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Abstract:  Digital Image Correlation (DIC) is a well-established non-
contact optical metrology method. It employs digital image analysis
to extract the full-field displacements and strains that occur in objects
subjected to external stresses. Despite recent DIC progress, many prob-
lematic areas which greatly affect accuracy and that can seldomly be
avoided, received very little attention. Problems posed by the presence
of sharp displacement discontinuities, reflections, object borders or edges
can be linked to the analysed object’s properties and deformation. Other
problematic areas, such as image noise, localized reflections or shadows
are related more to the image acquisition process. This paper proposes a
new subset-based pixel-level robust DIC method for in-plane displacement
measurement which addresses all of these problems in a straightforward
and unified approach, significantly improving DIC measurement accuracy
compared to classic approaches. The proposed approach minimizes a robust
energy functional which adaptively weighs pixel differences in the motion
estimation process. The aim is to limit the negative influence of pixels that
present erroneous or inconsistent motions by enforcing local motion con-
sistency. The proposed method is compared to the classic Newton-Raphson
DIC method in terms of displacement accuracy in three experiments. The
first experiment is numerical and presents three combined problems: sharp
displacement discontinuities, missing image information and image noise.
The second experiment is a real experiment in which a plastic specimen
is developing a lateral crack due to the application of uniaxial stress. The
region around the crack presents both reflections that saturate the image
intensity levels leading to missing image information, as well as sharp mo-
tion discontinuities due to the plastic film rupturing. The third experiment
compares the proposed and classic DIC approaches with generic computer
vision optical flow methods using images from the popular Middlebury
optical flow evaluation dataset. Results in all experiments clearly show the
proposed method’s improved measurement accuracy with respect to the
classic approach considering the challenging conditions. Furthermore, in
image areas where the classic approach completely fails to recover motion
due to severe image de-correlation, the proposed method provides reliable

results.
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1. Introduction

Digital Image Correlation, shortly known as DIC, is a class of image analysis techniques intro-
duced in the early 80s [1-3] that find spatial correspondences between different digital images.
In experimental mechanics, it can be classified as a non-contact optical metrology method that
employs digital image analysis to extract full-field deformation measurements of objects that
are subjected to external stresses. For in-plane deformation measurements, which are the focus
of this work, at least two images have to be considered: one that shows the analyzed object
before deformation and one showing the object after the deformation process has ended. By
convention, these are called reference and deformed images respectively. Prior to image cap-
ture, the analyzed object is spray-painted so that a seemingly random layer of paint speckles
is present on its surface to aid the matching process. Displacements are obtained by matching
the image intensity pattern of the reference image to that of the deformed image. In practice,
this consists in the optimization of a similarity criterion that penalizes pixel differences be-
tween the two images, considering a pre-defined displacement model. This can be done either
locally [4-13], using rectangular image regions, also called subsets, or globally [14-16] across
the entire image. Strain data is subsequently obtained either directly from the displacement field
components or through the differentiation of the displacement field.

The accuracy of DIC is impacted to a large extent by experiment related factors such as im-
age noise and lighting variations across the specimen’s surface as well as by the characteristics
of the deformations that are to be measured, such as their local magnitude fluctuations [17].
Despite recent advances aimed at improving displacement and strain accuracy, DIC lacks an
approach that seeks to limit the influence of the various sources of measurement errors in an
unified and effective way. If some problematic areas, such as image intensity variations [18,19],
image noise [9], displacement discontinuities [11, 12] or measurements near the edges of spec-
imens [10, 20], individually received attention in literature, others such as the presence of oc-
clusions or localized image artefacts due to strong reflections or shadows, were not discussed.
One of the main reasons for the apparent fragmentation in DIC solutions is the fact that cur-
rent DIC methods optimize quadratic similarity criteria associated with the subset intra-pixel
differences. Quadratic similarity criteria are defined in literature as either sums of squared dif-
ferences (SSD), cross-correlation criteria (CC) or variations which use normalized image in-
tensities [18, 19].These require explicit modelling of the factors that might impact accuracy
because they assign an equal importance to all pixels of a reference and deformed subset pair in
the motion estimation process. Therefore, the motions of all individual reference subset pixels
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have an equal contribution to the final motion estimate of the subset. This is an obvious limi-
tation since it is perfectly reasonable to assume that although most pixels present motions that
can be properly modelled, some do not. These pixel motions lower the accuracy of the final
motion estimate in direct proportion to both their numbers and magnitudes.

