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ABSTRACT 
The Catch-Up TV (CUTV) service allows users to watch video content that was previously broadcast live on TV 

channels and later placed on an on-line video store. Upon a request from a user to watch a recently missed episode 

of his/her favourite TV series, the content is streamed from the video server to the customer’s receiver device.  This 

requires that an individual flow is set up for the duration of the video, and since it is hard to impossible to employ 

multicast streaming for this purpose (as users seldomly issue a request for the same episode at the same time), these 

flows are unicast.  

In this paper we demonstrate that with the growing popularity of the CUTV service, the number of simultaneously 

running unicast flows on the aggregation parts of the network threaten to lead to an unwieldy increase in required 

bandwidth. Anticipating this problem and trying to alleviate it, the network operators deploy caches in strategic 

places in the network. We investigate the performance of such a caching strategy and the impact of its size and the 

cache update logic. 

We first analyse and model the evolution of video popularity over time based on traces we collected during ten 

months. Through simulations we compare the performance of the traditional LRU (Least-Recently Used) and LFU 

(Least-Frequently Used) caching algorithms to our own algorithm. We also compare their performance with a 

“perfect” caching algorithm, which knows and hence does not have to estimate the video request rates.  

In the experimental data we see that the video parameters from the popularity evolution law can be clustered. 

Therefore we investigate theoretical models than can capture these clusters and we study the impact of clustering on 

the caching performance. Finally, some considerations on the optimal cache placement are presented.  
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1. INTRODUCTION 
There is a clearly pronounced trend towards more interactive TeleVision (TV) services, offering the users complete 

control over when and where they watch the available content. Various (near) on-demand services have already 

been proposed over broadcast networks [7],[14],[15],[19],[20]. However, an Internet Protocol (IP) network is 

excellently suited to support such interactive TV services, because it has a native return channel to easily convey 

the user requests (or preferences) to the control center and because it can straightforwardly address each user 

individually. In the remainder of this paper we concentrate on TV offered over a walled-garden IP network, referred 

to as IPTV, but many of the conclusions carry over to other TV content distribution platforms.  

For offering traditional broadcast services, also referred to as Linear Programming TV (LPTV), the IPTV operator 

relies on multicast to save transport capacity. More specifically, each channel of the offered bouquet needs to be 

transported at most once on the feeder link towards a multicast-enabled node. If there is at least one user viewing 

the channel and served by that node, the channel needs to be transported exactly once on the feeder link. A node can 

duplicate a flow it receives from the feeder link to as many destinations as have subscribed to that channel. The 

channel does not need to be transported at all over the feeder link, if there are no users served by that node who are 

viewing that particular channel. This technique saves considerable transport capacity on those feeder links [3],[19].  

Besides this traditional LPTV service, interactive services are becoming popular. One such example is Catch-Up 

TV (CUTV). CUTV allows the users to select a program that was recently aired, without having to indicate this 

intention prior to the airing time (as the user would have had to do with a traditional video recorder).  

For these interactive services, multicast can no longer be relied upon. In principle, for each request a unicast flow 

must be set up from the origin server to the user. That unicast flow transports the content destined for that 

particular user (and no packets are duplicated in the network). Once these interactive services increase in 

popularity, they will have an overwhelming impact on the traffic volume in some parts of the network. Fortunately, 

redirection mechanisms exist such that the content does not always need to be transported from the origin server 

[4],[16]. The user still asks the origin server for a flow, but the server redirects the user to a cache close to that 



user. This allows a subset of the content to be duplicated in caches deployed in the network or at the user premises. 

When such caches are installed in strategic places in the network, the flows destined for individual users do not 

need to travel all the way from the origin server, but can start from the cache. Unfortunately the storage capacity of 

these caches is limited. As such it needs to be carefully decided which objects are stored in the cache at any moment 

in time. It is obvious that this decision to cache (or not to cache) an object should be based on its popularity (or 

more precisely, its expected request rate). Caching the most popular objects (at the expense of the less popular 

ones) ensures that a maximal amount of requests can be served from the cache. In this way, reduction in the traffic 

volume on the feeder links upstream of the cache can be achieved.  

Caching strategies have been used for more than a decade to cache large web objects [16]. Dimensioning of caches 

for on-demand television services has been studied in [19] in the context of a cable television distribution network, 

in [9] in the context of Internet TV and in [8],[13],[18] in an IPTV context.  

Often, when determining the cache size, it is assumed that the popularity distribution of the offered multimedia 

content is a priori known and static. Yet, in reality, the popularity of the objects is not known by the cache and 

evolves over time. Therefore the popularity of objects needs to be predicted, measured and tracked over time by 

monitoring and aggregating the user requests for the objects [8]. The new interactive television services pose new 

requirements on the cache and the caching algorithm, because the typical lifetime of the objects is different from the 

one of web objects and the objects themselves are much larger.  

The requests a group of users generates for a set of objects offered in an on-demand service form a random process 

governed by a popularity law. The popularity distribution of (web) objects has been studied extensively [5]. Often 

the popularity is modelled as a static one by a Zipf or Zipf-Mandelbrot law of which the parameters are tuned by 

collecting the user requests for the objects over a long period of time. These popularity laws do not capture the fact 

that the popularity of objects evolves over time. In some studies this volatility of objects has been taken into 

account by feeding the caching algorithm with a trace obtained from observing requests on an existing web server 



[6]. In this paper we use the model introduced in [2] that takes the evolution of the video object popularity into 

account. We tune the parameters of this model based on data we collected for a CUTV service.  

