A property of isometric mappings between dual polar spaces of type $DQ(2n, \mathbb{K})$

Bart De Bruyn^{*}

Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

Let f be an isometric embedding of the dual polar space $\Delta = DQ(2n, \mathbb{K})$ into $\Delta' = DQ(2n, \mathbb{K}')$. Let P denote the point-set of Δ and let $e' : \Delta' \to \Sigma' \cong \mathrm{PG}(2^n - 1, \mathbb{K}')$ denote the spin-embedding of Δ' . We show that for every locally singular hyperplane H of Δ , there exists a unique locally singular hyperplane H' of Δ' such that $f(H) = f(P) \cap H'$. We use this to show that there exists a subgeometry $\Sigma \cong \mathrm{PG}(2^n - 1, \mathbb{K})$ of Σ' such that: (i) $e' \circ f(x) \in \Sigma$ for every point x of Δ ; (ii) $e := e' \circ f$ defines a full embedding of Δ into Σ , which is isomorphic to the spin-embedding of Δ .

Keywords: isometric embedding, dual polar space, hyperplane, spin-embedding **MSC2000:** 51A45, 51A50

1 Introduction

1.1 Basic definitions

Let Π be a nondegenerate polar space of rank $n \geq 2$. With Π there is associated a point-line geometry Δ whose points are the maximal singular subspaces of Π , whose lines are the next-to-maximal singular subspaces of Π and whose incidence relation is reverse containment. The geometry Δ is

^{*}Postdoctoral Fellow of the Research Foundation - Flanders (Belgium)

called a *dual polar space* (Cameron [2]). There exists a bijective correspondence between the nonempty convex subspaces of Δ and the possibly empty singular subspaces of Π : if α is a singular subspace of Π , then the set of all maximal singular subspaces containing α is a convex subspace of Δ . The maximal distance (in the collinearity graph) between two points of a convex subspace A of Δ is called the *diameter* of A and is denoted as diam(A). The convex subspaces of diameter 2, 3, respectively n - 1, of Δ are called the *quads*, *hexes*, respectively *maxes*, of Δ . The convex subspaces through a given point x of Δ define an (n - 1)-dimensional projective space which we will denote by $\operatorname{Res}_{\Delta}(x)$.

For every two points x and y of Δ , d(x, y) denotes the distance between x and y in the collinearity graph of Δ and $\langle x, y \rangle$ denotes the smallest convex subspace containing x and y. We have diam $\langle x, y \rangle = d(x, y)$. More generally, if $*_1, *_2, \ldots, *_k$ are $k \geq 1$ objects of Δ (like points or convex subspaces), then $\langle *_1, *_2, \ldots, *_k \rangle$ denotes the smallest convex subspace of Δ containing the objects $*_1, *_2, \ldots, *_k$. If A and B are two nonempty sets of points of Δ , then d(A, B) denotes the smallest distance between a point of A and a point of B. If x is a point of Δ and if $i \in \mathbb{N}$, then $\Delta_i(x)$ denotes the set of points at distance i from x. We define $x^{\perp} := \Delta_0(x) \cup \Delta_1(x)$. For every point x and every convex subspace A of Δ , there exists a unique point $\pi_A(x)$ in A nearest to x and $d(x, y) = d(x, \pi_A(x)) + d(\pi_A(x), y)$ for every point y of A. We call $\pi_A(x)$ the projection of x onto A. If A and B are two convex subspaces of Δ , then we define

$$ch(A, B) := (diam(A), diam(B), d(A, B), diam(A, B)).$$

ch(A, B) is called the *characteristic* of (A, B). The characteristic of (A, B) describes the mutual position of A and B.

In this paper, we are mainly interested in the dual polar space $DQ(2n, \mathbb{K})$ which is associated with a nonsingular quadric of Witt-index $n \geq 2$ in $PG(2n, \mathbb{K})$.

A hyperplane of a point-line geometry is a proper subspace meeting each line. Suppose H is a hyperplane of a thick dual polar space Δ of rank $n \geq 2$. By Shult [9, Lemma 6.1], we then know that H is a maximal subspace of Δ . A point x of H is called *deep (with respect to* H) if $x^{\perp} \subseteq H$. If H consists of all points of Δ at non-maximal distance from a given point y, then H is called the *singular hyperplane* of Δ with deepest point y. One of the following cases occurs for a quad Q of Δ : (i) $Q \subseteq H$; (ii) $Q \cap H = x^{\perp} \cap Q$ for a certain point $x \in Q$; (iii) $Q \cap H$ is an ovoid of Q; (iv) $Q \cap H$ is a subquadrangle of Q. If only cases (i) or (ii) occur, then H is called *locally singular*. A set \mathcal{W} of hyperplanes of a dual polar space Δ is called a *pencil of hyperplanes* if every point of Δ is contained in either one or all hyperplanes of \mathcal{W} .

A full embedding of a point-line geometry S into a projective space Σ is an injective mapping e from the point-set P of S to the point-set of Σ satisfying (i) $\langle e(P) \rangle = \Sigma$ and (ii) e(L) is a line of Σ for every line L of S. If e is a full embedding of S, then for every hyperplane α of Σ , the set $e^{-1}(e(P) \cap \alpha)$ is a hyperplane of S. We say that the hyperplane $e^{-1}(e(P) \cap \alpha)$ arises from the embedding e. The dual polar space $DQ(2n, \mathbb{K})$, $n \geq 2$, has a nice full projective embedding into $PG(2^n - 1, \mathbb{K})$, which is called the spin-embedding of $DQ(2n, \mathbb{K})$. We refer to Chevalley [4] or Buekenhout and Cameron [1] for definitions and background information on the topic of spin-embeddings.