This paper addresses these limitations by introducing a new subset-based DIC approach that
uses robust estimation [21, 22] to penalize intra-subset pixel differences between reference and
deformed subsets. The pixel differences are weighted in such a way that pixels with motions
that do not fit with the overall subset motion contribute less to the final motion estimate, re-
sulting in improved accuracy of the local motion estimates. Such a low-level approach presents
two other advantages: the first is that motion outliers at pixel level are treated in a very general
manner and no a-priori assumptions or modelling of the image or displacement degradation
is needed. The second advantage is that the robust estimation principle can be introduced into
virtually all existing DIC methods as a way of enforcing local motion consistency and dealing
with displacement outliers. The proposed method uses a Newton-Raphson optimization ap-
proach [24, 25] to obtain the displacements relating to material deformation and robust spatial
regularization to adaptively increase spatial displacement consistency [12].

The rest of the paper is structured as follows: in Section 2 the mathematical formulation of
the prosed method is presented. In Section 3, the proposed method is compared to the classic
DIC method - which employs here the sum of square differences - in three experiments. Finally,
the conclusions of this work are presented in Section 4.

2. Pixel-level robust DIC

2.1. Robust estimation

The field of robust statistics emerged from the need to address the situations in which the
mathematical models developed to characterize certain phenomena through a set of related ob-
servations are insufficient to fully handle larger errors or outliers. Similar to many computer
vision approaches, DIC focuses on providing the optimal solution for a set of measurements -
the digital images - given some exact parametric models as for example, the pixel displacement
model inside the subset. There are however situations in which the assumed models cannot cor-
rectly describe the observations and in which the integration of the concepts of robust statistics
can provide a better final solution to the estimation problem. Because of this, robust estimation
is a popular choice in motion estimation algorithms [26—-29, 36] to improve accuracy by reduc-
ing the effects of motion outliers. The impact of the outliers on the final estimation result can
be interpreted through the influence function of the estimator [23], which is the first derivative
v of the function considered for the estimator. Considering the case of the quadratic estimator
and its influence function -

P =X, w(x) =2x, (1)

graphically illustrated in Fig. 1, it is obvious that the influence of the outliers increases linearly
with their size and without bound. Since in DIC the quadratic estimator is used to penalize intra-
pixel differences, even a few very large pixel differences - which usually appear if pixels in
either of the two subsets are affected by noise or have a different motion - can have a significant
impact on the final displacement estimate. It is therefore desirable to use robust estimators that
gradually decrease the influence of subset pixel differences as these increase.

In this paper, two robust estimators are investigated. The first is the Welsch estimator, defined
along with its influence function as:

2
p(x,0) = - [1-exp(~(x/0)?)],  w(x.0)=xexp(~(x/0)?) . @)
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Fig. 1: The quadratic estimator (left) and its influence function (right).
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Fig. 2: The Welsch estimator (left) and its influence function (right). The shape parameter was
considered constant with ¢ = 0.3

where p is the expression of the estimator, y that of its influence function and o a shape
parameter. The second estimator is the Geman-McClure estimator, which is similarly defined

as:
X2

p(xvc):mv W(ch):

2
G ©

The two estimators and their corresponding influence functions are shown in Figs. 2 and 3,
respectively. Both are redescending estimators (their influence function tends to zero above a
certain chosen limit) and twice differentiable. The latter property is desired because it makes
their application straightforward with optimization algorithms such as the Newton-Raphson.
Furthermore, both estimators are inherently adaptive to the scale of the errors present. This is
done through the shape parameter ¢ that controls the outlier rejection threshold: measurements
that generate errors larger than the threshold are treated as outliers.

Let us assume that the threshold 7 is the limit beyond which a measurement is treated as
outlier, depending on its error with respect to the assumed model. These thresholds can be
also interpreted as the inflexion points in the influence function y from where it is starting to
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Fig. 3: The Geman-McClure estimator (left) and its influence function (right). The shape pa-
rameter was considered constant with c = 0.3

decrease. In these points, the second derivative of the estimator is zero. It is straightforward to
show that for the Geman-McClure estimator, 7 is:

T::I:\/f, (@)

1

T=+ ﬁc . (5)
Obviously, having an estimate of the magnitude of the maximum “allowable” errors in the
measurements, namely t, one could set the parameter o in such a way that any measurements
that present errors larger than 7 are outliers. For example, setting ¢ = v/27 in the Lorentzian
has the effect of treating all measurements with errors smaller than —t or larger than 7 as
outliers. More importantly, inside the interval [—7, 7] the estimators are convex because the
second derivatives are larger or equal to zero. For the interval, the estimator p is approximately
quadratic and its influence function y approximately linear. This implies that if ¢ is chosen
large enough as for all the measurements to present errors within the convexity interval, the
problem becomes one of convex minimization.

while for the Welsch estimator,

2.2. Robust subset similarity criterion and optimization

Let f(x,y) be a reference subset in the image that contains the analyzed material specimen
before deformation and let g(X,y’) be its corresponding deformed subset, in the image showing
the specimen after deformation. Both subsets are of size N x M pixels with X' = x+ u(x,y),
Yy =y-+Vv(xy), where u(x,y) and v(x,y) are the horizontal and vertical displacements defined
as:

u(x,y) = p1+ ps(X—Xo) + Ps(Y—Yo) (6a)
V(X,Y) = P2+ Pa(X—Xo) + Ps(Y — Yo) - (6b)

