A property of isometric mappings between dual polar spaces of type $D Q(2 n, \mathbb{K})$

Bart De Bruyn*
Ghent University, Department of Pure Mathematics and Computer Algebra, Krijgslaan 281 (S22), B-9000 Gent, Belgium, E-mail: bdb@cage.ugent.be

Abstract

Let f be an isometric embedding of the dual polar space $\Delta=$ $D Q(2 n, \mathbb{K})$ into $\Delta^{\prime}=D Q\left(2 n, \mathbb{K}^{\prime}\right)$. Let P denote the point-set of Δ and let $e^{\prime}: \Delta^{\prime} \rightarrow \Sigma^{\prime} \cong \mathrm{PG}\left(2^{n}-1, \mathbb{K}^{\prime}\right)$ denote the spin-embedding of Δ^{\prime}. We show that for every locally singular hyperplane H of Δ, there exists a unique locally singular hyperplane H^{\prime} of Δ^{\prime} such that $f(H)=$ $f(P) \cap H^{\prime}$. We use this to show that there exists a subgeometry $\Sigma \cong \operatorname{PG}\left(2^{n}-1, \mathbb{K}\right)$ of Σ^{\prime} such that: (i) $e^{\prime} \circ f(x) \in \Sigma$ for every point x of Δ; (ii) $e:=e^{\prime} \circ f$ defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.

Keywords: isometric embedding, dual polar space, hyperplane, spin-embedding MSC2000: 51A45, 51A50

1 Introduction

1.1 Basic definitions

Let Π be a nondegenerate polar space of rank $n \geq 2$. With Π there is associated a point-line geometry Δ whose points are the maximal singular subspaces of Π, whose lines are the next-to-maximal singular subspaces of Π and whose incidence relation is reverse containment. The geometry Δ is

[^0]called a dual polar space (Cameron [2]). There exists a bijective correspondence between the nonempty convex subspaces of Δ and the possibly empty singular subspaces of Π : if α is a singular subspace of Π, then the set of all maximal singular subspaces containing α is a convex subspace of Δ. The maximal distance (in the collinearity graph) between two points of a convex subspace A of Δ is called the diameter of A and is denoted as $\operatorname{diam}(A)$. The convex subspaces of diameter 2,3 , respectively $n-1$, of Δ are called the quads, hexes, respectively maxes, of Δ. The convex subspaces through a given point x of Δ define an $(n-1)$-dimensional projective space which we will denote by $\operatorname{Res}_{\Delta}(x)$.

For every two points x and y of $\Delta, \mathrm{d}(x, y)$ denotes the distance between x and y in the collinearity graph of Δ and $\langle x, y\rangle$ denotes the smallest convex subspace containing x and y. We have $\operatorname{diam}\langle x, y\rangle=\mathrm{d}(x, y)$. More generally, if $*_{1}, *_{2}, \ldots, *_{k}$ are $k \geq 1$ objects of Δ (like points or convex subspaces), then $\left\langle *_{1}, *_{2}, \ldots, *_{k}\right\rangle$ denotes the smallest convex subspace of Δ containing the objects $*_{1}, *_{2}, \ldots, *_{k}$. If A and B are two nonempty sets of points of Δ, then $\mathrm{d}(A, B)$ denotes the smallest distance between a point of A and a point of B. If x is a point of Δ and if $i \in \mathbb{N}$, then $\Delta_{i}(x)$ denotes the set of points at distance i from x. We define $x^{\perp}:=\Delta_{0}(x) \cup \Delta_{1}(x)$. For every point x and every convex subspace A of Δ, there exists a unique point $\pi_{A}(x)$ in A nearest to x and $\mathrm{d}(x, y)=\mathrm{d}\left(x, \pi_{A}(x)\right)+\mathrm{d}\left(\pi_{A}(x), y\right)$ for every point y of A. We call $\pi_{A}(x)$ the projection of x onto A. If A and B are two convex subspaces of Δ, then we define

$$
\operatorname{ch}(A, B):=(\operatorname{diam}(A), \operatorname{diam}(B), \mathrm{d}(A, B), \operatorname{diam}\langle A, B\rangle) .
$$

$\operatorname{ch}(A, B)$ is called the characteristic of (A, B). The characteristic of (A, B) describes the mutual position of A and B.

