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Single-Nucleotide Polymorphisms and Other Mismatches
Reduce Performance of Quantitative PCR Assays

Steve Lefever," Filip Pattyn,’ Jan Hellemans,"? and Jo Vandesompele'2"

BACKGROUND: Genome-sequencing studies have led to
an immense increase in the number of known single-
nucleotide polymorphisms (SNPs). Designing primers
that anneal to regions devoid of SNPs has therefore
become challenging. We studied the impact of one or
more mismatches in primer-annealing sites on differ-
ent quantitative PCR (qPCR)-related parameters, such
as quantitative cycle (Cq), amplification efficiency, and
reproducibility.

METHODS: We used synthetic templates and primers to
assess the effect of mismatches at primer-annealing
sites on qPCR assay performance. Reactions were per-
formed with 5 commercially available master mixes.
We studied the effects of the number, type, and posi-
tion of priming mismatches on Cq value, PCR effi-
ciency, reproducibility, and yield.

ResuLTs: The impact of mismatches was most pro-
nounced for the number of mismatched nucleotides
and for their distance from the 3’ end of the primer.
In addition, having =4 mismatches in a single
primer or having 3 mismatches in one primer and 2
in the other was required to block a reaction com-
pletely. Finally, the degree of the mismatch effect was
concentration independent for single mismatches,
whereas concentration independence failed at
higher template concentrations as the number of
mismatches increased.

concLusions: Single mismatches located >5 bp from
the 3" end have a moderate effect on qPCR amplifica-
tion and can be tolerated. This finding, together with
the concentration independence for single mismatches
and the complete blocking of the PCR reaction for =4
mismatches, can help to chart mismatch behavior in
qPCR reactions and increase the rate of successful

primer design for sequences with a high SNP density or
for homologous regions of sequence.
© 2013 American Association for Clinical Chemistry

For more than a decade, quantitative PCR (QPCR)? has
been the standard method for nucleic acid analysis.
This era has witnessed the development of a range of
detection methods, from the use of simple DNA-
intercalating fluorescent dyes, such as SYBR Green, to
the application of more-complex oligonucleotides,
such as Scorpions (1). Importantly, the specificity of
target amplification specificity is predominantly deter-
mined by a primer’s annealing characteristics. Properly
designed qPCR primers control for nonspecific ampli-
fication, secondary structures in amplicons, and single-
nucleotide polymorphisms (SNPs) within primer-
annealing sites. The last consideration in designing
highly specific primers has become increasingly chal-
lenging with the growing number of SNPs being dis-
covered in massively parallel sequencing projects, such
as the 1000 Genomes Project. The high SNP density in
the human genome, particularly in gene promoter and
gene regions, may eventually lead to a time when de-
signing assays with SNP-free primer-annealing sites
becomes difficult, if not impossible. Meanwhile, the
increasing knowledge of genomic features is expected
to increase the success rate in the wet laboratory. Until
recently, the actual impact of imperfect primer anneal-
ing has been largely unknown. Wu et al. used a modi-
fied single-base extension assay to assess the effect of
mismatch type and position on extension efficiency
during the first PCR cycle (2). They found minimal or
no primer extension when they introduced a mismatch
within the last 3 or 4 bases of the primer’s 3" end and
hypothesized that low extension efficiency was caused
by reduced binding of the DNA polymerase to the tar-
get site. In contrast, others have stated that the DNA
polymerase affinities for correctly paired and mis-
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GTTTGTCGTGATGAGTTTGN
CGTTTGTCGTGATGAGTTTN
TCGTTTGTCGTGATGAGTTN
TTCGTTTGTCGTGATGAGTN
(*)ATTCGTTTGTCGTGATGAGN
GATTCGTTTGTCGTGATGAN
TGATTCGTTTGTCGTGATGN
GTGATTCGTTTGTCGTGATN
AGTGATTCGTTTGTCGTGAN

