebs, F.C. Low band gap polymers for organic photovoltaics. Solar Energy 

Mater. Solar Cells 2007, 91, 954–985. 

34. Minnaert, B.; Burgelman, M. Efficiency potential of organic bulk heterojunction solar cells. Prog. 

Photovoltaics 2007, 15, 741–748. 

35. Nicolaidis, N.C.; Routley, B.S.; Holdsworth, J.L.; Belcher, W.J.; Zhou, X.J.; Dastoor, P.C. 

Fullerene contribution to photocurrent generation in organic photovoltaic cells. J. Phys. Chem. C 

2011, 115, 7801–7805. 

36. Dennler, G.; Sariciftci, N.S. Flexible conjugated polymer-based plastic solar cells: From basics to 

applications. Proc. IEEE 2005, 93, 1429–1439. 

37. Hoppe, H.; Egbe, D.A.M.; Muhlbacher, D.; Sariciftci, N.S. Photovoltaic action of conjugated 

polymer/fullerene bulk heterojunction solar cells using novel ppe-ppv copolymers. J. Mater. 

Chem. 2004, 14, 3462–3467. 



Materials 2012, 5            

 

 

1952

38. Gadisa, A.; Svensson, M.; Andersson, M.R.; Inganas, O. Correlation between oxidation potential 

and open-circuit voltage of composite solar cells based on blends of polythiophenes/fullerene 

derivative. Appl. Phys. Lett. 2004, 84, 1609–1611. 

39. Kooistra, F.B.; Knol, J.; Kastenberg, F.; Popescu, L.M.; Verhees, W.J.H.; Kroon, J.M.; 

Hummelen, J.C. Increasing the open circuit voltage of bulk-heterojunction solar cells by raising 

the lumo level of the acceptor. Org. Lett. 2007, 9, 551–554. 

40. Brabec, C.J.; Cravino, A.; Meissner, D.; Sariciftci, N.S.; Fromherz, T.; Rispens, M.T.; Sanchez, L.; 

Hummelen, J.C. Origin of the open circuit voltage of plastic solar cells. Adv. Funct. Mater. 2001, 

11, 374–380. 

41. Morvillo, P.; Bobeico, E. Tuning the lumo level of the acceptor to increase the open-circuit 

voltage of polymer-fullerene solar cells: A quantum chemical study. Solar Energy Mater. Solar 

Cells 2008, 92, 1192–1198. 

42. Mihailetchi, V.D.; Blom, P.W.M.; Hummelen, J.C.; Rispens, M.T. Cathode dependence of the 

open-circuit voltage of polymer : Fullerene bulk heterojunction solar cells. J. Appl. Phys. 2003, 94, 

6849–6854. 

43. International Electrotechnical Commission. International Standard, IEC 60904–3, Photovoltaic 

Devices—Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with 

Reference Spectral Irradiance Data, 2nd ed.; International Electrotechnical Commission: Geneva, 

Switzerland, 2008. 

44. Sun, S.S. Optimal energy offsets for organic solar cells containing a donor/acceptor pair. Solar 

Energy Mater. Solar Cells 2005, 85, 261–267. 

45. Peumans, P.; Yakimov, A.; Forrest, S.R. Small molecular weight organic thin-film photodetectors 

and solar cells. J. Appl. Phys. 2003, 93, 3693–3723. 

46. Riede, M.; Mueller, T.; Tress, W.; Schueppel, R.; Leo, K. Small-molecule solar cells—status and 

perspectives. Nanotechnology 2008, 19, doi:10.1088/0957-4484/19/42/424001. 

47. Minnaert, B.; Burgelman, M. Empirical study of the characteristics of current-state organic bulk 

heterojunction solar cells. Eur. Phys. J. Appl. Phys. 2007, 38, 111–114. 

48. Sonmez, G.; Shen, C.K.F.; Rubin, Y.; Wudl, F. The unusual effect of bandgap lowering by c-60 

on a conjugated polymer. Advan. Mater. 2005, 17, 897–900. 

49. Kroon, R.; Lenes, M.; Hummelen, J.C.; Blom, P.W.M.; De Boer, B. Small bandgap polymers for 

organic solar cells (polymer material development in the last 5 years). Polym. Rev. 2008, 48, 531–582. 

50. Thompson, B.C.; Kim, Y.-G.; McCarley, T.D.; Reynolds, J.R. Soluble narrow band gap and blue 

propylenedioxythiophene-cyanovinylene polymers as multifunctional materials for photovoltaic 

and electrochromic applications. J. Am. Chem. Soc. 2006, 128, 12714–12725. 

51. Yi, H.N.; Johnson, R.G.; Iraqi, A.; Mohamad, D.; Royce, R.; Lidzey, D.G. Narrow energy gap 

polymers with absorptions up to 1200 nm and their photovoltaic properties. Macromol. Rapid 

Commun. 2008, 29, 1804–1809. 

52. Vanlaeke, P.; Swinnen, A.; Haeldermans, I.; Vanhoyland, G.; Aernouts, T.; Cheyns, D.; Deibel, C.; 

D’Haen, J.; Heremans, P.; Poortmans, J., et al. P3ht/pcbm bulk heterojunction solar cells: 

Relation between morphology and electro-optical characteristics. Solar Energy Mater. Solar Cells 

2006, 90, 2150–2158. 

 



Materials 2012, 5            

 

 

1953

53. Nunzi, J.M. Organic photovoltaic materials and devices. C. R. Phys. 2002, 3, 523–542. 

54. Schueppel, R.; Timmreck, R.; Allinger, N.; Mueller, T.; Furno, M.; Uhrich, C.; Leo, K.; Riede, M. 

Controlled current matching in small molecule organic tandem solar cells using doped spacer 

layers. J. Appl. Phys. 2010, 107, 044503:1–044503:6. 

© 2012 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article 

distributed under the terms and conditions of the Creative Commons Attribution license 

(http://creativecommons.org/licenses/by/3.0/). 