1.2 The main results

Definition. Let Δ and Δ' be two dual polar spaces with respective pointsets P and P'. We denote the distance function in Δ and Δ' respectively by $d(\cdot, \cdot)$ and $d'(\cdot, \cdot)$. An *isometric embedding* of Δ into Δ' is a map $f : P \to P'$ satisfying

$$d'(f(x), f(y)) = d(x, y)$$

for all points x and y of P.

Example. Let $n \in \mathbb{N} \setminus \{0,1\}$ and let \mathbb{K} and \mathbb{K}' be fields such that \mathbb{K} is a subfield of \mathbb{K}' . Every point of the projective space $\operatorname{PG}(2n, \mathbb{K})$ can be regarded as a point of the projective space $\operatorname{PG}(2n, \mathbb{K}')$. For every subspace α of $\operatorname{PG}(2n, \mathbb{K})$, let $f(\alpha)$ denote the subspace of $\operatorname{PG}(2n, \mathbb{K}')$ generated by all points of α . The equation $X_0^2 + X_1X_2 + \cdots + X_{2n-1}X_{2n} = 0$ defines a quadric $Q(2n, \mathbb{K})$ of Witt-index n in $\operatorname{PG}(2n, \mathbb{K})$ and a quadric $Q(2n, \mathbb{K}')$ of Witt-index n in $\operatorname{PG}(2n, \mathbb{K})$. The map f restricted to the set of generators (= maximal singular subspaces) of $Q(2n, \mathbb{K})$ defines an isometric embedding of $DQ(2n, \mathbb{K})$ into $DQ(2n, \mathbb{K}')$.

In Section 2, we will study isometric embeddings between general dual polar spaces. We also notice there that if there exists an isometric embedding of $DQ(2n, \mathbb{K})$ into $DQ(2n', \mathbb{K}')$, $3 \leq n \leq n'$, then \mathbb{K} is isomorphic to a subfield of \mathbb{K}' .

In Section 3, we will derive some properties of locally singular hyperplanes of $DQ(2n, \mathbb{K})$. We will use these properties in Section 4 to prove the following result:

Theorem 1.1 (Section 4) Let f be an isometric embedding of the dual polar space $DQ(2n, \mathbb{K})$ into the dual polar space $DQ(2n, \mathbb{K}')$, $n \geq 2$. Let Pdenote the point-set of $DQ(2n, \mathbb{K})$. Then for every locally singular hyperplane H of $DQ(2n, \mathbb{K})$, there exists a unique locally singular hyperplane H'of $DQ(2n, \mathbb{K}')$ such that $f(H) = f(P) \cap H'$.

Theorem 1.1 will be used in [7] to show that certain classes of hyperplanes of dual polar spaces arise from embedding. Theorem 1.1 will be used in Section 5 to show the following.

Theorem 1.2 (Section 5) Let f be an isometric embedding of the dual polar space $\Delta = DQ(2n, \mathbb{K})$ into the dual polar space $\Delta' = DQ(2n, \mathbb{K}'), n \geq 2$. Let $e' : \Delta' \to \Sigma' \cong PG(2^n - 1, \mathbb{K}')$ denote the spin-embedding of Δ' . Then there exists a subgeometry $\Sigma \cong PG(2^n - 1, \mathbb{K})$ of Σ' such that the following holds:

- (i) $e' \circ f(x) \in \Sigma$ for every point x of Δ ;
- (ii) $e := e' \circ f$ defines a full embedding of Δ into Σ , which is isomorphic to the spin-embedding of Δ .

2 Properties of isometric embeddings

Let Δ and Δ' be two dual polar spaces with respective point sets P and P'and suppose that $f: P \to P'$ is an isometric embedding of Δ into Δ' .

Proposition 2.1 For every convex subspace A of Δ , there exists a unique convex subspace A_f of Δ' satisfying

- (1) A and A_f have the same diameter;
- (2) $f(x) \in A_f$ for every point $x \in A$.

Proof. (i) Obviously, the proposition holds if diam(A) = 0 $(A_f = f(A)$ in this case).

(ii) Suppose diam(A) = 1. So, A is a line. Let x and y denote two distinct points of A. If A_f is a convex subspace of Δ' satisfying (1) and (2), then A_f necessarily coincides with the unique line B through f(x) and f(y). Now, if z is a point of $A \setminus \{x, y\}$, then $f(z) \in A_f$ since d'(f(z), f(y)) = d(z, y) = 1and d'(f(z), f(x)) = d(z, x) = 1. This shows that B is indeed the unique convex subspace satisfying (1) and (2).

(iii) Suppose diam(A) ≥ 2 . Let x and y denote two points of A at distance diam(A) from each other. If A_f is a convex subspace of Δ' satisfying properties (1) and (2), then since d'(f(x), f(y)) = d(x, y) = diam(A), A_f necessarily coincides with the smallest convex subspace B of Δ' containing f(x) and f(y). Now, f satisfies the following properties:

- f maps every line of Δ into a line of Δ' (see (ii));
- f maps a shortest path in Δ to a shortest path in Δ' .

Hence, f maps the smallest convex subspace through x and y into the smallest convex subspace of Δ' through f(x) and f(y). In other words, $f(A) \subseteq B$. So, the convex subspace B indeed satisfies properties (1) and (2) of the proposition.

Corollary 2.2 There exists a unique convex subspace Δ'' of Δ' satisfying the following properties:

- (i) $\operatorname{diam}(\Delta'') = \operatorname{diam}(\Delta);$
- (ii) $f(x) \in \Delta''$ for every point x of Δ .