In the equations above, Xy and yp are the horizontal and vertical coordinates of the subset cen-
treand p = (p1,---, p5)T the first order displacement component vector which represents the
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sought motion estimation solution. To obtain the solution, the proposed robust subset similarity
criterion, expressed as:
C(p) = En(p) + usEs(p) . @)

is optimized. Here, ugs is a parameter that adjusts the strength of the regularization, Ep is the
image data term that penalizes subset differences at pixel level and Eg is a regularization or
smoothness term. The data term uses the Welsch estimator to penalize pixel differences and is
of the form:

M 2
Eo(p) = 3, >, P [1-exp(~(f(xy) ~ gix¥:p)*/aB) ] ®

where op is the shape parameter of the estimator. The smoothness term employs the Geman-
McClure estimator, to penalize local displacement component differences. It is defined as:

_ 6 3 (pi*pik)z 9
ES(p) Igikg, o+ (p, plk)z ( )

and adaptively adjusts how much each displacement component p; is influenced by its spatial
neighbours pik, found in its 8-connected neighbourhood, through the outlier rejection parameter
o;. The neighbouring displacement components pjx are assumed to have been calculated in
the previous iteration. The calculus of both data term and smoothness term robust rejection
parameters is detailed in Section 2.3.

The minimization of Eq. (7) through the Newton-Raphson method has the solution at the t-th
iteration:

p" =p"H —H (p ) I (pY) (10)
where Jc and Hc are the Jacobian and Hessian matrices associated to the subset similarity
criterion with a B

Je(pltD) = (Tplc(p(t_l)) - Acpt ))) (11)
and 52 52
Tpfc(p(til)) 8p1z9pec(p(t71))
He(p) = : : : (12)
32 _ 32
a'[)Gaplc(pﬁ 1)) 8p2(;(p( ))

The general form of the Jacobian elements at the t-th iteration is:

d

apl ( ) ii[apl (vap( ))(f(X,y)—g(x,y;p(tfl))>

x=1
exp(—(f(x,y)—g(x,y;p(t1)))2/(0[(;1>)2)} (13)

ol
s (t-1) (t-1) (t-1)y2\?
(GI +(p T — Pik ))

)
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withi=1,...,6. The Hessian elements are of the form:

32
I pidpj

oy MNT oy 9 .
ce" ) =33 [apg(x,yno(t V) 5590 y:p"Y)
x=1y=1 [ Pj (14a)

oxp(~(10xy) - a(xyp ) /(0 )?)]

i x=1y=1
2 _
exp(—(f0ey) —alxyp ™))/ (o5 ”)2)} (14b)
(20" )60 V(A" pl Y)°
— — B 3
(O_i(t 1>+(pi<t 1)7pi(‘t< 1))2)

with i,j = 1,...,6 and i # j. Note that the terms 9°C(p)/dp? are only present on the first
diagonal of the Hessian matrix since the second order partial derivatives of Es with respect to
two different displacement components are zero.

The method first divides the reference image into overlapping rectangular subsets and finds
the best match for each reference subset in the deformed image through cross-correlation coef-
ficient maximization. The resulting integer pixel displacements represent the initial solution in
the Newton-Raphson optimization. The latter updates at each iteration the entire motion vector
field excluding the locations where convergence has already been reached. As convergence cri-
terion, a difference smaller than 10~° between consecutive iterations for all displacement com-
ponents of a reference subset has been chosen. Once convergence is reached, its six components
are prevented further updating. However, they are used in subsequent iterations in the calculus
of their neighbour’s regularization terms. If in three successive iterations the total number of
motion vectors that reached convergence does not change, the algorithm stops. To obtain the
intensity values of the iteratively deformed subset g(x,y,p) at non-integer coordinates, bicubic
spline interpolation is used.

)

8
+Us 2
k=1

2.3. Outlier rejection

One of the major advantages of the proposed method is that it can address a large variety of
sources of errors in displacement accuracy generically. Therefore, the effects of these sources
are not specifically modelled for. Consequently, the optimal values for the outlier rejection
thresholds t are unknown. These have to be locally adapted - through the shape parameters o
- to the errors in such a way that the similarity criterion remains approximately convex at each
iteration. The approach taken is that of iteratively refining o to construct convex approximations
of the similarity criterion at each iteration using the local pixel and displacement differences.
Practically, the minimization process can be regarded as a two-step procedure where first, a
coarse approximation of the displacement solution is obtained by forcing the similarity criterion
to be convex, which is equivalent to applying the quadratic estimator. Subsequently, once the
solution is close to the minimum o is gradually adapted, allowing for the outliers to be removed
while still allowing the algorithm to converge.