In order to make sensible caching decisions, an algorithm to track the momentary popularity is needed. We use a 

caching algorithm based on the one introduced in [8]. It relies only on the observed requests to track the popularity. 

Notice that the two traditional caching algorithms, i.e., Least-Recently Used (LRU) and Least-Frequently Used 

(LFU), (implicitly) measure the popularities of the objects as well [17]. We will assess how the caching algorithm 

studied in this paper decreases the (peak) bit rate of the aggregate of unicast flows on the feeder link upstream of 

the cache, while still keeping the cache updates to a minimum. We will compare its performance to a benchmark 

caching algorithm that is aware of the true object popularity and to the performance of the LRU and LFU 

algorithms. 

This paper is organised as follows. In the following Section 2 we present schematically the IPTV architecture, the 

new (time-shifted) services, the purpose and the possible locations of caches. In Section 3 we discuss statistics we 

collected related to a CUTV service and suggest clustering of the parameters. In Section 4 we motivate the 

necessity of introducing caches on certain network nodes by showing that otherwise the required capacity risks to 

grow exorbitantly when the new interactive services gain in popularity. In the following Section 5 we describe the 

proposed caching algorithm as well as a “perfect” caching algorithm and the two corresponding simulators we 

wrote. Subsequently, in the next Section 6, we present results by the two described simulators. Finally, Section 7 

summarises the conclusions of our work. 

2. IPTV ARCHITECTURE AND SERVICES 

2.1 IPTV Architecture 
For a detailed description of the end-to-end IPTV architecture we refer to [1]. In this paper we focus on the access 

network illustrated in Figure 1, which shows that the access network supporting IPTV services is a tree network. At 

the root of the tree, content is injected, either on a multicast tree in case of the traditional LPTV service or on an on-

demand server, e.g., in the case of CUTV, from where the user can access it via a unicast flow. These (content 



dissemination) servers are connected to a Service Router (SR) through a distribution network. An aggregation 

network connects the SR to tens of Digital Subscriber Line Access Multiplexers (DSLAMs). A DSLAM usually 

serves a couple of hundred of Home Gateways (HGs) (not shown in the figure), each supporting a couple of set-top 

boxes (STBs) that a typical household has. All of these STBs are not necessarily actively using  IPTV services at a 

random moment in time.  
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Figure 1: Access network supporting IPTV services.  

 

Although Figure 1 presents a schematised IPTV access network in the specific case of IPTV over a DSL network, 

only small modifications are needed for the cases of a non-DSL topology e.g., a (coaxial or hybrid) Cable TV 

architecture. The only difference is that specific building blocks (QAM modules, etc.) are shared media rather than 

a dedicated line per user.  

Every of the depicted nodes (outside of the content servers) can contain a video replication cache, but in this paper 

we consider caches that are deployed strategically only in the SRs or the DSLAMs. A cache located on a STB is 

not considered here because in the topology of Figure 1 only a few end users are connected to it and once a video 

content has been downloaded and watched, the probability of it being requested again is negligible. This would 

change if the STBs are running a peer-to-peer protocol, but we do not consider this because the upstream link rate 

of the DSL line is in most cases configured to a small value.    

 



2.2 Linear Programming TV (LPTV) 
The traditional TV broadcast model (LPTV) is based on the “push content” paradigm, where the broadcast 

operator decides on the bouquet of offered TV channels (and related services) and the subscriber is a passive 

consumer of those. The content is transmitted live (aired in real-time) and requires streaming technology (often in 

multicast mode) to the end user. Sometimes a cache is deployed to enable a Pause-Live-TV service, which allows a 

limited trick-play functionality (pause, fast-backward, fast-forward to live, …). 

The required bandwidth depends rather on the size of the bouquet of TV channels and services than on the number 

of users. Since the number of these services is constant (more precisely varying slowly with time), the required 

bandwidth is not hard to estimate taking into account the user behaviour. As explained in [3], resource demand 

reduction can be achieved in this case mainly by the multicast technique or the switched multicast technique.  

2.3 Catch-up TV (CUTV)  
Many television content providers already offer a CUTV service either via collaboration with an IPTV provider 

over a walled-garden IPTV system or via a web portal over the open Internet. Examples of the latter are: ABC’s 

“Full Episode Player” [10], BBC’s “iPlayer” [11] and the Dutch “Uitzendinggemist” [12], Hulu [20]. Although 

they are offered over the open Internet, they can typically only be accessed in their country of origin. The offered 

content is either of a lower resolution than the original aired content or the user cannot directly watch the content 

after he or she selected it, but only after some initial start-up buffering time. These limitations on the Quality of 

Service (QoS) parameters are imposed from the limited available network resources.  

Thus, CUTV is not a live service anymore (like the LPTV one), but still a streaming service (as a general rule) for 

the time of the video watching duration (we do not consider an on-demand download service). For every requested 

multimedia (video) object, a dedicated unicast connection to the STB is set up, originating in the first service node 

up in the distribution tree which contains the requested object. In this way, the required bandwidth is proportional to 

the number of active users. This threatens to lead to explosion in resources demand. A popular solution to that is to 

provide the service nodes (e.g., SRs, DSLAMs) with caches. Those exploit the fact that a large number of users are 

connected to this node and there exists a non-negligible probability that new viewers request video content that was 



already viewed by other users in the group served by that node. This statistical property of the user behaviour, 

coupled with a good estimation of which are the most popular objects to be cached, can lead to a considerable 

bandwidth demand reduction (on the distribution or aggregation links).  