In this paper, we are mainly interested in the dual polar space $D Q(2 n, \mathbb{K})$ which is associated with a nonsingular quadric of Witt-index $n \geq 2$ in $\mathrm{PG}(2 n, \mathbb{K})$.

A hyperplane of a point-line geometry is a proper subspace meeting each line. Suppose H is a hyperplane of a thick dual polar space Δ of rank $n \geq 2$. By Shult [9, Lemma 6.1], we then know that H is a maximal subspace of Δ. A point x of H is called deep (with respect to H) if $x^{\perp} \subseteq H$. If H consists of all points of Δ at non-maximal distance from a given point y, then H is called the singular hyperplane of Δ with deepest point y. One of the following cases occurs for a quad Q of Δ : (i) $Q \subseteq H$; (ii) $Q \cap H=x^{\perp} \cap Q$ for a certain
point $x \in Q$; (iii) $Q \cap H$ is an ovoid of Q; (iv) $Q \cap H$ is a subquadrangle of Q. If only cases (i) or (ii) occur, then H is called locally singular. A set \mathcal{W} of hyperplanes of a dual polar space Δ is called a pencil of hyperplanes if every point of Δ is contained in either one or all hyperplanes of \mathcal{W}.

A full embedding of a point-line geometry \mathcal{S} into a projective space Σ is an injective mapping e from the point-set P of \mathcal{S} to the point-set of Σ satisfying (i) $\langle e(P)\rangle=\Sigma$ and (ii) $e(L)$ is a line of Σ for every line L of \mathcal{S}. If e is a full embedding of \mathcal{S}, then for every hyperplane α of Σ, the set $e^{-1}(e(P) \cap \alpha)$ is a hyperplane of \mathcal{S}. We say that the hyperplane $e^{-1}(e(P) \cap \alpha)$ arises from the embedding e. The dual polar space $D Q(2 n, \mathbb{K}), n \geq 2$, has a nice full projective embedding into $\operatorname{PG}\left(2^{n}-1, \mathbb{K}\right)$, which is called the spin-embedding of $D Q(2 n, \mathbb{K})$. We refer to Chevalley [4] or Buekenhout and Cameron [1] for definitions and background information on the topic of spin-embeddings.

1.2 The main results

Definition. Let Δ and Δ^{\prime} be two dual polar spaces with respective pointsets P and P^{\prime}. We denote the distance function in Δ and Δ^{\prime} respectively by $\mathrm{d}(\cdot, \cdot)$ and $\mathrm{d}^{\prime}(\cdot, \cdot)$. An isometric embedding of Δ into Δ^{\prime} is a map $f: P \rightarrow P^{\prime}$ satisfying

$$
\mathrm{d}^{\prime}(f(x), f(y))=\mathrm{d}(x, y)
$$

for all points x and y of P.
Example. Let $n \in \mathbb{N} \backslash\{0,1\}$ and let \mathbb{K} and \mathbb{K}^{\prime} be fields such that \mathbb{K} is a subfield of \mathbb{K}^{\prime}. Every point of the projective space $\operatorname{PG}(2 n, \mathbb{K})$ can be regarded as a point of the projective space $\operatorname{PG}\left(2 n, \mathbb{K}^{\prime}\right)$. For every subspace α of $\mathrm{PG}(2 n, \mathbb{K})$, let $f(\alpha)$ denote the subspace of $\mathrm{PG}\left(2 n, \mathbb{K}^{\prime}\right)$ generated by all points of α. The equation $X_{0}^{2}+X_{1} X_{2}+\cdots+X_{2 n-1} X_{2 n}=0$ defines a quadric $Q(2 n, \mathbb{K})$ of Witt-index n in $\operatorname{PG}(2 n, \mathbb{K})$ and a quadric $Q\left(2 n, \mathbb{K}^{\prime}\right)$ of Witt-index n in $\operatorname{PG}\left(2 n, \mathbb{K}^{\prime}\right)$. The map f restricted to the set of generators (= maximal singular subspaces) of $Q(2 n, \mathbb{K})$ defines an isometric embedding of $D Q(2 n, \mathbb{K})$ into $D Q\left(2 n, \mathbb{K}^{\prime}\right)$.

In Section 2, we will study isometric embeddings between general dual polar spaces. We also notice there that if there exists an isometric embedding of $D Q(2 n, \mathbb{K})$ into $D Q\left(2 n^{\prime}, \mathbb{K}^{\prime}\right), 3 \leq n \leq n^{\prime}$, then \mathbb{K} is isomorphic to a subfield of \mathbb{K}^{\prime}.