AGTGATTCGTTTGTCGTGANGAGTTTGGTGTACCCGCTTAGATCCAGGACACTTTCATACGGTT
AGTGATTCGTTTGTCGTGATNAGTTTGGTGTACCCGCTTAGATCCAGGACACTTTCATACGGTT
AGTGATTCGTTTGTCGTGATGNGTTTGGTGTACCCGCTTAGATCCAGGACACTTTCATACGGTT
AGTGATTCGTTTGTCGTGATGANTTTGGTGTACCCGCTTAGATCCAGGACACTTTCATACGGTT
AGTGATTCGTTTGTCGTGATGAGNTTGGTGTACCCGCTTAGATCCAGGACACTTTCATACGGTT
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quences), and 1 reverse primer (bottom sequence).

orT).

Fig. 1. Experimental setup: 36 tiling forward primers (top sequences), sixteen 64-base templates (middle se-

All forward primers were derived from the starting forward primer (*). N denotes one of the 4 possible nucleotides (A, C, G,

paired duplexes are similar (3 ). In contrast to the effect
of mismatches near a primer’s 3’ end, extension effi-
ciency has been observed to increase for primers with
mismatches located closer to the 5" end. Other ap-
proaches have not only analyzed the first PCR cycle but
also monitored the efficiencies of the complete reaction
with and without the presence of mismatches within
primer-annealing sites (4 ). The limitation of these par-
ticular experimental setups is that results obtained
from assessing a small number of mismatches for only
a small number of primer positions yield an incom-
plete view of the impact of mismatches on primer-
annealing sites. Mismatches appear to have no impact
on PCR efficiency, implying that the mismatch effect is
present only during the first few cycles. Once the mis-
match has been incorporated into the template, qPCR
proceeds with normal efficiency. The last 2 studies
(3, 4) also noted that a single mismatch at the primer’s
3’ end had no or only minimal impact on qPCR yield
(defined as the number of molecules at the end of the
reaction) and that =2 mismatches increased the quan-
tification cycle (Cq) value by 3—5 units. In addition, the
presence of a mismatch reportedly has only a limited
effect on amplification curve quality (5). We describe
our systematic study of mismatch behavior. We con-
sidered all types of mismatches in the last 5 bases of a
primer’s 3" end in combination with 5 commercially
available qPCR master mixes. The effects of the num-
ber, type, and position of priming mismatches on Cq
value, PCR efficiency, reproducibility, and yield (de-
fined as the end point fluorescence) were studied.

Materials and Methods

PRIMERS AND TEMPLATES

Primers and templates were designed by using a Perl
pipeline. Secondary structure and primer-dimer for-
mation were analyzed with UNAFold (6 ), and primer
melting temperatures were calculated with Primer3
software (7). We started by designing artificial forward
and reverse primers and controlling for primer
dimerization and intermolecular secondary structures
(Fig. 1). By consecutively adding and removing a nu-
cleotide from opposite ends of the original forward
primer, we created 8 new primers, located 4 bases up-
stream or downstream of the original forward primer.
Once we had all of the primers, we designed a single-
stranded 3’-blocked template by adding a 16-base
randomly generated “stuffer” sequence between the
sequences of the forward and reverse primers. In the final
phase, we introduced mismatches at the 3" terminal posi-
tion of all forward primers and at positions 19-23 of the
template, yielding a total of up to 36 forward primers (9
shifted primers times 4 end-base variants) and 16 tem-
plates (1 base template and 3 base variants at 5 positions).
This design produced 576 primer/template combinations
with a varying number, type, and position of base-pair
mismatches (see Tables 1 and 2 in the Data Supplement
that accompanies the online version of this article at
http://www.clinchem.org/content/vol59/issuel0). In each
step of the design process, our analyses excluded not only
templates and primers with secondary structures but also
dimerizing primer pairs (dG = 0).
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gPCR REACTIONS