A good caching algorithm though, has an adequate estimate of the video objects popularity at any moment, an 

estimation as close as possible to the objective videos popularity distribution. A high Hit Ratio (HR), i.e., the 

fraction of the requests that can be served from the cache, ensures capacity saving on the link upstream of the cache 

provided that the cache is large enough and the cache has an appropriate cache logic to estimate the content 

popularity. In the following Section 3 we propose a function which models the popularity evolution over time of a 

video object and we describe the data set on which its viability has been tested.  

3. USER BEHAVIOUR AND MULTIMEDIA OBJECTS POPULARITY 

3.1 Experimental Data 
We have monitored a CUTV web site [12] in order to collect experimental data and analyse how the popularity 

(under the form of request rate) of video objects evolves over time. Once aired live on the standard LPTV, a video 

object is placed in this on-line store from where it can be requested for viewing again later at any time. Initially, we 

built a data set of video IDs collected during three months (the videos uploaded, introduced every day in a period of 

three months). We consecutively continued monitoring the accumulated number of views these videos obtain on a 

daily basis for seven more months. In other words each day we collected the cumulative views up to that day. So, 

the longest video traces are about 10 months long while the shortest traces are 7 months long. We collected 2140 

video views traces, but during our analysis and modelling process we discarded some 500 which were not well-

modelled for various reasons (mainly because they were aired more than one time during the monitoring period, 

which gives them a boost halfway and hence a trace like this is in fact a shifted sum of  several separate shorter 

traces, which we did not attempt to model).  

3.2 Generic User Behaviour Model 
In [2] we proposed an analytical model for the way accumulated views to videos grow. In fact, this analytical model 

describes the (measured or predicted) accumulated number of views for a video up to a certain moment in time – t. 



The time derivative of this model gives the request rate over the small interval [t, t+dt]. This analytical expression is 

a generic template that can model the popularity evolution over time of a video trace and depending on the value of 

the parameters can expose an exponential (short-tail) decay and a power-law (long-tail) decay. The model we 

proposed in [2] can degenerate into either a power-law or exponential decay law depending on a form-determining 

parameter, denoted as α. This allows a large range of video popularity decays to be modelled. By fitting this model 

to the traces we will find out whether the traces are heavy-tailed or not.  

Let Ik(t) denote the accumulated number of views (i.e., cumulative distribution of the popularity of the video trace), 

i.e., Ik(t) denotes the total demand for watching the k–th video until time instant t. This function, which depends on 

four parameters, has the following shape: 
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The parameter ρk represents the total number of views a video k receives in its complete lifetime. The parameter θk 

is the introduction time of a video, i.e, the time when a previously broadcast video object is uploaded to the on-line 

CUTV video store. The parameter τk can be interpreted as the video’s half-lifetime, more precisely the time by 

which half of the total views are accumulated. Thus τk is the median of the distribution, corresponding to a point in 

time when half of the potential population has been reached (assuming a user watches only once a given video). The 

subscript k towards all the parameters expresses the fact that they are associated with a given video k and are 

different for every separate video object. 

The parameter αk in eq. (1) is the form-determining parameter of the function, that is, it determines whether it is 

heavy-tailed or not and it is also video-object specific (it also has a subscript k). In Figure 2 we illustrate the 

function of eq. (1) with three values for the α parameter (namely α = 1, 10, 100) and demonstrate how with large α 

the function converges fast to an exponential function. Otherwise, if α is smaller than 10 (and close to 1), the trace 



has a heavy tail. This duality of the function accounts for the following physical phenomena: in the case the 

popularity evolution of video k is described by an exponential function, once the half-life time τk is reached, the 

video gathers the rest of its views very quickly; on the contrary, in the case of a power-law decay, the video 

requests are spread over a considerable time after the half-lifetime is surpassed.  

 
Figure 2 When the form-determining parameter α → ∞, the function of eq. (1) approximates an exponential function; the other 

parameters are ρ=1, τ=3, θ=0. 

 

3.3 Estimating Parameters from the Experimental Data 
We applied the methodology described in detail in [2] to estimate the three model parameters (ρk,τ k,α k) (of eq. (1)) 

of each video k of the collected video views traces (the fourth one, i.e., the introduction time θk, is given and we do 

not have to estimate it). In Figure 3 we depict three typical cumulative views traces from the data set and we 

superimpose the approximation with the function of eq. (1). The time unit is a day. We demonstrate how well 

“Trace A” (power-law) and “Trace B” (exponential form) are approximated by the synthesised traces with the 

estimated parameters. Unfortunately, our function fails to accurately model “Trace C”. The episode of “Trace C” 

has been aired a second time approximately 5 months after the first broadcast and this gives a boost in the 

accumulated views shortly after day 150, which our model does not capture. We could have split this trace into two 

parts: before and after the re-airing time, but we chose to focus our analysis on clean traces.   
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Figure 3 Three video views traces (dark curve) approximated with the proposed function in eq. (1) (light curve) with the 

corresponding estimated parameters values. 

 

 
   (a)       (b) 

Figure 4 Two sections of the 3D-graph of (ρ,τ,α): (a) ρ-τ section showing no correlation between ρ and τ, (b) ρ-α section 

demonstrating the two α clusters.  