In the data term, the outlier rejection threshold is set so that at each iteration, the pixels in
the reference and deformed subsets which produce differences above the median absolute pixel
difference between the two subsets, are be treated as outliers. Using the relationship between

#177050 - $15.00 USD  Received 1 Oct 2012; revised 12 Jan 2013; accepted 27 Aug 2013; published 27 Nov 2013
(C) 2013 OSA 2 December 2013 | Vol. 21, No. 24 | DOI:10.1364/0OE.21.029979 | OPTICS EXPRESS 29986



the outlier rejection threshold and the robust shape parameter for the Welsch estimator from
Eqg. 5, we obtain that:

ol =12 median(| f(x,y) —g(xy;ptY) |) . (15)

To avoid automatically rejecting too many pixels by setting the threshold too low - especially
when close to convergence or if pixels are not affected by large errors - a minimum rejection
threshold value has to be set. Its value is twice the median of all absolute pixel differences

across all reference and deformed subset pairs from the previous iteration. Although og_n is
calculated and used at iteration t, the notation associates it to the previous iteration because in
calculating it, the previous displacement component solution pt=1) is used.

In the regularization term, there is a total of six o; parameters, each corresponding to one of
the six displacement components in the linear model. Each parameter is calculated as a multiple
of the standard deviation &; of the smoothness residuals:

rk=p —pk, fori=1...6;k=1,...,8 (16)
with
- 1 8 L, 18
6 =g 2(k—F)%, Fi=g X i (17)
T k=1 k=1

and updated at each iteration in the minimization process.

For each displacement component, the extent to which neighbours contribute to its value is
given by the influence function of the robust estimator, which decreases rapidly towards zero
when |ri] > | 7| = 1/ 0i/3. Small o; values, equivalent to a strong correlation between neigh-
bouring estimates in the area around the displacement component currently estimated, lead to
strong regularization using the closest neighbouring values. Alternatively, larger residual values
reflect strong changes in the displacement component’s neighbourhood, and the influence that
the neighbours exert on the component being estimated is limited. For the first two experiments
presented in this paper, o; = 156; while for the last one, concerning the Middlebury [30] dataset,
o = 76;. The constant multiplication factor in o; is chosen empirically. This comes as a conse-
quence of the fact that in robust estimation, the outlier rejection thresholds have to be specified
prior to the estimation. In other words, an estimate of the magnitude of the errors associated
with outliers has to be known in advance - in this case, at the beginning of each iteration. The
values of the thresholds are however not directly specified because displacement component
differences can vary significantly in size during the course of the minimization. Thresholds are
instead expressed as multiples of the standard deviation &; of the smoothness residuals, whose
values are linked to the magnitude of the local displacement component differences. There is no
constraint on the values that the multiplication factors can take. However, if these are too large,
the effects of regularization are minimal because the weights assigned to neighbouring compo-
nents are be very small. In these situations, if the regularization strength parameter would be
increased accordingly, the effect of the regularization term would be to smooth the displace-
ment components regardless of the local similarities between them. If the multiplication factors
are chosen very small, neighbouring displacement components would have to be very similar
to the central one to influence it. Similar previous regularization implementations [12, 20] pre-
served well large displacement discontinuities while at the same time smoothing minor local
displacement component variations, effectively filtering out displacement calculus noises.
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3. Experimental detailsand results

The proposed robust method is compared in terms of displacement accuracy to the classic
Newton-Raphson DIC approach with sum of square differences (SSD) similarity criterion in
three experiments. Two experiments are DIC specific and employ speckle images while the
third one is more generic and relies on four grayscale image sequences from the Middlebury
optical flow evaluation dataset.

The first experiment aims to numerically compare the two methods in terms of displacement
accuracy. The deformed image in the experiment is obtained from a 512 x 512 pixel reference
image by artificially deforming it using radial basis function interpolation [37] and then de-
grading it by introducing areas of missing image data and image noise. The reference image is
part of a larger 1024 x 1024 pixel image showing a plastic film specimen onto which a speckle
pattern has been previously applied. The second experiment is a real deformation experiment in
which the displacements present on the surface of a deforming plastic film are measured with
the two DIC methods. The plastic specimen is bonded on a rectangular piece of transparent
glass of similar width which has previously been cut in two, horizontally. On the opposite side
of the glass, another plastic specimen is also bonded. Both reference and deformed images are
sized 1024 x 1024 pixels. Although no numerical accuracy figures are available, the nature of
the results suffices in providing a clear picture on the displacement quality differences present
between the methods.