In Section 3, we will derive some properties of locally singular hyperplanes of $D Q(2 n, \mathbb{K})$. We will use these properties in Section 4 to prove the following result:

Theorem 1.1 (Section 4) Let f be an isometric embedding of the dual polar space $D Q(2 n, \mathbb{K})$ into the dual polar space $D Q\left(2 n, \mathbb{K}^{\prime}\right), n \geq 2$. Let P denote the point-set of $D Q(2 n, \mathbb{K})$. Then for every locally singular hyperplane H of $D Q(2 n, \mathbb{K})$, there exists a unique locally singular hyperplane H^{\prime} of $D Q\left(2 n, \mathbb{K}^{\prime}\right)$ such that $f(H)=f(P) \cap H^{\prime}$.

Theorem 1.1 will be used in [7] to show that certain classes of hyperplanes of dual polar spaces arise from embedding. Theorem 1.1 will be used in Section 5 to show the following.

Theorem 1.2 (Section 5) Let f be an isometric embedding of the dual polar space $\Delta=D Q(2 n, \mathbb{K})$ into the dual polar space $\Delta^{\prime}=D Q\left(2 n, \mathbb{K}^{\prime}\right), n \geq 2$. Let $e^{\prime}: \Delta^{\prime} \rightarrow \Sigma^{\prime} \cong \mathrm{PG}\left(2^{n}-1, \mathbb{K}^{\prime}\right)$ denote the spin-embedding of Δ^{\prime}. Then there exists a subgeometry $\Sigma \cong \operatorname{PG}\left(2^{n}-1, \mathbb{K}\right)$ of Σ^{\prime} such that the following holds:
(i) $e^{\prime} \circ f(x) \in \Sigma$ for every point x of Δ;
(ii) $e:=e^{\prime} \circ f$ defines a full embedding of Δ into Σ, which is isomorphic to the spin-embedding of Δ.

2 Properties of isometric embeddings

Let Δ and Δ^{\prime} be two dual polar spaces with respective point sets P and P^{\prime} and suppose that $f: P \rightarrow P^{\prime}$ is an isometric embedding of Δ into Δ^{\prime}.

Proposition 2.1 For every convex subspace A of Δ, there exists a unique convex subspace A_{f} of Δ^{\prime} satisfying
(1) A and A_{f} have the same diameter;
(2) $f(x) \in A_{f}$ for every point $x \in A$.

Proof. (i) Obviously, the proposition holds if $\operatorname{diam}(A)=0\left(A_{f}=f(A)\right.$ in this case).
(ii) Suppose $\operatorname{diam}(A)=1$. So, A is a line. Let x and y denote two distinct points of A. If A_{f} is a convex subspace of Δ^{\prime} satisfying (1) and (2), then A_{f} necessarily coincides with the unique line B through $f(x)$ and $f(y)$. Now, if z is a point of $A \backslash\{x, y\}$, then $f(z) \in A_{f}$ since $\mathrm{d}^{\prime}(f(z), f(y))=\mathrm{d}(z, y)=1$ and $\mathrm{d}^{\prime}(f(z), f(x))=\mathrm{d}(z, x)=1$. This shows that B is indeed the unique convex subspace satisfying (1) and (2).
(iii) Suppose $\operatorname{diam}(A) \geq 2$. Let x and y denote two points of A at distance $\operatorname{diam}(A)$ from each other. If A_{f} is a convex subspace of Δ^{\prime} satisfying properties (1) and (2), then since $\mathrm{d}^{\prime}(f(x), f(y))=\mathrm{d}(x, y)=\operatorname{diam}(A), A_{f}$ necessarily coincides with the smallest convex subspace B of Δ^{\prime} containing $f(x)$ and $f(y)$. Now, f satisfies the following properties:

- f maps every line of Δ into a line of Δ^{\prime} (see (ii));
- f maps a shortest path in Δ to a shortest path in Δ^{\prime}.

Hence, f maps the smallest convex subspace through x and y into the smallest convex subspace of Δ^{\prime} through $f(x)$ and $f(y)$. In other words, $f(A) \subseteq B$. So, the convex subspace B indeed satisfies properties (1) and (2) of the proposition.