 

We note first that the (ρk,τk,αk) parameter sets associated with the different traces are independent of one another. In 

Figure 4 (a) we plot the τ values of all the videos versus their respective ρ values. The scatter plot shows that there 

is a negligible correlation between ρ and τ (in fact the correlation coefficient between both variables is 0.095), so 

that we consider them as independent. In Figure 4 (b) we show the scatter plot of α versus ρ and two clusters for α 

can be discerned. The cluster with small α values corresponds to the traces with power-law form of the popularity 

decay, while the smaller cluster of large α values pertains to the traces that “die out” fast (i.e., have an exponential 

behaviour) regardless of what part of the subscribers audience they have reached (i.e., independently of the value of 

the ρ parameter). Since ρ and τ are independent, we do not need to know their joint distributions, and knowing their 

marginal distributions is sufficient. Further in this paper we will assume that the marginal distributions of the ρ and 

τ variables are exponentially distributed while the parameter α can take a finite number of fixed values (in most 



cases one or two) and we will check below to what extent this assumption holds. The magnitude of the form factor 

α, namely is it “small” or “large”, is sufficiently relevant for the popularity evolution decay (as is illustrated in 

Figure 2). We select 10 as the formal boundary value for classifying in the category “small” or “large” for the 

form-parameter of a given trace.   

The analysis of the traces shows that the average τ is 14 days, i.e., in the first two weeks most of the videos have 

received half of the views they will ever get throughout their lifetime. However, if we cluster the traces by the value 

of their α parameter (see the case of two clusters in TABLE  I), the 92 % of them with “small” α have a mean decay 

time τ of 13 days and the rest 8 % (with exponential request rate decay) have a τ of 28.5 days.  

We can consider and exploit the video traces parameters as one cluster, or we can divide the data set into two 

clusters (e.g., in the manner described above based on the value of α); we can even further subdivide into smaller 

clusters, e.g., by setting one threshold value for every of the three parameters which results in 8 clusters (see TABLE  

I for the average values of the parameters within a cluster). We further experimented by subdividing the larger 

cluster of small α by two threshold values of τ, thus obtaining 10 clusters with average parameter values also given 

in TABLE  I.  

TABLE  I Clusters’ parameters 
1 cluster 2 clusters

ρ x10
-6

τ α % ρ x10
-6

τ α

0.009 14.364 75036.837 α <10 0.92 0.009 13.139 0.858

α >10 0.08 0.008 28.474 939955.379

10 clusters

% ρ x10
-6

τ α

ρ < 5000,  τ < 14, α <10 0.569 0.002 2.117 0.815 8 clusters

ρ < 5000,  τ > 14 & τ < 90, α <10 0.027 0.002 30.710 1.215 % ρ x10
-6

τ α

ρ < 5000,  τ > 90, α <10 0.011 0.002 235.686 0.242 ρ < 5000,  τ< 14, α <10 0.569 0.002 2.114 0.814

ρ > 5000,  τ < 14, α <10 0.266 0.023 2.952 0.930 ρ > 5000,  τ< 14, α <10 0.266 0.023 2.952 0.930

ρ > 5000,  τ  > 14 & τ  < 90, α <10 0.026 0.026 30.311 1.124 ρ < 5000,  τ> 14, α <10 0.038 0.002 90.219 0.933

ρ > 5000,  τ > 90, α <10 0.021 0.025 276.612 0.655 ρ > 5000,  τ> 14, α <10 0.048 0.025 140.831 0.914

ρ < 5000,  τ < 14, α >10 0.026 0.002 2.085 397199.740 ρ < 5000,  τ< 14, α >10 0.026 0.002 2.085 397199.740

ρ > 5000,  τ < 14, α >10 0.018 0.002 66.648 1227178.647 ρ > 5000,  τ< 14, α >10 0.021 0.016 2.197 1480276.614

ρ < 5000,  τ > 14, α >10 0.021 0.016 2.197 1480276.614 ρ < 5000,  τ> 14, α >10 0.018 0.002 66.648 1227178.647

ρ > 5000,  τ > 14, α >10 0.015 0.015 62.736 772280.050 ρ > 5000,  τ> 14, α >10 0.015 0.015 62.736 772280.050  
 

In the case of one cluster, the distributions of ρ and τ are not well modelled by an exponential function and the 

highest R
2
 value (the Pearson product moment correlation coefficient) obtained by fitting with the best suited 

function is 0.62. In the case of two clusters, the distributions for ρ and τ are more exponential-like, and by fitting 



the obtained histograms with the best suiting exponential functions, the obtained R
2
 values are between 0.62 and 

0.83, except the very low R
2 

value for τ in the cluster of small α. The two biggest clusters in the 8- and 10-clusters 

cases, have ρ and τ parameters better approximated by exponential functions (their R
2 

ranges between 0.76 and 

0.84). 

 

4. BIT RATE EXPLOSION WITH CUTV 
In this paper we consider the transport capacity required on the distribution network (i.e., the link feeding the SR) 

and on the aggregation network (i.e., the link feeding the DSLAM). To that end, we consider the number of 

concurrent unicast flows that such a link needs to support. We express the required capacity in terms of the number 

of flows the link needs to support. We do not discuss in detail how much bandwidth is required by each of these 

flows and hence the aggregate of unicast flows. For standard definition television this would be around 2 Mbps per 

flow, while for high definition television it would be about 8 Mbps per flow.  

An IPTV operator will dimension the feeder links towards the SR and towards the DSLAM at least to support 

LPTV. This means typically supporting a bouquet of a few tens to hundreds of LPTV channels. So, for an LPTV 

service the distribution network and the aggregation network need to support at most this number of LPTV 

channels (and less if not all channels are watched by a group of users [3]). We assume that this capacity is foreseen 

and concentrate on the required capacity for a CUTV service. 

The required capacity (without caching) for a CUTV service is proportional to the number of users of the service 

rather than the number of video objects offered as for LPTV. The number of simultaneous unicast flows can be 

modelled as a stochastic variable: this number of flows increases or decreases as the users select CUTV objects 

(and finish watching them) and this in turn depends on the evolving popularities. The Complementary Cumulative 

Distribution Function (CCDF) of this number of unicast flows captures its statistical properties (fluctuations). 