Reactions containing 10 000 template molecules were
performed on a Bio-Rad CFX384 instrument (Bio-Rad
Laboratories) with an automated plate-loading system.
On each plate, we ran each primer-pair/template com-
bination in triplicate and included a 15-point, 2-fold
calibration curve based on the original perfect-match
combination. We used 5 qPCR master mixes according
to the respective manufacturer’s protocols: EvaGreen
qPCR Mix Plus, from Solis BioDyne (mix A); SsoFast
EvaGreen Supermix, from Bio-Rad (mix B); Sso-
Advanced SYBR Green Supermix, from Bio-Rad (mix C);
LightCycler 480 SYBR Green Master, from Roche (mix
D); and a custom-made Eurogentec mix (mix E). The
Eurogentec custom mix consisted of Two Step qRT-PCR
MasterMix for SYBR Green 1 (with HotGoldStar enzyme,
3.5 mmol/L MgCl,, but no 6-carboxy-X-rhodamine). Cq
values were measured by the threshold method and cal-
culated with CFX Manager software (version 1.6). Ampli-
fication efficiency was calculated with the LinRegPCR
software package (version 12.7) (8).

MISMATCH SIMULATIONS

For three 20-base primers, we generated all combina-
tions (491 007) with up to 4 mismatches in the 16-base
region at their 3" ends. The IDT Biophysics calculator
(http://biophysics.idtdna.com/) was used to calculate
differences in annealing temperature and Gibbs free en-
ergy for each mismatch combination [5'-AGTCTCGG
ATTAGTCAAGTC-3' (58.94 °C),5'-CAGTACCATTGT
CGAAGACA-3' (60.00 °C), and 5'-CCCTCCCATTTTC
TCAGGTT-3" (62.67°C)]. We evenly divided 440
randomly selected assays among the 3 primer pairs and
performed qPCR reactions with 5000 template molecules
and the SsoAdvanced SYBR Green Supermix (Bio-Rad).

MISMATCHES IN BOTH PRIMERS

For each of the 3 sets described above, we selected 20
forward primers and evenly distributed them over the
number of mismatches. In addition, we designed 20
reverse primers harboring 1-4 mismatches for each of
the primer sets. We used 5000 template molecules and
the SsoAdvanced SYBR Green Supermix (Bio-Rad) to
perform qPCR reactions for all possible forward/re-
verse combinations within each set.

CONCENTRATION DEPENDENCE REACTIONS
We selected 21 forward/reverse primer combinations
from the 3 sets described above. To test each of these
combinations, we used the SsoAdvanced SYBR Green
Supermix (Bio-Rad), a 65-cycle protocol, and a
7-point, 10-fold calibration curve ranging from 20 to
20 X 10° template molecules per reaction.
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STATISTICAL ANALYSIS

The R statistical package was used for one-way
ANOVA and post hoc testing (pairwise t-test). P values
<0.05 were considered significant.

Results

POSITIONAL EFFECT OF A SINGLE MISMATCH

To determine the effect of mismatches on qPCR am-
plification, we introduced specific nucleotide changes
into both the template and forward primers [see
RDML file 1 (for results) and Table 3 (for mismatch
frequencies) in the online Data Supplement]. Fig. 2A
and Fig. 1 in the online Data Supplement show that the
number of mismatches has a clear effect on dCq (the
difference between the Cq for the mismatch reaction
and the mean Cq of the corresponding perfect-match
reactions), the SD of the replicates, amplification effi-
ciency, and end point fluorescence (all P values
<<0.0043). When we focused on reactions with exactly
1 mismatch in the primer-annealing site and evaluated
the impact of the mismatch position on dCq, we ob-
served identical trends across all master mixes (Fig. 2B;
see Fig. 2 in the online Data Supplement), with dCq
and SD values decreasing with increasing distance of
the mismatch from the primer’s 3’ end. The greatest
effect occurred for mismatches at the 3’ terminal base
(P = 2.2 X 10~ '°), with the mismatch having a dCq of
5 to 7 (32- to 128-fold difference) compared with the
perfect match, depending on which master mix was
used. Even with a mismatch at position 4, a dCq value
of 2 or 3 (4- to 8-fold) could still be observed (Fig. 2B).
The effect of position on end point fluorescence seemed
to be master mix specific, and the difference was signifi-
cant (P = 0.027) between position 0 and positions 3 and 4
for mixes A, B, D, and E. In addition, a marked reduction
in both SD and variation in amplification efficiency were
observed for mixes A, D, and E as the mismatch was
moved away from the primer’s 3’ end (see Fig. 2 in the
online Data Supplement). Finally, in the presence of a
mismatch in the primer’s 3 terminal base, the addition of
a second mismatch within 5 bases of the first base signifi-
cantly inhibited the amplification process (mean dCq be-
tween 7.93 and 12.15; 244- to 4545-fold difference; see
Fig. 3 in the online Data Supplement).