Proposition 2.3 If x is a point of Δ and if A is a convex subspace of Δ , then $\pi_{A_f}(f(x)) = f(\pi_A(x))$.

Proof. Let y be a point of A at distance diam(A) from $\pi_A(x)$. By the proof of Proposition 2.1, $A_f = \langle f(\pi_A(x)), f(y) \rangle$. We have

$$d'(f(x), f(y)) = d(x, y) = d(x, \pi_A(x)) + d(\pi_A(x), y) = d'(f(x), f(\pi_A(x))) + diam(A).$$
(1)

From

$$d'(f(x), f(\pi_A(x))) \ge d'(f(x), \pi_{A_f}(f(x)))$$

$$\operatorname{diam}(A) = \operatorname{diam}(A_f) \ge \operatorname{d}'(\pi_{A_f}(f(x)), f(y)),$$

it follows that

$$d'(f(x), f(\pi_A(x))) + diam(A) \geq d'(f(x), \pi_{A_f}(f(x))) + d'(\pi_{A_f}(f(x)), f(y)) = d'(f(x), f(y)).$$
(2)

By equations (1) and (2), $d'(f(x), f(\pi_A(x))) = d'(f(x), \pi_{A_f}(f(x)))$. Hence, $f(\pi_A(x)) = \pi_{A_f}(f(x))$.

Proposition 2.4 If A and B are two convex subspaces of Δ , then $ch(A, B) = ch(A_f, B_f)$.

Proof. Obviously, diam $(A) = diam(A_f)$ and diam $(B) = diam(B_f)$.

We will now show that $d(A, B) = d'(A_f, B_f)$. Let x and y be points of Aand B, respectively, such that d(x, y) = d(A, B). Then $y = \pi_B(x)$ and $x = \pi_A(y)$. By Proposition 2.3, $\pi_{B_f}(f(x)) = f(\pi_B(x)) = f(y)$ and $\pi_{A_f}(f(y)) = f(\pi_A(y)) = f(x)$. Now, let x^* and y^* be points of A_f and B_f , respectively, such that $d'(x^*, y^*) = d'(A_f, B_f)$. Then $y^* = \pi_{B_f}(x^*)$ and $x^* = \pi_{A_f}(y^*)$. Without loss of generality, we may suppose that

$$d'(f(y), x^*) \ge d'(f(x), y^*).$$
(3)

Now,

$$d'(f(x), y^*) = d'(f(x), \pi_{B_f}(f(x))) + d'(\pi_{B_f}(f(x)), y^*)$$

= d'(f(x), f(y)) + d'(f(y), y^*), (4)

and

$$d'(f(y), x^*) = d'(x^*, \pi_{B_f}(x^*)) + d'(\pi_{B_f}(x^*), f(y))$$

= d'(x^*, y^*) + d(y^*, f(y)). (5)

By (3), (4) and (5),

$$d'(A_f, B_f) = d'(x^*, y^*) \ge d'(f(x), f(y)) \ge d'(A_f, B_f)$$

Hence,

$$d'(A_f, B_f) = d'(x^*, y^*) = d'(f(x), f(y)) = d(x, y) = d(A, B).$$

We will now show that diam $\langle A, B \rangle = \text{diam} \langle A_f, B_f \rangle$. Choose $x \in A$ and $y \in B$ such that d(x, y) is maximal. Then y lies at maximal distance (i.e. distance diam(B)) from $\pi_B(x)$. Since $\pi_B(x)$ lies on a shortest path between x and $y, \pi_B(x) \in \langle x, y \rangle$ and hence $B = \langle \pi_B(x), y \rangle \subseteq \langle x, y \rangle$. In a similar way one shows that $A \subseteq \langle x, y \rangle$. It follows that $\langle A, B \rangle = \langle x, y \rangle$ and diam $\langle A, B \rangle = d(x, y)$.

Now, since $\pi_B(x)$ is on a shortest path between x and y, $f(\pi_B(x))$ is on a shortest path between f(x) and f(y) and hence $B_f = \langle f(\pi_B(x)), f(y) \rangle \subseteq \langle f(x), f(y) \rangle$. In a similar way, one shows that $A_f \subseteq \langle f(x), f(y) \rangle$. So, $\langle A_f, B_f \rangle = \langle f(x), f(y) \rangle$ and $\operatorname{diam} \langle A_f, B_f \rangle = \operatorname{d}'(f(x), f(y)) = \operatorname{d}(x, y) = \operatorname{diam} \langle A, B \rangle$.

Proposition 2.5 If f is an isometric embedding of $\Delta = DQ(2n, \mathbb{K})$ into $\Delta' = DQ(2n', \mathbb{K}'), 3 \leq n \leq n'$, then \mathbb{K} is isomorphic to a subfield of \mathbb{K}' .

Proof. Let Δ'' be the convex subspace of Δ' as defined in Corollary 2.2. If x is a point of Δ , then $Res_{\Delta}(x) \cong PG(n-1,\mathbb{K})$ and $Res_{\Delta''}(f(x)) \cong PG(n-1,\mathbb{K}')$. By Proposition 2.4, there exists a subgeometry $\Sigma \cong PG(n-1,\mathbb{K})$ in $PG(n-1,\mathbb{K}')$ which generates the whole space $PG(n-1,\mathbb{K}')$. This is only possible when \mathbb{K} is isomorphic to a subfield of \mathbb{K}' .