More precisely, a CCDF graph shows for each value of the capacity (on the abscissa) the probability (on the 

ordinate) that the aggregate number of simultaneous unicast flows exceeds this value. In this context, this 

probability can also be interpreted as the fraction of the time that this capacity is exceeded. If the fluctuating 



capacity demand exceeds the (chosen) available capacity, then this CUTV system can take any of a couple of 

actions: it can block the new request, in which case the probability to exceed is the blocking probability (probability 

of unavailability) of the system or it can allow the new requests, if it is a buffer-equipped network, in which case 

the probability to exceed is the overflow probability (or packet loss probability, in case the buffers are small). 

Given the user behaviour model and the response of the system to overflow, this metric can always be translated 

into a user-perceived quality of experience (QoE) parameter.  The CCDF provides all the information that is needed 

to dimension the link: at a given desired probability of unavailability, the required capacity can be directly read 

from the CCDF graph. This explains why we choose the performance metric “likelihood to exceed”. 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 200 400 600 800 1000 1200 1400

capacity (# of flows)

li
k

e
li
h

o
o

d
 t

o
 e

x
c

e
e

d

N=500

N=1000

N=2000

N=4000

 
Figure 5: CCDF of the transport capacity on the feeder link towards a node for various user populations sizes N=500, 1000, 2000, 

4000  (no clustering, φφφφ = 500 files/day, video duration Tv = 0.0625 day). 
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Figure 6: CCDF of the transport capacity on the feeder link towards a node serving a population of N = 1000 users (no 

clustering, φφφφ in files/day, video duration Tv = 0.0625 day). 



 

Figure 5 (obtained with the simulator described later in this paper in Section 5.2) shows the CCDF of the number of 

simultaneous unicast flows on the feeder links (towards the DSLAM or the SR) as the number N of CUTV users 

increases (namely for N = 500, 1000, 2000, 4000). It illustrates how the required capacity increases with increasing 

number of users (concurrently using the CUTV service). Figure 6 (also obtained with the simulator described in 

Section 5.2) shows how the CCDF of the number of simultaneous unicast flows grows when the video ingestion 

rate φ of a Poisson traffic increases (φ can increase, for example, if more channels offer a CUTV service). Both 

graphs demonstrate that if either the number of users N or the introduction rate φ of new episodes increases, the 

required capacity does too.    

We will describe in more detail how these CCDFs are obtained in Section 5. 

 

5. CACHING ALGORITHM 
As explained and demonstrated in Section 4, in order to keep under control the traffic in the aggregation part of the 

network and to avoid bit rate explosion, caches are deployed, situated either in the SRs or the DSLAMs. However, 

when deploying caches, the “best suited” objects should be stored in them (at the moments when episodes are 

requested) in order to achieve higher efficiency (this requires a high Hit Ratio (HR), a parameter we define below). 

With the evolving object popularities this is not straightforward. The caches are deployed with as primary objective 

to reduce the traffic volume of the aggregate of unicast flows that needs to be supported on the feeder link (in the 

aggregation and distribution network) upstream of the cache. However, as a secondary objective, the cache updates 

should be minimised as well (which requires a low Update Ratio (UR), a parameter  which is defined below). The 

former objective ultimately results in a cheaper (aggregation and distribution) network by which the investment in 

the cache could be justified. The second aim helps to reduce the cost of the cache as each cache update requires 

computational resources of the caching hardware and consumes capacity on the ingest link to the cache.  

 



If the caching algorithm knew the exact popularity of objects at any decision-taking moment, it would have been 

caching always the most popular video objects for which the highest view request rates are expected. A simulator to 

assess the performance of the “perfect” caching algorithm is described in Section 5.1.  

However, in reality, the actual popularity distribution of objects is unknown and a good caching algorithm tries to 

approach it by an intelligent guess, making use of the track record kept of the requests to all videos. Section 5.2 is 

dedicated to the description of such a simulator to assess the performance of three real caching algorithms.   

A user request at a given time instant results either in a “hit”, in a “miss” or an “update”. In case of a “hit”, the 

requested object is found in the cache and a unicast flow is set up from the cache to the user, alleviating the traffic 

on the feeder link upstream from the cache. In case of a “miss”, a unicast flow is set up from the origin server to the 

user (that travels over all parts of the network). In case of an “update”, a unicast flow is set up to feed the cache 

and the user is served via a unicast flow from the cache by the object that is gradually being built up in the cache. 

Therefore, unless there is a “hit”, the network links upstream of the cache need to support a unicast flow.  

There are two main metrics which define the cache performance. One of them is the Hit Ratio (HR) and the other is 

the Update Ratio (UR). The HR is defined as the fraction of requests that can be served directly by the cache. It is 

easy to see that the average number of flows on the feeder link towards a node with a cache is (1-HR) times the 

average number of flows in case this node would not have a cache. The Update Ratio (UR) is the ratio between the 

number of cache updates and the number of ingested objects observed over a very long period of time. If we denote 

by K the number of objects ingested in the CUTV on-line store, by M - the number of requests, by Mh - the number 

of hits and by Ku - the number of updates, then HR = Mh/M and UR = Ku/K. The HR is always smaller than 1 and a 

value close to 1 should be aimed for, while the UR is unbounded and a value as low as possible should be aimed 

for.  