EFFECT OF THE TYPE OF MISMATCH AT THE 3' TERMINUS

To further dissect the effect of a mismatch at a primer’s
3’ terminal base, we focused on the type of mismatch
and nucleotide. We first grouped mismatches by type
of aromatic ring in the base to assess whether steric
hindrance played a role in impeding qPCR amplifica-
tion. For all master mixes, we noted a significant differ-
ence (P = 0.034) between the various mismatch types,
with less favorable mismatches (purine/purine and py-
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Fig. 2. dCq values for results of perfect-match (PM) and mismatch (MM) qPCR reactions (rxns) for the 5 master
(A), dCq values as a function of the number of MMs in the last 5 bases at the primer's 3’ end. (B), dCq values for of a single
MM as a function of its distance relative to the primer's 3" end (0, 1, 2, 3, and 4 bases). (C), dCq values as a function of MM
type: purine (pu) or pyrimidine (py). Median, interquartile range, outliers, and minimum and maximum values (excluding
outliers) are represented in the box plots.
Continued on page 1474
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Fig. 2. Continued.

rimidine/pyrimidine) leading to larger dCq values and
reduced values for end point fluorescence. We ob-
served similar trends for amplification efficiency and
the Cq SD of the replicates, although the effects on these
parameters were master mix dependent and the differ-
ences were not always significant. Together, these findings
indicate that steric hindrance might play a role in
mismatch-induced inhibition of the PCR (Fig. 2C; see Fig.
4 in the online Data Supplement). Our analysis of the
nucleotide composition of mismatches at a primer’s 3’
terminus revealed similar effects across all of the master
mixes (Fig. 3; see Fig. 5 in the online Data Supplement). In
general, G/T, A/C, and C/T mismatches produced the
smallest dCq values, whereas A/G and C/C showed the
largest dCq values. We drew identical conclusions for
the SD, with higher values for A/G and C/C mismatches
and lower SDs for G/T, A/C, and C/T mismatches.