The reference speckle image from the numerical experiment and both images from the real
experiment are obtained in a similar manner: to create the speckle patterns, the surfaces of two
thin plastic films are sprayed with a matt black paint, followed by a very fine dust of white matt
paint. The paint adheres to the film surface and provides a non-flaking thin layer which does
not change the properties of the film. The resulting speckle pattern contained densely packed,
small speckles, of maximum 5 pixels in diameter. lllumination was provided by two slide pro-
jectors with 100 W halogen bulbs and integrated infrared filters, reducing the unwanted thermal
spectrum. To capture the images, a Hitachi P110 CCD camera with a resolution of 1024 x 1024
pixels and 8-bit grayscale intensity quantization was used. Through the optical arrangement,
one pixel displacement in the image plane corresponds to a 23.8 um displacement in the object
plane. Noise levels are low throughout the images. Image noise is added artificially only to the
images corresponding to the first experiment. For the second experiment, the specimen was
stretched by means of a specially designed low vibration hydraulic loading device.

The purpose of the third experiment is to assess how DIC methods, which are designed to
work exclusively with highly textured images, perform when applied on more generic images,
with potentially less image texture content. The experiment will also compare the accuracy
of DIC methods to that of standard optical flow methods. To this end, four grayscale image
sequences of two frames each from the Middlebury dataset are employed: *Dimetrodon’, "Hy-
drangea’, "Venus’ and "Grove2’. These are sized 584 x 388, 584 x 388, 420 x 380 and 640 x 480
pixels respectively. The ’Dimetrodon’ and "Hydrangea’ sequences consist of real world images
with non-rigid motions and complex occlusions. The maximum horizontal and vertical dis-
placements do not exceed approximately three pixels in the *Dimetrodon’ and and ten pixels
in the "Hydrangea’ sequence. The latter also contains very localized motion discontinuities and
variations in the areas corresponding to the plant itself. The *Venus’ sequence contains stereo
images. The vertical displacements are absent while the horizontal ones present sharp discon-
tinuities and have amplitudes up to approximately ten pixels. The *Grove2’ sequence contains
computer generated images. Displacements do not exceed four pixels in amplitude and present
complex spatial variations with sharp and local discontinuities in the foliage areas. The back-
ground presents lower amplitude, non-rigid displacements with smooth spatial variations. The
ground truth optical flow for all four image pairs is available.
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Fig. 4: The reference (left) and deformed image (right) used in the first experiment.

In evaluating the proposed DIC approach, only displacement data is used. Although the eval-
uation can also focus on strain accuracy, the latter is largely dependent on displacement ac-
curacy. Therefore, any quality improvements found in the calculated displacements are to be
reflected in the strains as well. Moreover, a displacement-based evaluation is preferable be-
cause strain calculation generally involves post-processing the displacement data which can
make differences in accuracy as well as localized displacement errors more difficult to identify
and assess.

3.1. Numerical DIC experiment

The reference and deformed images from the first experiment are shown in Fig. 4. The nu-
merical deformed image is obtained by first dividing the reference image into four rectangular
regions sized 256 x 256 pixels and applying a rigid body displacement to three of the four
regions. The upper right region is displaced horizontally 2.5 pixels, the lower left region is
displaced vertically 2.5 pixels while the lower right region is displaced both horizontally and
vertically with 2.5 pixels. This implies that vertical displacements are present only in the lower
half of the deformed image (a downwards motion) while horizontal displacements are present
only in the right half of the image (rightwards motion). After the application of the rigid body
displacements, in the areas that separate the four image regions of different motion, all pix-
els are assigned the value 255. The width of the “occluded” regions is 3 pixels and the length
is 512 pixels. Finally, normally distributed noise of zero mean and standard deviation 3 is
added to both reference and deformed images. Figure 5 shows the displacement distribution
schematic and image difference. It can be observed that in the regions with displacement dis-
continuities, both missing image data and image noise are present. This situation, although
artificially induced in this experiment, can occur in real experiments as when for example visi-
ble cracks suddenly develop or if the speckle pattern is significantly affected by deformations.
Furthermore, localized reflections can also lead to regions with missing image information by
producing image areas of high intensity, as it will be seen in the second experiment.

To compare the proposed and traditional DIC approaches, the displacements in the centres of
subsets 15 x 15, 21 x 21, 27 x 27 and 33 x 33 pixels in size are calculated. The subsets overlap
so that subset centres are spaced 5 pixels both horizontally and vertically. The proposed method
is investigated both with displacement regularization (us = 1000), and without (us = 0). For
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Fig. 5: The numerical displacement schematic (left) and image difference (right) corresponding
to the first experiment.
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Fig. 6: The mean absolute horizontal displacement errors for the evaluated DIC methods in the
first experiment.

both DIC methods used, the subset centre displacements where the convergence condition was
not met were not taken into consideration. From a computational expense perspective, the ro-
bust method without regularization is approximately two times slower than the classic one. The
use of regularization further increases the total running time with approximately 40%.