 

 



5.1 Perfect Caching Algorithm 
In a perfect caching algorithm, the objects popularity distribution is perfectly known at any given moment and thus, 

the best decision on which objects to be cached is taken. We constructed a simulator which assesses the 

performance of such a perfect caching algorithm and therefore gives the benchmark, i.e., the maximum achievable 

HR with a given cache size L. In fact, in this simulator we introduce video objects in the video store according to a 

Poisson process and associate with each video object a popularity evolution curve (determined by eq. (1)). The 

concrete ρ k, τ k and α k video parameters are assigned according to the statistics described in Section 3.3. We 

assume that the caching algorithm is aware of the actual video popularity ranks at any given moment. The 

simulator makes a “snapshot” of the momentary videos popularity distribution at a randomly chosen point in time 

and stores the first L most popular videos ranked up in the list. The HR is the average of the sum of all momentary 

request rates of the cached objects at that random moment in time divided by the average of all momentary request 

rates at that random moment in time. The averages are estimated by generating a sufficiently large amount of 

random time instants. 

To determine the statistics of the parameters ρk, τk and αk, our simulator can have two types of input: 

- either every introduced video trace imitates one of the 1640 analysed traces, selected at random; by the three 

estimated parameters (ρk,τ k,α k) on the real trace, eq. (1) gives an answer on the video popularity at any moment in 

the lifetime of the synthesised trace; 

- or videos are introduced with (ρk,τ k,α k) parameters as belonging to a cluster (see TABLE  I); the αk parameter 

is taken as a constant specific for the given cluster, while ρk and τk are associated with exponential distributions 

with an average value defined from the cluster. 

5.2 Real Caching Algorithm 
The video popularity evolution curves for the real caching algorithm are generated in the same way as for the 

perfect caching algorithm. In contrast with the perfect caching algorithm, the real caching algorithm is not aware of 



the popularity evolution curve associated with each video object, but only sees the requests for video objects  made 

by the users.  

The real caching algorithm that we consider in this paper operates according to the caching logic described in [8]. It 

makes the decision to cache or not to cache an object at each user request instant ti. This caching decision is based 

on the measured object request rate from the recorded history. In fact, the caching algorithm attempts  to track the 

true object popularity evolution (defined by eq. (1)) as closely as possible. In order to do so, the caching algorithm 

keeps and updates a vector π of size Kt – one entry for every ingested video object until moment t, thus with entries 

πl corresponding to the l-th ingested object. These measures πl  of the video request rate (popularity) are updated at 

each user request instant ti according to the rule  
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i i
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where k is the identifier of the object that was requested at instant ti and δlk is the Kronecker delta (which is 0 for all 

l except for l=k where it is 1). At the content ingestion instant θk (prior to the first (observed) request for that 

object), the entry πk of the vector π is initialised to 0. Notice that πk is not an estimate of the request rate itself, but 

is proportional (with factor B>0) to the request rate.  

Eq. (2) can be interpreted as follows. At any moment in time (and in particular at request times), the k-th entry of 

the vector π accounts for the number of requests for object k over the past period. The longer the request happened 

in the past, the less it is weighted. In fact, the procedure boils down to using a running exponential window with 

width 1/B. How to tune B  will be discussed in the next section. 

Consider a cache that has room to contain L objects. Remark that we express the cache size as the number of 

objects it can store. In principle each object can require a different storage space, but we do not take that into 

account here. The caching algorithm is such that the L objects with the highest πl-value reside in the cache. Since at 

each time instant ti only one entry of the vector π increases (while the other entries decrease), only the 



corresponding object is eligible to be moved to the cache (at the expense of the cached object that has the lowest πl  

-value amongst the cache-contained objects).  

Following a request, a unicast flow is set up for the requesting user, originating either at the video content server or 

at a cache. At every request moment, it is decided whether or not the k-th object merits moving into the cache based 

on this new value of πk. If the decision is in favour of caching the object, a unicast flow is set up from the origin 

server to the cache and lasts for a duration Tv. In this paper we take this duration to be a constant, but in further 

elaborations, this could be a random variable that reflects the fact that not all episodes last for the same time or are 

watched until the end.    

We wrote an event-driven simulator that generates the requests for objects according to the non-stationary Poisson 

process determined by eq. (1), but the ingestion times θk are generated according to a stationary Poisson process. 

The user demand function of eq. (1) statistically determines the requests for the k-th object made by a community of 

N users subscribed to the CUTV service as follows. The requests for object k are described by a non-stationary 

Poisson process with a time-varying arrival rate N·Dk(t), where Dk(t) is the derivative of Ik(t). The non-stationary 

Poisson processes associated with individual objects run concurrently and are statistically independent.  

At the ingestion time of the k-th object, the parameters of the demand curve (i.e., ρk, τk and αk - see eq. (1)), are 

chosen again in one of the two following ways described in Section 5.1: either every introduced video trace imitates 

one of the 1640 analysed traces, picked at random or videos are introduced with (ρ k,τ k,α k) parameters as belonging 

to a cluster (see TABLE  I). 

The curve of eq. (1), specific for the k-th object, is used in a non-stationary Poisson process to generate the time 

instants at which object k is requested. The caching algorithm has knowledge of the ingestion times θk and sees the 

request instants ti for the objects. Although the caching algorithm implicitly tries to estimate the demand curve 

associated with object k, it actually has no access to the parameters of this curve with which the requests were 



generated. As such the caching algorithm only has indirect and imperfect knowledge of the actual request rate 

unlike the perfect caching considered in Section 5.1.  

After a prerun sufficiently long such that the system reaches the steady state (see [8]), the simulator starts to count 

the number K of objects ingested, the number M of requests, the number Mh of hits and the number Ku of updates. 