SIMULATION OF THE EFFECT OF MISMATCHES ON ANNEALING
TEMPERATURE

Given that our extensive experimental setup (8640
qPCR reactions; see Fig. 1) allowed analysis of the mis-
match effect for only the last 5 bases at a primer’s 3" end
(we ignored infrequent mismatches farther from the 3’
end), we simulated the effect of =4 concurrent mis-
matches throughout the 16-base region at the 3" end of
a 20-base primer. This simulation allowed us to assess
whether the positional effect of a mismatch could be
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extrapolated to other primer locations and thus be used
to predict how many simultaneous mismatches could
be tolerated in a qPCR reaction. Fig. 4 shows that the
difference in primer annealing temperature (d7T,,) (a
mismatch always produces a lower T,,) increases with
the number of mismatches. In addition, mismatches at
the 3’ terminus tended to show smaller dT,, values
than mismatches located elsewhere. Although we
found no additive temperature difference for internal
adjacent mismatches, we did observe that the dT,,, be-
came more pronounced as the distance between any 2
consecutive mismatches increased. We simulated
491 007 mismatch combinations, of which 484 562
(98.7%) had a T,, >10 °C different from that of the
perfect-match reactions (Fig. 4; see Fig. 6 in the online
Data Supplement). To assess whether such differences
affected qPCR performance, we tested 440 randomly
selected primers with qPCR [see RDML file 2 and Table
3 (for mismatch frequencies) in the online Data Sup-
plement]. The results showed that the number of mis-
matches was positively correlated with dCq. The pres-
ence of 4 mismatches blocked amplification almost
completely. The exception was 4 internal adjacent mis-
matches, a result that is most likely attributable to their
location near the primer’s 5" end (Fig. 5). Although the
data in Fig. 7B in the online Data Supplement suggest
identical findings for 3-mismatch combinations, plot-
ting of the dCq values for these combinations as a func-
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Fig. 3. dCq values between results for perfect-match (PM) and mismatch (MM) reactions (rxns) as a function of MM
type and master mix.

See y axis label of each panel for the parameter analyzed. Matrices at the top and bottom of the panels show intergroup
comparisons with significant differences (P < 0.05, gray). P values were calculated with a pairwise t-test. Median, interquartile
range, outliers, and minimum and maximum values (excluding outliers) are represented in the box plots. *, No significance upon

pairwise t-test analysis.

tion of the position of the mismatch closest to the 3’
end showed that the effect on gPCR becomes smaller as
the distance of the mismatch increases (see Fig. 7C in the
online Data Supplement). Plotting the dCq values for
1-mismatch and 2-mismatch combinations showed sim-
ilar trends: an inverse association between dCq value
and mismatch distance, with more pronounced inhibi-
tion apparent for 2-mismatch combinations, even
when they were located near the 5’ end (see Fig 7, A and
B, in the online Data Supplement). Mismatch-driven

inhibition of amplification caused by a single mis-
match was high for position 0 only and became almost
negligible for position 8 and higher.

EFFECT OF MISMATCHES IN BOTH PRIMERS

We extended the experiment described above by as-
sessing how qPCR reactions behave when both primers
harbored one or more mismatches. For this experi-
ment, we randomly selected 20 forward primers
(evenly distributed over the number of mismatches)
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Data Supplement]. As we expected, the data showed a

positive correlation between the total number of mis-
matches for the 2 primers and the extent of qPCR in-
hibition (see inset in Fig. 6), with =5 mismatches

blocking amplification almost completely. When we

MM type

and maximum number of nucleotides between any 2 consecutive MMs. N, nucleotide A, C, G, or T; X, mismatched nucleotide;
NY, a sequence of at least x nucleotides and a maximum of y nucleotides; N,, a sequence of at least x nucleotides. Median,
interquartile range, outliers, and minimum and maximum values (excluding outliers) are represented in the box plots.

Fig. 4. dCq values between results for perfect-match (PM) and mismatch (MM) qPCR reactions (rxns) for T,
All results were grouped according to MM position (all internal or =1 at the 3’ end), number of adjacent MMs, and minimum

for each set. We also designed 20 reverse primers (con-
taining 1 to 4 mismatches) for each of the sets. We then
carried out qPCR reactions for all forward/reverse
combinations [1200 reactions; see RDML file 3 (re-
sults) and Table 3 (mismatch frequencies) in the online
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Fig. 5. dCq values between results for perfect-match (PM) and mismatch (MM) qPCR reactions (rxns) for mismatch

number and position, and SD.