In Figs. 6 and 7, the horizontal and vertical mean absolute displacement errors for the classic
DIC approach and proposed one with and without regularization are shown. The two figures
clearly show the accuracy advantages that the robust DIC approach presents with respect to the
classic least squares one. For the 15 x 15 pixel subsets, the classic DIC horizontal displacement
error of 0.31 pixels is approximately ten times larger than that of the robust DIC approach of
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Fig. 7: The mean absolute vertical displacement errors for the evaluated DIC methods in the
first experiment.

0.0298 pixels. Regularization further reduces the error in this case to 0.017 pixels. As subset
sizes increase the accuracy gap narrows. For the 33 x 33 pixel subsets, the classic DIC horizon-
tal error of 0.043 pixels is more than 4 times larger than the error of the robust approach which
is 0.00784 pixels. The mean absolute vertical displacement errors present similar differences.
The classic DIC approach errors are larger than the ones of the robust approach with a factor
that varies between 12, for 15 x 15 pixel subsets, and 6 for 33 x 33 pixels subsets. Regulariza-
tion further improves displacement quality, in particular for lower sized subsets, where small
local displacement discontinuities due to image noise are reduced. The vertical displacement
errors of the robust method are reduced by regularization between 40% for 15 x 15 pixel sub-
sets and 15% for the 33 x 33 pixel subsets. This is because larger subset sizes inherently reduce
the influence of image noise on the displacement estimates, local motion consistency is higher
and therefore the effects of displacement regularization are limited. Nevertheless, as previously
noted [12], regularization represents an important element for improving accuracy whenever
measuring displacements with high frequency spatial variations, which require a reduction in
subset size.

The proposed DIC approach also reduces the number of subsets for which motion cannot
be calculated because of convergence issues. Figure 8 shows the variation with subset size
of the number of non-converging displacement solutions, for the two evaluated DIC meth-
ods. The numbers of non-converging displacements for the proposed method with and without
regularization decrease from 13, for the smallest subset size to O for the largest subset size.
This evidently indicates that it can largely handle the problematic occluded areas which sep-
arate the image areas in which large displacement discontinuities are present. In contrast, the
least-squares criterion based classic DIC approach cannot recover the displacements for up to
316 subsets when using subsets sized 21 x 21 pixels. As the subset size increases, this num-
ber decreases, reaching 71 for the 33 x 33 pixel subsets. All subsets whose motion cannot be
recovered by the classic DIC approach are overlapping the white image pixels artificially in-
troduced. It is important to observe that whenever large magnitude pixel errors are present in
either the reference or the deformed subsets, the least-squares criterion fails to produce accurate
results. In comparison, the robust subset similarity criterion adaptively assigns lower weights
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Fig. 8: The variation with subset size of the number of non-converging displacement solutions
in the first experiment.

to these pixel pairs when calculating the displacements, thus being able to significantly reduce
convergence problems. In Figs. 9 and 10, the horizontal and vertical displacements recovered
with the classic and proposed DIC approach (without regularization) for subset sizes of 15 x 15
and 33 x 33 pixels are shown. For the smaller subsets, the classic DIC approach presents large
errors both in the areas where displacement discontinuities are present as well as in those where
displacements are constant and only occluded pixels are present. Although it uses the same im-
age information and no explicit image degradation model, the proposed method largely reduces
displacement errors just by adjustments of the influence of large error yielding pixels. These
can be further reduced through regularization while at the same time preserving the horizontal
and vertical displacement discontinuities. Increasing subset size reduces the errors in the image
areas of constant motion however smooths the displacements in the areas where discontinuities
are present. This effect can be clearly seen in Fig. 10a where, for both horizontal and vertical
displacement fields, there is a clear region of transition from the 0 to the 2.5 pixel displace-
ments. This is due to the fact that the quadratic criterion assigns equal importance to all pixels
within a subset. As the subset starts overlapping image areas of different displacement, the lat-
ter gradually start to influence the final displacement estimate. The size of the displacement
transition area in the displacement fields is therefore directly proportional to the size of the
subset overlap as well as subset size. The larger the subsets and the overlap between them, the
larger the area of transition between displacements. The proposed robust method reduces this
displacement transition area to one displacement at most. This generally occurs when the sub-
set falls approximately in the middle of the two distinct displacement image regions. In these
cases, the number of pixels of different displacements is approximately the same and the ro-
bust estimator acts largely as the quadratic one. This situation can be avoided by lowering the
error rejection threshold of the estimator, forcing the displacement solution to converge to the
displacement of the lowest error yielding pixels. In this evaluation, the error rejection threshold
calculation was not specifically designed to minimize displacement transitions in the presence
of sharp discontinuities, this area of research necessitating further future investigations. Never-
theless, the robust subset similarity criterion presents much better displacement discontinuity
preservation properties than the quadratic one.
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Fig. 9: The horizontal (left) and vertical (right) displacements calculated with (a) the classic
and (b) proposed robust DIC approaches (us = 0) using a subset size of 15 x 15 pixels, in the
first experiment.
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3.2. Real DIC experiment