Moreover, it tracks the number of concurrent unicast flows upstream of the cache by sampling this evolving 

random variable at regular time intervals.  

After a simulation run long enough for the stochastic fluctuations to have become sufficiently small, the simulator 

reports the HR = Mh/M and the UR = Ku/K. The CCDF of the required bit rate on the link upstream of the cache is 

constructed based on the samples of the number of concurrent unicast flows the simulator has accumulated (by 

probing the link regularly) and the percentiles are calculated on this set of samples. The capacity corresponding to a 

percentile is a point on the CCDF curve. We calculate enough percentiles to determine the CCDF accurately.    

6. RESULTS 

6.1 Comparison of Real Caching Algorithms 

In what follows we will speculate on the choice of the parameter B of the caching algorithm. The caching system 

tends to the Least-Recently Used (LRU) caching strategy if B tends to infinity, while it tends to the 

Least-Frequently Used (LFU) if B tends to 0 [17]. This is tackled in more detail in [8]. Thus, assigning different 

values to B, we can imitate the two often used algorithms: LFU and LRU and compare their performance to the 

performance of the proposed caching algorithm.  

In fact, it can be proved that E[πl] evolves over time as the convolution of the true request rate of eq. (1) with the 

exponential window of eq. (2). So, in order to reduce the noise as much as possible, while still keeping the lag under 

control, the parameter B should be chosen considerably larger, say about 10 times larger, than 1/τk. On the other 

hand, choosing B too high will make the algorithm react too “nervously” as is illustrated in Figure 7. Although an 

extension with an individual B-value per object k would be feasible, if there would be a means to get an estimate for 

τk, in this paper we try to choose one B that suits all objects.  



 

We explored the influence of the cache tuning parameter B on the hit ratio, HR and the update ratio, UR under a 

range of cache sizes, namely for L = 625, 1250, 2500, 5000, 10000, 20000, 40000, 80000 and running simulations 

for four values of B: B = 20 (too large), B = 2.5, B = 0.5 (our choice), and B = 0.1 (too small). Except in this 

section, in the remainder of this paper we set B = 7/E[τk], which gives a value of B = 0.5 for an average  τ = 14 

over all the traces (see TABLE  I). The results are displayed in Figure 8 and Figure 9.  

Figure 8 shows that for all cache sizes, a choice of B in the range 0.5 and 2.5 would hardly impact HR. This figure 

demonstrates also that with small cache sizes (L = 625 - 5000), setting B too low (corresponding to the LRU 

algorithm) or too high (corresponding to the LFU algorithm) degrades the performance of the cache in terms of 

expected hit rate. With small cache sizes, the choice of B has a drastic impact on the update ratio as well, as is 

demonstrated in Figure 9. With small B value, a low UR is maintained but this is done at the expense of obtaining a 

low HR. We observe again that the choice of the cache tuning parameter hardly matters for the UR of large buffers.  

Figure 8 and Figure 9 illustrate the superiority of the proposed caching algorithm in [8] with respect to the LRU 

and LFU caching strategies.  
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Figure 7 Illustration of the impact of B on the estimate ππππk of the true request rate (see [8]).  

 

6.2 Approximation with Clusters 

First we want to assess if the list of 1640 traces can be modelled by a set of clusters. Therefore, we use the 

simulator to assess the performance of the ideal caching algorithm when the video traces parameters are not 



clustered (i.e., each time a new video is introduced, its parameters are defined by randomly selecting one parameters 

set associated with one out of the 1640 traces) to the cases when the video traces are generated according to 

clustered parameters.  
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Figure 8 HR in function of B for various cache size L. 
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Figure 9 UR in function of B for various cache size L. 

 

 

With the perfect caching algorithm of Section 5.1 we generate the benchmark HR curve, for the case where the 

input is a list of 1640 (ρ k,τ k,α k) triples (the non-cluster type of video definition) and for the cases with various sets 

of cluster descriptions (see TABLE  I).  The results are displayed in Figure 10.  

The approximation to the HR curve associated with the list is very poor with 1 and 2 clusters, but it is good with 8 

and 10 clusters. The curves associated with 1 and with 2 clusters perform equally bad although it can be noticed 



that the curve pertaining to 2 clusters follows the shape of the real HR curve. The reason for this is that in this case 

the dominant number of videos have a power-law popularity decay shape while the curve with one cluster is 

dominated by traces with exponential decay (large α k) and does not reflect the reality.  

Defining clusters is tricky and obviously no positive effect is necessarily achieved by simply increasing the number 

of clusters: the results with 8 clusters slightly outperform those with 10 clusters in the sense that the curve with 10 

clusters approximates slightly worse the benchmark curve of non-cluster input video parameters). Constructing 

adequate clusters can be considered as “classifying and summarising” the behaviour of the 1640 videos in the list.  
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Figure 10 HR curves by the perfect cache simulator: videos are generated either as defined by the list of 1640 videos (no clusters 

curve) or as defined by 1, 2, 8 or 10 clusters of the (ρ,τ,α)  parameters. 

 

 

6.3 Performance of the Proposed Caching Algorithm 

In this section we assess how close the real caching algorithm can approach the perfect caching algorithm 

performance.  