3 Properties of locally singular hyperplanes

In this section, Δ denotes the dual polar space $DQ(2n, \mathbb{K})$, $n \geq 2$, and $e : \Delta \to \Sigma = \mathrm{PG}(2^n - 1, \mathbb{K})$ denotes the spin-embedding of Δ . We denote the point-set of Δ by P.

Proposition 3.1 ([5]; [10]) The locally singular hyperplanes of Δ are precisely the hyperplanes of Δ which arise from the embedding e.

If H is a locally singular hyperplane of Δ arising from the hyperplane α of Σ , then $\alpha = \langle e(H) \rangle$, since H is a maximal subspace of Δ . So, there exists a bijective correspondence between the locally singular hyperplanes of Δ and the hyperplanes of Σ .

Lemma 3.2 If H is a locally singular hyperplane of Δ , then H cannot contain two disjoint maxes.

Proof. Suppose the contrary and let M_1 and M_2 be two disjoint maxes contained in H. Let x denote an arbitrary point of Δ not contained in $M_1 \cup M_2$. If x, $\pi_{M_1}(x)$ and $\pi_{M_2}(x)$ are contained in a line, then $x \in H$, since $\pi_{M_1}(x), \pi_{M_2}(x) \in H$. Suppose $x, \pi_{M_1}(x)$ and $\pi_{M_2}(x)$ are not contained in a line. Then $Q := \langle x, \pi_{M_1}(x), \pi_{M_2}(x) \rangle$ is a quad. Since $Q \cap M_1$ and $Q \cap M_2$ are lines contained in H, Q itself is also contained in H (recall that H is locally singular). In particular, x belongs to H.

It follows that every point of Δ is contained in H. This is impossible since H is a proper subspace of Δ .

Lemma 3.3 Let H_1 and H_2 be two distinct locally singular hyperplanes of Δ , then there exists a point x in Δ not contained in $H_1 \cup H_2$.

Proof. Let α_i , $i \in \{1, 2\}$, denote the hyperplane of Σ giving rise to H_i . Then $\alpha_1 \neq \alpha_2$ and hence there exists a hyperplane α of Σ through $\alpha_1 \cap \alpha_2$ distinct from α_1 and α_2 . Put $H := e^{-1}(e(P) \cap \alpha)$. Then $H_1 \cap H_2 \subseteq H$. Since H, H_1 and H_2 are maximal subspaces, $H_1 \cap H_2$ is not a maximal subspace and there exists a point $x \in H \setminus (H_1 \cap H_2)$. Obviously, $x \notin H_1 \cup H_2$.

Lemma 3.4 Let M_1 and M_2 be two disjoint maxes, let H_i , $i \in \{1, 2\}$, denote a locally singular hyperplane of M_i and let L be a line of Δ such that $L \cap M_i$ is a singleton $\{x_i\}$ not contained in H_i ($i \in \{1, 2\}$). Then for every point x of L, there exists a unique locally singular hyperplane of Δ containing $H_1 \cup H_2 \cup \{x\}$.

Proof. Put $\Sigma_i := \langle e(M_i) \rangle$, $i \in \{1, 2\}$. By De Bruyn [6, Theorem 1.1], $\Sigma_1 \cap \Sigma_2 = \emptyset$ and $\langle \Sigma_1, \Sigma_2 \rangle = \Sigma$. Moreover, e induces a full embedding e_i of M_i into Σ_i ($i \in \{1, 2\}$) which is isomorphic to the spin-embedding of $M_i \cong DQ(2n-2,\mathbb{K})$. (If n = 2, then e_i is just the embedding of the line M_i into $PG(1,\mathbb{K})$.) Since H_i is a locally singular hyperplane of M_i , $\alpha_i := \langle e_i(H_i) \rangle = \langle e(H_i) \rangle$ is a hyperplane of Σ_i by Proposition 3.1. Notice that $\dim(\alpha_1) = \dim(\alpha_2) = 2^{n-1} - 2$.

Claim. The space $\langle \alpha_1, \alpha_2 \rangle$ is disjoint from e(L).

PROOF. Suppose the contrary. Let y be a point of L such that $e(y) \in \langle \alpha_1, \alpha_2 \rangle$. Without loss of generality, we may suppose that $y \neq x_1$. The space $\langle \alpha_1, \alpha_2, e(x_1) \rangle$ contains $e(H_1)$ and $e(x_1)$ and hence also every point e(z), $z \in M_1$, since H_1 is a maximal subspace of M_1 . Hence, $\Sigma_1 \subseteq \langle \alpha_1, \alpha_2, e(x_1) \rangle$. Now, since $e(y) \in \langle \alpha_1, \alpha_2, e(x_1) \rangle$ and $y \neq x_1$, $e(z) \in \langle \alpha_1, \alpha_2, e(x_1) \rangle$ for every point z of the line $L = x_1 x_2$. In particular, $e(x_2) \in \langle \alpha_1, \alpha_2, e(x_1) \rangle$. Since $\langle \alpha_1, \alpha_2, e(x_1) \rangle$ contains $e(H_2)$ and $e(x_2), \Sigma_2 \subseteq \langle \alpha_1, \alpha_2, e(x_1) \rangle$ (similar reasoning as above). Hence, $\Sigma = \langle \Sigma_1, \Sigma_2 \rangle \subseteq \langle \alpha_1, \alpha_2, e(x_1) \rangle$. But this is impossible, since dim $(\Sigma) = 2^n - 1$ and dim $\langle \alpha_1, \alpha_2, e(x_1) \rangle \leq 2^n - 2$. So, the claim is correct.