The reference and deformed images used in the second, real experiment are shown in Fig. 11.
In the figure are also shown in detail parts of the reference and deformed images 300 x 200
pixels in size which contain the lateral crack developed in the specimen. By comparing both
images, it becomes clear that in the vicinity of the crack, localized reflections are present. These
appeared as a result of small pieces of the torn plastic specimen reflecting the incoming light.
The back side of the second plastic film (bonded on the other side of the glass) can be seen
exposed where the front side film is ruptured as well as all around the outer edges of the front
film. Of particular interest is the displacement accuracy in the vicinity of the crack, where both
localized displacement discontinuities as well as reflections are present, situation simulated and
investigated in the first experiment. Displacements are calculated using 15 x 15 pixel subsets
with a 5 pixel horizontal and vertical step between neighbouring subset centres. The relatively
small subset size is well suited for the speckle pattern and provides a good compromise be-
tween accuracy and spatial resolution of the displacement data. For the proposed method, the
regularization strength parameter was set at us = 3000.

For the classic DIC method, 583 displacement solutions did not converge while for the pro-

#177050 - $15.00 USD  Received 1 Oct 2012; revised 12 Jan 2013; accepted 27 Aug 2013; published 27 Nov 2013
(C) 2013 OSA 2 December 2013 | Vol. 21, No. 24 | DOI:10.1364/0OE.21.029979 | OPTICS EXPRESS 29993



il
i

Fig. 10: The horizontal (left) and vertical (right) displacements calculated with (a) the classic
and (b) proposed robust DIC approaches (us = 0) using a subset size of 33 x 33 pixels, in the
first experiment.
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posed method, the number was of 270. It should be noted that in both cases, many of the
non-converging displacement solutions correspond to image regions not belonging to the plas-
tic specimen’s surface but rather to the background. The horizontal and vertical displacements
obtained with the two DIC methods are shown in Fig. 12.

The robust DIC method presents a much smoother displacement variation across the whole
displacement field as a result of regularization. This is more visible in the case of the hori-
zontal displacements which are smaller, and therefore, the local displacement variations are
larger relative to the displacement amplitude. Horizontal displacements are smaller than one
pixel throughout the surface of the specimen while vertical ones vary approximately between
-4 and 2 pixels. Vertical motion presents an upward orientation (negative displacement values),
consistent with the direction of application of the load. Underneath the lateral crack, the motion
is downwards, as a result of unloading in the film. Significant differences in the estimated dis-
placements can be observed in the immediate vicinity of the specimen crack. Figure 13 shows
a detail 36 x 31 displacement points in size containing the vertical displacements around this
area. The motion vectors corresponding to the same points are shown in Fig. 14. From the
two images it is clear that at the tip of the crack , the robust method presents many more reli-
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Fig. 11: The reference (left) and deformed image (right) used in the second experiment.

able displacement estimates than the classic method. It is also important to note that, although
the robust method presents displacement solutions that have not converged, indicated by the
red markers in Fig. 14, their values are more consistent with neighbouring displacements that
correctly converged. Spatial consistency between converging and non-converging displacement
values can be noted also in Fig. 13. The displacements calculated with the classic method how-
ever are completely unreliable and have very large, erroneous values. These values appear in
Fig. 13 in dark shades of red or blue which indicate that the values at the respective points
fall outside the displacement amplitude scale to which the colours are mapped. A solution to
improve the robust method accuracy at the tip of the crack would be to lower error rejection
threshold for subsets with many large intra-pixel differences. This would allow for larger num-
bers of pixels in the reference and deformed subsets to be treated as outliers as well. At this
point this approach still requires further investigation.

3.3. Middlebury dataset experiment

When applied to the Middlebury dataset images, the proposed and classic DIC methods em-
ployed 21 x 21 pixel subsets with a 5 pixel step in both horizontal and vertical directions be-
tween subsets. The regularization parameter for the robust DIC method was fixed at us = 500.
No other special optimization or modification of the two methods was made for the experiment.
For both methods, image-sized displacement fields are obtained by using the six displacement
components corresponding to each subset and the average endpoint error (AEE) between them
and the ground truth fields is calculated. The endpoint errors corresponding to the two DIC
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Fig. 12: The horizontal (left) and vertical (right) displacements calculated with (a) the classic
and (b) proposed robust DIC approaches (us = 3000) using a subset size of 15 x 15 pixels, in

the second experiment.
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Fig. 13: Vertical displacements (36 x 31 displacement points detail) from the second experiment
calculated with the classic (left) and proposed robust (right) DIC approaches.
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Fig. 14: Motion vectors (36 x 31 displacement points detail) from the second experiment calcu-
lated with the classic (left) and proposed robust (right) DIC approaches. The locations marked
in red represent displacement solutions that did not converge.

methods along with those of other optical flow methods are presented in Table 1. The resulting
pixelwise displacement fields for the two methods are illustrated in Fig. 15. It should be noted
that displacements which were not reliably calculated (e.g. the convergence conditions of the
Newton-Raphson method were not met) were not used in the calculus of the AEE for either
of the methods. These displacements can be easily noted in the displacement results as they
present a sharply distinct colour coding compared to the neighbouring displacements.