For a node with N = 1000 users, we obtain the HR curves by the proposed caching algorithm for cache sizes of 

L = 625, 1250, 2500, 5000, 10000, 20000, 40000, 80000 objects. The corresponding curves by both simulators 

(described respectively in Section 5.1 and 5.2) for 1, 2, 8 and 10 clusters as well as the real HR curves associated 

with 1640 videos are compared in Figure 11. The dashed lines pertain to the proposed real caching algorithm 

(described in Section 5.2), while the solid lines pertain to the perfect one (Section 5.1). The corresponding curves 

are of the same shape, making that also for the real caching algorithm the approximation with 8 and 10 clusters 



approaches best the HR curve associated with the list of traces. The HR curves corresponding to the proposed real 

caching algorithm are always below the ones corresponding to the perfect algorithm.  
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Figure 11 HR curves by the perfect cache simulator (full lines) and by the real caching algorithm (dashed lines): videos are 

generated either as defined by the list of 1640 videos (no clusters curve) or as defined by 1, 2, 8 or 10 clusters of the (ρ,τ,α)  
parameters. 
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Figure 12 HR curves by the perfect cache simulator (full lines) and by the real caching algorithm (dashed lines) for N=1000 and 

N=4000; videos are generated either as defined by the list of 1640 videos (no clusters curve) or as defined by 8 clusters of the 

(ρ,τ,α)  parameters (see TABLE  I). 

 

 



If the number of users is higher, the average HR is higher too. This is illustrated in Figure 12, superimposing 

results for N=1000 and N=4000 users with the perfect and the proposed real caching algorithm. Videos are 

generated either as defined by the list of 1640 videos (no-clusters curve) or as defined by 8 clusters of the (ρk,τ k,α k)  

parameters.  

6.4 Caching locations and resource demand reduction 
As far as the last mile link is concerned, it is clear that it needs to support as many flows as there are active STBs 

in the home. Indeed, since it is not unlikely that these STBs are active at the same time (unless the user behaviour 

could be predicted with a probability very close to 1), it is straightforward to conclude that this worst case 

determines the transport capacity requirement of that link. Thereafter, in the remainder of this section we focus on 

the required transport capacity on the distribution and aggregation network, where multiplexing gain can be 

exploited via introduction of caches. We limit our study to scenarios where caches are installed in only a single level 

in the distribution tree (i.e., either on the DSLAM or the SR).  

The HR is the main factor conditioning the capacity reduction gained with the deployment of a cache in a node 

(though HR needs to be considered always in combination with the UR for better accuracy).  

Based on the conclusion of the results displayed in Figure 12, a cache provided to a node serving a higher number 

of users will have a higher HR (the HR curve associated with N=4000 users is always higher than the one 

associated with N=1000 users at equal other conditions). Therefore, a cache in the SR will always lead to a higher 

bandwidth saving upstream than a cache placed in the DSLAM.  

This is corroborated by the results shown in Figure 13 and Figure 14. They display the CCDF graphs of the 

required bandwidth resources (respectively uplink the DSLAM - Figure 13 or uplink the SR - Figure 14). The case 

when there is no cache (represented by the thick full line) is compared versus three cases of the cache size 

respectively L = 1250, 10000, 40000. The table associated to the graph gives the average and the coefficient of 

variation (CoV) of the capacity demand, as well as the HR and UR (where this applies). Notice that the average 

saved bandwidth can be calculated by multiplying the HR by the average required capacity in the case with no 



cache. The variation of the aggregate capacity (expressed in the CoV) is also always smaller with N=4000 than 

with N=1000 (the law of large numbers postulates that the average increases linearly, i.e., in this case 

proportionally to N, while the second moment increases proportionally to N resulting in a decreasing CoV with 

growing N). Moreover, since the SR can usually host a larger cache than a DSLAM, this can result in a higher HR.  
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Finally, note that caching in the DSLAM only makes sense, if the cost of the cache is compensated by the gain in 

required transport capacity on the aggregate link. Similarly, caching in the SR makes sense if the cost of the cache 

is compensated by the gain in required transport capacity on the distribution network and if the increase in capacity 



on the aggregation network downlink to the DSLAM does not represent an issue. We do not discuss this cost trade-

off in this paper.  

 

7. CONCLUSIONS 
In this paper we have shown that the transport capacity required to support CUTV services risks to grow 

enormously with the growing popularity of these services because of their nature to deliver individual streams 

(through unicast flows). Caches deployed in strategic places in the network controlled by good caching algorithms 

can alleviate this large increase in traffic volume. The cache performance, expressed by its Hit Ratio (HR) and its 

Update Ratio (UR), depends on a good caching algorithm, tuned to track well the real objects’ request rates. 

Therefore, we first presented results on characterising the video popularity evolution (determining the request rate). 

We modelled a set of monitored video views traces (7 to 10 months long) by a function with three parameters: one 

pertaining to the potential video object audience; the average decay time; the form of the views distribution tail. 

92% of our traces were found to have a power-law form decay, while only 8% follow an exponential video 

popularity decay. However, as we demonstrate, modelling the cache HR by simply dividing the parameter set into 

two clusters grossly underestimates the actual HR. This motivated us for further attempts to better classify the 

traces and we tried to better cluster their parameters.  

The impact of the tuning parameter of the proposed cache algorithm has been explored and the superiority of this 

caching algorithm has been demonstrated in comparison to two other caching algorithms: LRU and LFU. A 

simulator for a perfect caching algorithm has been constructed and the performance of the proposed caching logic 

has been studied when defining in various ways the input video parameters (observing in this way the impact of 

video parameters clustering).  

Finally, we briefly presented considerations on the possible cache locations (in the distribution and aggregation 

network). A cache placed in the SR is slightly better (in terms of HR), because due to the fact that it serves more 

users, it has a better estimate of the request rate at its disposal. However, a cache in the SR does not impact the 



traffic on the feeder link towards the DSLAM, while a cache in the DSLAM reduces the amount of traffic both on 

the feeder link towards the DSLAM and the SR. 
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