Corollary 2.2 There exists a unique convex subspace $\Delta^{\prime \prime}$ of Δ^{\prime} satisfying the following properties:
(i) $\operatorname{diam}\left(\Delta^{\prime \prime}\right)=\operatorname{diam}(\Delta)$;
(ii) $f(x) \in \Delta^{\prime \prime}$ for every point x of Δ.

Proposition 2.3 If x is a point of Δ and if A is a convex subspace of Δ, then $\pi_{A_{f}}(f(x))=f\left(\pi_{A}(x)\right)$.

Proof. Let y be a point of A at distance $\operatorname{diam}(A)$ from $\pi_{A}(x)$. By the proof of Proposition 2.1, $A_{f}=\left\langle f\left(\pi_{A}(x)\right), f(y)\right\rangle$. We have

$$
\begin{align*}
\mathrm{d}^{\prime}(f(x), f(y)) & =\mathrm{d}(x, y) \\
& =\mathrm{d}\left(x, \pi_{A}(x)\right)+\mathrm{d}\left(\pi_{A}(x), y\right) \\
& =\mathrm{d}^{\prime}\left(f(x), f\left(\pi_{A}(x)\right)\right)+\operatorname{diam}(A) . \tag{1}
\end{align*}
$$

From

$$
\mathrm{d}^{\prime}\left(f(x), f\left(\pi_{A}(x)\right)\right) \geq \mathrm{d}^{\prime}\left(f(x), \pi_{A_{f}}(f(x))\right)
$$

and

$$
\operatorname{diam}(A)=\operatorname{diam}\left(A_{f}\right) \geq \mathrm{d}^{\prime}\left(\pi_{A_{f}}(f(x)), f(y)\right)
$$

it follows that

$$
\begin{align*}
\mathrm{d}^{\prime}\left(f(x), f\left(\pi_{A}(x)\right)\right)+\operatorname{diam}(A) & \geq \mathrm{d}^{\prime}\left(f(x), \pi_{A_{f}}(f(x))\right)+\mathrm{d}^{\prime}\left(\pi_{A_{f}}(f(x)), f(y)\right) \\
& =\mathrm{d}^{\prime}(f(x), f(y)) . \tag{2}
\end{align*}
$$

By equations (1) and (2), $\mathrm{d}^{\prime}\left(f(x), f\left(\pi_{A}(x)\right)\right)=\mathrm{d}^{\prime}\left(f(x), \pi_{A_{f}}(f(x))\right)$. Hence, $f\left(\pi_{A}(x)\right)=\pi_{A_{f}}(f(x))$.

Proposition 2.4 If A and B are two convex subspaces of Δ, then $\operatorname{ch}(A, B)$ $=\operatorname{ch}\left(A_{f}, B_{f}\right)$.

Proof. $\operatorname{Obviously}, \operatorname{diam}(A)=\operatorname{diam}\left(A_{f}\right)$ and $\operatorname{diam}(B)=\operatorname{diam}\left(B_{f}\right)$.
We will now show that $\mathrm{d}(A, B)=\mathrm{d}^{\prime}\left(A_{f}, B_{f}\right)$. Let x and y be points of A and B, respectively, such that $\mathrm{d}(x, y)=\mathrm{d}(A, B)$. Then $y=\pi_{B}(x)$ and $x=$ $\pi_{A}(y)$. By Proposition 2.3, $\pi_{B_{f}}(f(x))=f\left(\pi_{B}(x)\right)=f(y)$ and $\pi_{A_{f}}(f(y))=$ $f\left(\pi_{A}(y)\right)=f(x)$. Now, let x^{*} and y^{*} be points of A_{f} and B_{f}, respectively, such that $\mathrm{d}^{\prime}\left(x^{*}, y^{*}\right)=\mathrm{d}^{\prime}\left(A_{f}, B_{f}\right)$. Then $y^{*}=\pi_{B_{f}}\left(x^{*}\right)$ and $x^{*}=\pi_{A_{f}}\left(y^{*}\right)$. Without loss of generality, we may suppose that

$$
\begin{equation*}
\mathrm{d}^{\prime}\left(f(y), x^{*}\right) \geq \mathrm{d}^{\prime}\left(f(x), y^{*}\right) \tag{3}
\end{equation*}
$$