(A), dCq values between results for PM and MM reactions as a function of mismatch number and position for 440 randomly
selected assays. Inset shows Cq values as a function of the MM number. (B), SDs of the Cq values of replicate reactions as a
function of MM number and position for 440 randomly selected assays. All results were grouped according to MM position (all

internal or =1 at the 3’ end), number of adjacent MMs, and minimum and maximum number of nucleotides between any 2
consecutive MMs. N, nucleotide A, C, G, or T; X, mismatched nucleotide; N, a sequence of at least x nucleotides and a

maximum of y nucleotides; N,, a sequence of at least x nucleotides. Median, interquartile range, outliers, and minimum and

maximum values (excluding outliers) are represented in the box plots.
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analyzed the number of mismatches in the 2 primers
separately (Fig. 6), we found that introducing a single
mismatch in the mismatch-free primer (the other
primer harbored 1 to 4 mismatches) caused only a
small additional inhibitory effect. This effect became
much more pronounced when =2 mismatches were
inserted into the mismatch-free primer. Three mis-
matches in combination with =2 mismatches in the
other primer blocked amplification almost completely,
whereas for 4 mismatches, a single mismatch in the
other primer was sufficient to achieve a similar effect.
To assist the reader in visualizing the correlations be-
tween dCq and the number of mismatches, we have
included a video in the online Data Supplement that
summarizes amplification plots, dCq values, and posi-
tions of mismatches in the 2 primers.

CONCENTRATION DEPENDENCE OF THE MISMATCH EFFECT
In the previous experiments, we tested the effect of mis-
matches on the amplification reaction for fixed
amounts of input DNA (10 000 molecules per reac-
tion); however, because input concentration varies be-
tween reactions, samples, and experiments, its impact
on the mismatch effect must be determined. We as-
sessed the effect of input concentration by randomly
selecting 21 forward/reverse primer combinations
from those used in the experiment described above and
performing a 7-point, 10-fold dilution series. The re-
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sults (see RDML file 4 and Table 3 in the online Data
Supplement) showed that the mismatch effect was
concentration independent for single-mismatch reac-
tions across all dilution points tested (see Fig. 8 in the
online Data Supplement). In contrast, concentration in-
dependence failed at lower input concentrations for
higher numbers of mismatches. Although the degree of
deviation from perfect-match/mismatch linearity de-
pended on the specific nature of the mismatches, increas-
ing the number of mismatches in a single primer from 2 to
3 increased the range of dilution points where concentra-
tion dependency was lost (20 molecules per reaction for 2
mismatches vs. 20—2000 molecules per reaction for 3 mis-
matches). We observed no correlation between perfect-
match and mismatch reactions for combinations harbor-
ing 4 mismatches in a single primer, a finding that
confirmed previous results that mismatches of this type
completely block the amplification reaction.

Discussion

The increasing number of known SNPs and the grow-
ing challenge of finding primers that anneal to SNP-
free target regions prompted us to evaluate the poten-
tial effects of primer mismatches on a qPCR reaction.
Measurements might be influenced by the presence of
primer-annealing mismatches, leading to erroneous
results. A false-positive decrease in gene expression or