By the previous claim and Proposition 3.1, it readily follows that there is a unique locally singular hyperplane of Δ containing H_1 , H_2 and $x \in L$, namely the locally singular hyperplane of Δ arising from the hyperplane $\langle \alpha_1, \alpha_2, e(x) \rangle$ of Σ .

Lemma 3.5 Let H be a locally singular hyperplane of Δ . Then the set of deep points (with respect to H) is a subspace of Δ .

Proof. Let x_1 and x_2 be two distinct collinear points of H which are deep with respect to H, and let x_3 denote a third point of the line x_1x_2 . If Q is a quad through the line x_1x_2 , then $Q \subseteq H$, since $x_1^{\perp} \cap Q \subseteq H$ and $x_2^{\perp} \cap Q \subseteq H$. Since this holds for every quad Q through x_1x_2 , also the point x_3 is deep with respect to H.

Lemma 3.6 If H_1 and H_2 are two distinct locally singular hyperplanes of Δ , then there exists a point in $H_1 \setminus H_2$ which is not deep with respect to H_1 .

Proof. Obviously, there exists a point $u \in H_1 \setminus H_2$ (recall that H_1 and H_2 are maximal subspaces) and a point $v \in H_1$ which is not deep with respect to H_1 (since H_1 is a proper subspace). We choose such points u and v with d(u, v) as small as possible. If d(u, v) = 0, then we are done. So, suppose $d(u, v) \geq 1$. Then u is deep with respect to H_1 and $v \in H_1 \cap H_2$. Let L_v denote a line through v contained in $H_1 \cap \langle u, v \rangle$. Notice that if d(u, v) = 1, then $L_v = uv$. If $d(u, v) \geq 2$, then such a line exists in any quad of $\langle u, v \rangle$ through v (recall that H_1 is locally singular). Let v' denote the point of L_v nearest to u and let L_u denote a line of $\langle u, v \rangle$ through u not contained in $\langle u, v' \rangle$. Then every point of $L_u \subseteq H_1$ has distance d(u, v) - 1 from L_v . Now, precisely one point of L_u belongs to H_2 , and by Lemma 3.5, at most one point of L_v satisfying the following properties:

- $u_1 \in H_1 \setminus H_2;$
- $v_1 \in H_1$ and v_1 is not deep with respect to H_1 ;
- $d(u_1, v_1) = d(u, v) 1.$

This contradicts the minimality of d(u, v). Hence, the lemma holds.

Now, let H_1 and H_2 be two distinct locally singular hyperplanes of Δ . Let Γ_{H_1,H_2} be the graph with vertices the points of $P \setminus (H_1 \cup H_2)$, with two distinct vertices adjacent whenever either (i) or (ii) below holds:

(i) •
$$d(x,y) = 1;$$

- the line xy meets $H_1 \cap H_2$.
- (ii) d(x,y) = 2;
 - $\langle x, y \rangle \cap H_1 \cap H_2$ is a line L;
 - $\pi_L(x) = \pi_L(y).$

Let \mathcal{V} denote the set of all connected components of Γ_{H_1,H_2} , and define

$$[H_1, H_2] := \{H_1, H_2\} \cup \{V \cup (H_1 \cap H_2) \mid V \in \mathcal{V}\}.$$

Notice that in [5] there was given a slightly different but equivalent definition of the set \mathcal{V} .

Lemma 3.7 (Proposition 2.2 of [5]) If H is a locally singular hyperplane of Δ such that $H \cap H_1 = H \cap H_2 = H_1 \cap H_2$, then $H \in [H_1, H_2]$.

Lemma 3.8 $[H_1, H_2]$ is the unique pencil of locally singular hyperplanes of Δ containing H_1 and H_2 .

Proof. Let α_i , $i \in \{1, 2\}$, denote the hyperplane of Σ giving rise to H_i . Let \mathcal{W} denote the set of all locally singular hyperplanes of Δ arising from a hyperplane of Σ through $\alpha_1 \cap \alpha_2$. Then \mathcal{W} is a pencil of locally singular hyperplanes. By Lemma 3.7, $\mathcal{W} = [H_1, H_2]$. From Lemma 3.7, it is also clear that $[H_1, H_2]$ is the unique pencil of locally singular hyperplanes of Δ containing H_1 and H_2 .

The set \mathcal{H} of all locally singular hyperplanes of Δ carries the structure of a projective space isomorphic to $\mathrm{PG}(2^n - 1, \mathbb{K})$ if we take the sets $[H_1, H_2]$, $H_1, H_2 \in \mathcal{H}$ and $H_1 \neq H_2$, as lines. (Recall that there exists a bijective correspondence between the elements of \mathcal{H} and the points of the projective space Σ^* , dual of Σ .) If H_1, H_2, \ldots, H_k are $k \geq 1$ elements of \mathcal{H} , then we denote by $[H_1, H_2, \ldots, H_k]$ the subspace of the projective space \mathcal{H} generated by H_1, H_2, \ldots, H_k . **Lemma 3.9** There exist 2^n singular hyperplanes in \mathcal{H} which generate \mathcal{H} .

Proof. We must show that there exist 2^n singular hyperplanes H_1, \ldots, H_{2^n} in \mathcal{H} such that $\langle e(H_1) \rangle \cap \langle e(H_2) \rangle \cap \cdots \cap \langle e(H_{2^n}) \rangle = \emptyset$. But this follows immediately from the fact that the spin-embedding of Δ is the so-called minimal full polarized embedding of Δ , see Cardinali, De Bruyn and Pasini [3].