Now,

$$
\begin{align*}
\mathrm{d}^{\prime}\left(f(x), y^{*}\right) & =\mathrm{d}^{\prime}\left(f(x), \pi_{B_{f}}(f(x))\right)+\mathrm{d}^{\prime}\left(\pi_{B_{f}}(f(x)), y^{*}\right) \\
& =\mathrm{d}^{\prime}(f(x), f(y))+\mathrm{d}^{\prime}\left(f(y), y^{*}\right), \tag{4}
\end{align*}
$$

and

$$
\begin{align*}
\mathrm{d}^{\prime}\left(f(y), x^{*}\right) & =\mathrm{d}^{\prime}\left(x^{*}, \pi_{B_{f}}\left(x^{*}\right)\right)+\mathrm{d}^{\prime}\left(\pi_{B_{f}}\left(x^{*}\right), f(y)\right) \\
& =\mathrm{d}^{\prime}\left(x^{*}, y^{*}\right)+\mathrm{d}\left(y^{*}, f(y)\right) . \tag{5}
\end{align*}
$$

By (3), (4) and (5),

$$
d^{\prime}\left(A_{f}, B_{f}\right)=\mathrm{d}^{\prime}\left(x^{*}, y^{*}\right) \geq \mathrm{d}^{\prime}(f(x), f(y)) \geq \mathrm{d}^{\prime}\left(A_{f}, B_{f}\right) .
$$

Hence,

$$
\mathrm{d}^{\prime}\left(A_{f}, B_{f}\right)=\mathrm{d}^{\prime}\left(x^{*}, y^{*}\right)=\mathrm{d}^{\prime}(f(x), f(y))=\mathrm{d}(x, y)=\mathrm{d}(A, B) .
$$

We will now show that $\operatorname{diam}\langle A, B\rangle=\operatorname{diam}\left\langle A_{f}, B_{f}\right\rangle$. Choose $x \in A$ and $y \in B$ such that $\mathrm{d}(x, y)$ is maximal. Then y lies at maximal distance (i.e. distance $\operatorname{diam}(B))$ from $\pi_{B}(x)$. Since $\pi_{B}(x)$ lies on a shortest path between x and $y, \pi_{B}(x) \in\langle x, y\rangle$ and hence $B=\left\langle\pi_{B}(x), y\right\rangle \subseteq\langle x, y\rangle$. In a similar way one shows that $A \subseteq\langle x, y\rangle$. It follows that $\langle A, B\rangle=\langle x, y\rangle$ and $\operatorname{diam}\langle A, B\rangle=$ $\mathrm{d}(x, y)$.

Now, since $\pi_{B}(x)$ is on a shortest path between x and $y, f\left(\pi_{B}(x)\right)$ is on a shortest path between $f(x)$ and $f(y)$ and hence $B_{f}=\left\langle f\left(\pi_{B}(x)\right), f(y)\right\rangle \subseteq$ $\langle f(x), f(y)\rangle$. In a similar way, one shows that $A_{f} \subseteq\langle f(x), f(y)\rangle$. So, $\left\langle A_{f}, B_{f}\right\rangle=\langle f(x), f(y)\rangle$ and $\operatorname{diam}\left\langle A_{f}, B_{f}\right\rangle=\mathrm{d}^{\prime}(f(x), f(y))=\mathrm{d}(x, y)=$ $\operatorname{diam}\langle A, B\rangle$.

Proposition 2.5 If f is an isometric embedding of $\Delta=D Q(2 n, \mathbb{K})$ into $\Delta^{\prime}=D Q\left(2 n^{\prime}, \mathbb{K}^{\prime}\right), 3 \leq n \leq n^{\prime}$, then \mathbb{K} is isomorphic to a subfield of \mathbb{K}^{\prime}.

Proof. Let $\Delta^{\prime \prime}$ be the convex subspace of Δ^{\prime} as defined in Corollary 2.2. If x is a point of Δ, then $\operatorname{Res}_{\Delta}(x) \cong \mathrm{PG}(n-1, \mathbb{K})$ and $\operatorname{Res}_{\Delta^{\prime \prime}}(f(x)) \cong \mathrm{PG}(n-$ $\left.1, \mathbb{K}^{\prime}\right)$. By Proposition 2.4, there exists a subgeometry $\Sigma \cong \mathrm{PG}(n-1, \mathbb{K})$ in $\operatorname{PG}\left(n-1, \mathbb{K}^{\prime}\right)$ which generates the whole space $\operatorname{PG}\left(n-1, \mathbb{K}^{\prime}\right)$. This is only possible when \mathbb{K} is isomorphic to a subfield of \mathbb{K}^{\prime}.