SNPs and Other Mismatches Reduce qPCR Assay

copy number loss might be caused by inefficient an-
nealing and amplification in the case of a primer—
template mismatch. We have assessed the effects of
mismatch position and type on qPCR performance.
Although such effects have previously been reported,
the results were based on limited numbers of reactions,
yielding low statistical power. In addition, not all
primer positions were assessed, and only a single mas-
ter mix was evaluated. Any generalizations derived
from such limited results would therefore be question-
able. We focused on mismatches located in the last 5
bases at a primer’s 3" end, where we predicted the im-
pact on qPCR assay performance would be the most
pronounced. Because our experimental setup intro-
duced only small differences in primer GC content and
amplicon length, we observed no effects of these fea-
tures on any of the studied parameters (see Supple-
mental Results in the online Data Supplement). The
lack of an association between primer T,, or GC con-
tent and Cq value (especially for multiple-mismatch
combinations, for which the impact on qPCR perfor-
mance can be substantial) was expected, because the
effect of 1 mismatch on primer T,,, or the GC percent-
age could be countered by the effect of another mis-
match. For example, an A-to-G mismatch combined
with a C-to-T mismatch at the 3" terminus would not
change the primer’s overall GC content and would
have only a minor effect on its T, but such a change
would inhibit the amplification reaction substantially.
Our results point to a smaller dCq as a single mismatch
is moved farther from the 3’ end, a finding in accord
with previous studies (2, 4). The effect of position was
greatest for mismatches at the 3’ terminus, and steric
hindrance due to the purine/purine or pyrimidine/py-
rimidine context of these mismatches might play some
role in impeding qPCR amplification. We were not able
to confirm the observation that primers ending with a
3’ A nucleotide amplified least efficiently (data not
shown) (9). Despite the lack of an association between
a primer’s GC content or T,, and its Cq, we extended
our results to a larger number of mismatches and to
mismatches located closer to the 5’ end. Our analysis of
the number of mismatches, their location in the
primer, and the high degree of amplification inhibition
observed for mismatches at the 3’ terminus has made it
possible to predict which mismatch combinations
might produce nonspecific amplification due to im-
perfect annealing of a primer to homologous se-
quences. Our analyses showed that for primer pairs
harboring mismatches in only one of the primers, the
presence of 4 mismatches blocked qPCR amplification
almost completely. In contrast, qPCR inhibition with 3
mismatches was less pronounced and depended on the
mismatch position in the primer-annealing site. The
data also revealed that mismatch-induced inhibition

was independent of template concentration for primer
pairs harboring a maximum of 1 mismatch per primer,
whereas concentration independence failed at greater
dilutions (=2000 molecules per reaction) in the pres-
ence of >1 mismatch in a single primer. Concentration
independence disappeared completely when at least
one of the primers harbored 4 mismatches. Given the
extent of the mismatch effect, we expected this result,
because more cycles are required in low-concentration
reactions harboring multiple mismatches to allow in-
corporation of the mismatches into a number of new
template molecules sufficient to approximate normal
amplification, compared with a single mismatch or re-
actions carried out at higher concentrations.

In conclusion, our study clearly indicates that
quantitative nucleic acid measurements are affected by
the number and positions of mismatches in primer-
annealing sites. The extent of qPCR inhibition is nega-
tively correlated with the distance of a mismatch from
the primer’s 3" end. Furthermore, the effect of mis-
matches at the 3’ terminus is dependent on the nucle-
otide composition of the mismatch and cannot be ex-
plained completely by steric hindrance. Assessing how
qPCR reactions behave when both primers harbor mis-
matches can aid in optimizing assay-specificity analy-
sis. Our data show that 4 mismatches in a single primer
block amplification almost completely, whereas 3 mis-
matches in one of the primers must be combined with
at least 2 mismatches in the other primer to achieve the
same extent of inhibition. These results suggest that
avoiding up to 3 mismatches when testing the specific-
ity of a primer in silico during the primer design process
can largely prevent the generation of nonspecific as-
says. It is difficult to define fail-proof rules for primer
design with respect to the tolerable degree of mismatch.
Ideally, primers should be completely SNP free; how-
ever, with a mean of 1 SNP per 58 bp in the genome, or
1 SNP per approximately 20 bp in the exome (based on
dbSNP release 137), that standard is often impossible.
Given the degree of mismatch tolerable during primer
design, evaluations of primers designed i silico against
the most recent SNP database (including SNPs with
minor-allele frequencies of <1%) will greatly increase
the probability of designing reliable primer sets. Such
evaluations would exclude primers harboring SNPs or
mismatches in the last 5 bases at a primer’s 3’ end.
Finally, although more testing is needed, the results of
our experiments could be used to model the effect of
single mismatches (in one or both primers), making
feasible the regular use of qPCR reactions with single-
mismatch primers. Considering that we evaluated 5
different master mixes, >1000 primer—template com-
binations, and a total of 10 720 reactions, our conclu-
sions are likely to be robust and aid in improving the
design of PCR primers.
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