4 Proof of Theorem 1.1

Let f be an isometric embedding of the dual polar space $\Delta := DQ(2n, \mathbb{K})$ into the dual polar space $\Delta' := DQ(2n, \mathbb{K}')$, $n \geq 2$. Let P and P' denote the point sets of Δ and Δ' , respectively.

Lemma 4.1 For every locally singular hyperplane H of Δ , there is at most one locally singular hyperplane H' of Δ' such that $f(H) = H' \cap f(P)$.

Proof. We will prove this lemma by induction on n. We will use the same notations as in Section 2.

Suppose n = 2. Then H is a singular hyperplane of Δ . Let x denote the deepest point of H and let L_1 and L_2 denote two distinct lines of Δ through x. If H' is a locally singular hyperplane of Δ' such that $f(H) = H' \cap f(P)$, then $f(L_1), f(L_2) \subseteq H'$. Hence, H' coincides with the singular hyperplane of Δ' with deepest point f(x).

Suppose $n \geq 3$. Let M_1 , M_2 and M_3 denote three mutually disjoint maxes of Δ . By Lemma 3.2, at most one of M_1, M_2, M_3 is contained in H. So, without loss of generality, we may suppose that M_1 and M_2 are not contained in H. Let H_i , $i \in \{1, 2\}$, be the locally singular hyperplane $M_i \cap H$ of M_i . By Lemma 3.3, there is a point $x_1 \in M_1 \setminus (H_1 \cup \pi_{M_1}(H_2))$. Put $x_2 := \pi_{M_2}(x_1)$. Then $x_2 \notin H_2$. Let L be the line x_1x_2 and let x_3 be the unique point of L contained in H. Notice $x_3 \notin \{x_1, x_2\}$. By Proposition 2.4, $M'_1 := (M_1)_f$ and $M'_2 := (M_2)_f$ are two disjoint maxes of Δ' and L_f is a line of Δ' intersecting M'_1 and M'_2 in the respective points $f(x_1)$ and $f(x_2)$.

Suppose now that H' is a locally singular hyperplane of Δ' such that $f(H) = H' \cap f(P)$. We will show that H' is uniquely determined by H. Since $x_3 \in H$, $f(x_3) \in H'$. By Proposition 2.4, $f(P) \cap M'_i = f(M_i)$. So, we obtain

$$f(H) \cap M'_i = H' \cap M'_i \cap f(P)$$

$$f(H) \cap (f(P) \cap M'_i) = (H' \cap M'_i) \cap (M'_i \cap f(P))$$

$$f(H) \cap f(M_i) = (H' \cap M'_i) \cap f(M_i)$$

$$f(H_i) = (H' \cap M'_i) \cap f(M_i).$$

By the induction hypothesis, $H' \cap M'_i$ is the unique locally singular hyperplane G'_i of M'_i such that $f(H_i) = G'_i \cap f(M_i)$. Since $x_i \notin H_i$, $f(x_i) \notin G'_i$. From Lemma 3.4, it now readily follows that H' is the unique locally singular hyperplane of Δ' containing G'_1 , G'_2 and $f(x_3)$. So, H' is uniquely determined by H.

Lemma 4.2 Let H_1 and H_2 be two distinct locally singular hyperplanes of Δ . If there exist locally singular hyperplanes H'_1 and H'_2 in Δ' such that $f(H_1) = f(P) \cap H'_1$ and $f(H_2) = f(P) \cap H'_2$, then for every locally singular hyperplane H of $[H_1, H_2]$, there exists a locally singular hyperplane H' of $[H'_1, H'_2]$ such that $f(H) = f(P) \cap H'$.

Proof. Remark that $H'_1 \neq H'_2$ since $H_1 \neq H_2$. We may suppose that $H_1 \neq H \neq H_2$. Let x denote an arbitrary point of $H \setminus (H_1 \cap H_2)$. Since $x \notin H_1 \cup H_2$, $f(x) \notin H'_1 \cup H'_2$. Let H' denote the unique hyperplane of $[H'_1, H'_2]$ containing f(x).

We will show that $f(H) \subseteq f(P) \cap H'$. We have $f(H_1 \cap H_2) = f(H_1) \cap f(H_2) = f(P) \cap H'_1 \cap H'_2 \subseteq f(P) \cap H'$. So, we still must show that $f(H \setminus (H_1 \cap H_2)) \subseteq f(P) \cap H'$. Let Γ_{H_1,H_2} be the graph with vertex set $P \setminus (H_1 \cup H_2)$ as defined in Section 3. We show the following: if $y_1, y_2 \in H \setminus (H_1 \cap H_2)$ are adjacent vertices of Γ_{H_1,H_2} such that $f(y_1) \in f(P) \cap H'$, then also $f(y_2) \in f(P) \cap H'$. The claim then follows from Lemma 3.7 and the fact that $f(x) \in f(P) \cap H'$.

Suppose first that y_1y_2 meets $H_1 \cap H_2$ in a point y_3 . The line $f(y_1)f(y_2)$ of Δ' contains the point $f(y_3) \in f(H_1 \cap H_2) \subseteq H'$. Since $f(y_1) \in H'$, also $f(y_2) \in H'$.