From the results presented in Fig. 15 it is clear that the classic DIC method approach can-
not reliably recover displacements in significantly more image regions than the proposed one.
Moreover, except for the "Hydrangea’ image sequence, where the proposed DIC method is
slightly outperformed by the classic one, the numerical figures from Table 1 support this obser-
vation. Both DIC methods yield poor results at the edges of the images and in the areas where
there is lack of texture doubled by motion discontinuities, which is the case in the *Venus’
sequence. These are situations that do not present interest in DIC experiments where object
texture is always present. In the image areas where sufficient texture is present, such as those
corresponding to the plant in "Hydrangea’ and the background in Grove2’, both methods yield
reliable displacements. A particular effect of using subsets is the inability to recover finer dis-
placement spatial variations or the exact boundaries of motion discontinuities. This is due to
the fact that a subset step larger that one pixel has been used and in consequence the obtained
displacement fields are a piece-wise estimation of the real, underlying displacements. These ef-
fects are present mostly in the "Hydrangea’, *Venus’ and *Grove2’ sequences. These are also the
sequences where the proposed DIC method’s performance is most impacted compared to the
best performing optical flow methods. The largest displacement errors are found at the edges
of the plant for "Hydrangea’, the edges of all objects in *Venus’ and the edges of the foliage
and branches in the *Grove2’ sequence. In the case of the ’Dimetrodon’ sequence, displace-
ment discontinuities, which correspond to the edges of the toy dinosaur, are smaller in size and
hence, the impact of the errors at the generated by motion boundaries is smaller. This explains
why the proposed method performed similarly to the better performing state-of-the art optical
flow methods.
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(c) "Venus’

(d) "Grove2’

Fig. 15: First image of the each sequence (left column) and pixelwise optic flow fields recovered
with the classic (middle column) and proposed robust (right column) DIC approaches in the
third experiment. Both DIC methods employed a 21 x 21 subset size with a step size of 5
pixels.
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Table 1: Average endpoint errors (AEE) for the classic and proposed robust DIC methods for
the Middlebury training dataset. Both DIC methods employed a 21 x 21 pixel subset size and
a 5 pixel step size. The errors corresponding to other state-of-the-art optical flow methods are
presented for reference. The results marked with * are taken from [31] and [32] respectively.

Method Average endpoint error (AEE)
"Dimetrodon’ | "Hydrangea’ | "Venus’ | 'Grove2’

Proposed DIC 0.17 0.23 0.36 0.27
Classic DIC 0.24 0.22 0.58 0.61
Black and Anandan* [26] 0.39 0.32 0.54 n./a.
Sun (Layers++, 2 frames) [33] 0.15 0.16 0.21 0.09
Weiss* [34] 0.18 0.25 0.51 0.22
Werlberger (TV-L1) [35] 0.27 0.22 0.39 0.20
Werlberger (NL-TV-TNCC) [35] 0.16 0.15 0.29 0.14

4. Conclusions

In this paper, a new, fully robust DIC method that addresses the limitations of the, extensively
used, quadratic subset similarity criteria, has been proposed. The method is designed to adap-
tively weigh image pixel differences when estimating displacements so that only pixels that
best fit the overall motion inside a given subset contribute to the displacement solution. It also
increases motion consistency through spatial displacement regularization, which preferentially
penalizes small displacement discontinuities with respect to larger ones. This has the effect of
smoothing small displacement discontinuities, which are generally a result of image and calcu-
lus noises while maintaining larger ones. In the method, two robust estimators are employed:
the Welsch estimator in the pixel-level treatment outliers and the Geman-McClure estimator
for regularization. The resulting robust subset similarity criterion is optimized using the pop-
ular Newton-Raphson optimization algorithm. The proposed DIC method has been compared
to the classic one - that employs the least squares subset similarity criterion - in three experi-
ments: the first experiment is numerical and simulates rigid body translations and displacement
discontinuities in the presence of small occlusions and image noise. The second experiment
uses speckle images captured in a real experiment consisting in the deformation of a plastic
film specimen under uniaxial load. In the third experiment, the proposed and classic DIC ap-
proaches are compared to other optical flow methods using four image sequences from the
Middlebury evaluation dataset. Results in all experiments indicate that the proposed method
significantly outperforms the classic one in terms of accuracy. As a direct result of the use of
robust estimation, not only the accuracy of displacements in the presence of image noise, dis-
placement discontinuities and image occlusions is improved, but the number of non-converging
displacement solutions is also significantly reduced.
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