Suppose next that the following holds: $d(y_1, y_2) = 2$; $\langle y_1, y_2 \rangle \cap H_1 \cap H_2$ is a line L; $\pi_L(y_1) = \pi_L(y_2)$. Put $Q := \langle y_1, y_2 \rangle$ and $x_3 := \pi_L(y_1) = \pi_L(y_2)$. Let $x_i, i \in \{1, 2\}$, denote the deepest point of the singular hyperplane $Q \cap H_i$ of Q. Then L contains the points x_1, x_2 and x_3 . The quad Q_f contains the line L_f which itself contains the points $f(x_1), f(x_2)$ and $f(x_3)$. Since $f(H_i) = f(P) \cap H'_i, H'_i \cap Q_f$ is the singular hyperplane of Q_f with deepest point $f(x_i)$. Since $H' \in [H'_1, H'_2], H' \cap Q_f$ is a singular hyperplane whose deepest point lies on L_f . (Notice that the set of all singular hyperplanes of Q_f whose deepest points lie on L_f is the unique pencil of locally singular hyperplanes of Q_f containing $f(x_1)^{\perp} \cap Q_f$ and $f(x_2)^{\perp} \cap Q_f$.) Since $f(y_1) \in H'$, the deepest point of $H' \cap Q_f$ coincides with $\pi_{L_f}(f(y_1)) = f(x_3)$. Now, $f(y_2)$ is collinear with $f(x_3)$. Hence, $f(y_2) \in H'$. This was what we needed to show.

We will now show that $f(H) = f(P) \cap H'$. Suppose f(x') is a point of $f(P) \cap H'$ not contained in f(H). Then x' is a point of $P \setminus (H_1 \cup H_2 \cup H)$. Let G denote the unique element of $[H_1, H_2]$ containing x'. Since $f(x') \subseteq H'$, $f(G) \subseteq H'$ by the above reasoning. Now, by Lemma 3.6, there exists a point $u \in H_1 \setminus H_2$ which is not deep with respect to H_1 . Let L denote a line through u which is not contained in H_1 . Put $\{v\} = L \cap H_2$, $\{w\} = L \cap H$ and $\{w'\} = L \cap G$. Since $f(w), f(w') \in H', f(z) \in H'$ for every $z \in L$. In particular, $f(u) \in H'$. This implies $f(u) \in H' \cap H'_1 \cap f(P) = H'_1 \cap H'_2 \cap f(P) = f(H_1 \cap H_2)$, contradicting $u \in H_1 \setminus H_2$. Hence, $f(H) = f(P) \cap H'$ as claimed.

Lemma 4.3 For every locally singular hyperplane H of Δ , there exists a hyperplane H' of Δ' such that $f(H) = f(P) \cap H'$.

Proof. By Lemmas 3.9 and 4.2, it suffices to prove the lemma in the case that H is a singular hyperplane of Δ . So, suppose that H is singular and that x is the deepest point of H. Let H' denote the singular hyperplane of Δ' with deepest point f(x). Since f is an isometric embedding, we necessarily have $f(H) = f(P) \cap H'$. This proves the lemma.

Theorem 1.1 is a consequence of Lemmas 4.1 and 4.3.

5 Proof of Theorem 1.2

Let f be an isometric embedding of $\Delta = DQ(2n, \mathbb{K})$ into $\Delta' = DQ(2n, \mathbb{K}')$. Let \mathcal{H} denote the set of all locally singular hyperplanes of Δ and let \mathcal{H}' denote the set of all locally singular hyperplanes of Δ' . For every hyperplane H of \mathcal{H} , let $\theta(H)$ denote the unique hyperplane of \mathcal{H}' for which $f(H) = f(P) \cap \theta(H)$. As explained above, the sets \mathcal{H} and \mathcal{H}' can be given the structure of $(2^n - 1)$ dimensional projective spaces. Obviously, the map θ defines an injection from the point-set of \mathcal{H} to the point set of \mathcal{H}' . By Lemma 4.2, θ maps lines of \mathcal{H} to subsets of lines of \mathcal{H}' . Hence, we have **Lemma 5.1** Let H_1, H_2, \ldots, H_k be elements of \mathcal{H} . If $H \in [H_1, H_2, \ldots, H_k]$, then $\theta(H) \in [\theta(H_1), \theta(H_2), \ldots, \theta(H_k)]$.

Definition. A nonempty set X of points of a thick dual polar space Δ is called *scattered* if $\bigcap_{x \in X} H_x = \emptyset$. Here, H_x denotes the singular hyperplane of $\widetilde{\Delta}$ with deepest point x. A scattered set X of points is called *minimal* if no proper subset of X is scattered. By De Bruyn and Pasini [8], every dual polar space of rank n has minimal scattered sets of size 2^n .

Lemma 5.2 $\langle \theta(\mathcal{H}) \rangle = \mathcal{H}'$.

Proof. Let $x_1, x_2, \ldots, x_{2^n}$ be a set of 2^n points in Δ which form a minimal scattered set of points. Let H_{x_i} , $i \in \{1, \ldots, 2^n\}$, be the singular hyperplane of Δ with deepest point x_i , and let H'_{x_i} denote the singular hyperplane of Δ' with deepest point $f(x_i)$. Then $\theta(H_{x_i}) = H'_{x_i}$. Now, since $\{x_1, x_2, \ldots, x_{2^n}\}$ is a minimal scattered set of points,

$$H_{x_1} \cap H_{x_2} \cap \dots \cap H_{x_{i+1}} \subsetneqq H_{x_1} \cap H_{x_2} \cap \dots \cap H_{x_i}$$

for every $i \in \{1, \ldots, 2^n - 1\}$. Now, since $f(H_{x_i}) = f(P) \cap H'_{x_i}$ for every $i \in \{1, \ldots, 2^n\}$, we have

$$H'_{x_1} \cap H'_{x_2} \cap \dots \cap H'_{x_{i+1}} \subsetneqq H'_{x_1} \cap H'_{x_2} \cap \dots \cap H'_{x_i}$$

for every $i \in \{1, \ldots, 2^n - 1\}$. If $y \in H'_{x_1} \cap H'_{x_2} \cap \cdots \cap H'_{x_i}$, then y belongs to every hyperplane of $[H'_{x_1}, H'_{x_2}, \ldots, H'_{x_i}]$. Hence, $H'_{x_{i+1}} \notin [H'_{x_1}, H'_{x_2}, \ldots, H'_{x_i}]$ for every $i \in \{1, \ldots, 2^n - 1\}$. So, the points $H'_{x_1}, H'_{x_2}, \ldots, H'_{x_{2n}}$ of \mathcal{H}' are linearly independent. It follows that $[H'_{x_1}, \ldots, H'_{x_{2n}}] = \mathcal{H}'$, which implies that $\langle \theta(\mathcal{H}) \rangle = \mathcal{H}'$.

Lemma 5.3 If $\{H_1, H_2, \ldots, H_k\}$ is a linearly independent set of points of \mathcal{H} , then $\{\theta(H_1), \theta(H_2), \ldots, \theta(H_k)\}$ is a linearly independent set of points of \mathcal{H}' .

Proof. Complete H_1, H_2, \ldots, H_k to a generating set $H_1, \ldots, H_k, \ldots, H_{2^n}$ of \mathcal{H} . By Lemmas 5.1 and 5.2, $\mathcal{H}' = \langle \theta(\mathcal{H}) \rangle = \langle \theta(H_1), \theta(H_2), \ldots, \theta(H_{2^n}) \rangle$. It follows that $\theta(H_1), \theta(H_2), \ldots, \theta(H_{2^n})$ are linearly independent. In particular, $\theta(H_1), \theta(H_2), \ldots, \theta(H_k)$ are linearly independent.

Definition. For every subspace α of \mathcal{H} , let $\theta(\alpha)$ be the subspace of \mathcal{H}' generated by all points $\theta(H)$, $H \in \alpha$. Then $\dim(\alpha) = \dim(\theta(\alpha))$ by Lemmas 5.1 and 5.3.

Corollary 5.4 The points $\theta(H)$, $H \in \mathcal{H}$, define a subgeometry of \mathcal{H}' isomorphic to \mathcal{H} .

For every point x (respectively line L) of Δ , let V_x (respectively V_L) denote the set of all hyperplanes of \mathcal{H} containing the point x (respectively the line L) of Δ . Then V_x is a hyperplane of \mathcal{H} and V_L is a hyperplane of V_y for every point y of L. So, V_L is a $(2^n - 3)$ -dimensional subspace of \mathcal{H} .

Similarly, for every point x (respectively line L) of Δ' , let V'_x (respectively V'_L) denote the set of all hyperplanes of \mathcal{H}' containing x (respectively L). Then V'_x is a hyperplane of \mathcal{H}' and V'_L is a $(2^n - 3)$ -dimensional subspace of \mathcal{H}' .

Lemma 5.5 Let x be a point of Δ and let L be a line of Δ . Then $\theta(V_x) = V'_{f(x)}$ and $\theta(V_L) = V'_{L_f}$.

Proof. Obviously, $\theta(V_x) \subseteq V'_{f(x)}$. Since both subspaces are $(2^n - 2)$ -dimensional, $\theta(V_x) = V'_{f(x)}$. In a similar way, one shows that $\theta(V_L) = V'_{L_f}$.

Let \mathcal{H}^* and \mathcal{H}'^* denote the dual projective spaces of \mathcal{H} and \mathcal{H}' , respectively. The points of \mathcal{H}^* are mapped by θ to a subgeometry of \mathcal{H}'^* isomorphic to \mathcal{H}^* .

The map $e_1 : P \to \mathcal{H}^*; x \mapsto V_x$ defines a full embedding of Δ into the projective space \mathcal{H}^* , isomorphic to the spin-embedding of Δ . The map $e_2 : P' \to \mathcal{H}'^*; x \mapsto V'_x$ defines a full embedding of Δ' into the projective space \mathcal{H}'^* , isomorphic to the spin-embedding of Δ' .

For every point x of Δ , we have $e_2 \circ f(x) = V'_{f(x)} = \theta(V_x) = \theta(e_1(x))$. Theorem 1.2 is now obvious.

References

- F. Buekenhout and P. J. Cameron. Projective and affine geometry over division rings. Chapter 2 of the "Handbook of Incidence Geometry" (ed. F. Buekenhout), Elsevier, Amsterdam, 1995.
- [2] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75–85.

- [3] I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embeddings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7–23.
- [4] C. C. Chevalley. The algebraic theory of spinors. Columbia University Press, New York, 1954.
- [5] B. De Bruyn. The hyperplanes of $DQ(2n, \mathbb{K})$ and $DQ^{-}(2n+1, q)$ which arise from their spin-embeddings. J. Combin. Theory Ser. A 114 (2007), 681–691.
- [6] B. De Bruyn. The structure of the spin-embeddings of dual polar spaces and related geometries. *European J. Combin.*, to appear.
- [7] B. De Bruyn. Two classes of hyperplanes of dual polar spaces without subquadrangular quads. J. Combin. Theory Ser. A, to appear.
- [8] B. De Bruyn and A. Pasini. Minimal scattered sets and polarized embeddings of dual polar spaces. *European J. Combin.* 28 (2007), 1890–1909.
- [9] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299–316.
- [10] E. E. Shult and J. A. Thas. Hyperplanes of dual polar spaces and the spin module. Arch. Math. 59 (1992), 610–623.