3 Properties of locally singular hyperplanes

In this section, Δ denotes the dual polar space $D Q(2 n, \mathbb{K}), n \geq 2$, and $e: \Delta \rightarrow \Sigma=\operatorname{PG}\left(2^{n}-1, \mathbb{K}\right)$ denotes the spin-embedding of Δ. We denote the point-set of Δ by P.

Proposition 3.1 ([5]; [10]) The locally singular hyperplanes of Δ are precisely the hyperplanes of Δ which arise from the embedding e.

If H is a locally singular hyperplane of Δ arising from the hyperplane α of Σ, then $\alpha=\langle e(H)\rangle$, since H is a maximal subspace of Δ. So, there exists a bijective correspondence between the locally singular hyperplanes of Δ and the hyperplanes of Σ.

Lemma 3.2 If H is a locally singular hyperplane of Δ, then H cannot contain two disjoint maxes.

Proof. Suppose the contrary and let M_{1} and M_{2} be two disjoint maxes contained in H. Let x denote an arbitrary point of Δ not contained in $M_{1} \cup M_{2}$. If $x, \pi_{M_{1}}(x)$ and $\pi_{M_{2}}(x)$ are contained in a line, then $x \in H$, since $\pi_{M_{1}}(x), \pi_{M_{2}}(x) \in H$. Suppose $x, \pi_{M_{1}}(x)$ and $\pi_{M_{2}}(x)$ are not contained in a line. Then $Q:=\left\langle x, \pi_{M_{1}}(x), \pi_{M_{2}}(x)\right\rangle$ is a quad. Since $Q \cap M_{1}$ and $Q \cap M_{2}$ are lines contained in H, Q itself is also contained in H (recall that H is locally singular). In particular, x belongs to H.

It follows that every point of Δ is contained in H. This is impossible since H is a proper subspace of Δ.

Lemma 3.3 Let H_{1} and H_{2} be two distinct locally singular hyperplanes of Δ, then there exists a point x in Δ not contained in $H_{1} \cup H_{2}$.

Proof. Let $\alpha_{i}, i \in\{1,2\}$, denote the hyperplane of Σ giving rise to H_{i}. Then $\alpha_{1} \neq \alpha_{2}$ and hence there exists a hyperplane α of Σ through $\alpha_{1} \cap \alpha_{2}$ distinct from α_{1} and α_{2}. Put $H:=e^{-1}(e(P) \cap \alpha)$. Then $H_{1} \cap H_{2} \subseteq H$. Since H, H_{1} and H_{2} are maximal subspaces, $H_{1} \cap H_{2}$ is not a maximal subspace and there exists a point $x \in H \backslash\left(H_{1} \cap H_{2}\right)$. Obviously, $x \notin H_{1} \cup H_{2}$.

Lemma 3.4 Let M_{1} and M_{2} be two disjoint maxes, let $H_{i}, i \in\{1,2\}$, denote a locally singular hyperplane of M_{i} and let L be a line of Δ such that $L \cap M_{i}$ is a singleton $\left\{x_{i}\right\}$ not contained in $H_{i}(i \in\{1,2\})$. Then for every point x of L, there exists a unique locally singular hyperplane of Δ containing $H_{1} \cup H_{2} \cup\{x\}$.
Proof. Put $\Sigma_{i}:=\left\langle e\left(M_{i}\right)\right\rangle, i \in\{1,2\}$. By De Bruyn [6, Theorem 1.1], $\Sigma_{1} \cap \Sigma_{2}=\emptyset$ and $\left\langle\Sigma_{1}, \Sigma_{2}\right\rangle=\Sigma$. Moreover, e induces a full embedding e_{i} of M_{i} into $\Sigma_{i}(i \in\{1,2\})$ which is isomorphic to the spin-embedding of $M_{i} \cong D Q(2 n-2, \mathbb{K})$. (If $n=2$, then e_{i} is just the embedding of the line M_{i} into $\operatorname{PG}(1, \mathbb{K})$.) Since H_{i} is a locally singular hyperplane of M_{i}, $\alpha_{i}:=\left\langle e_{i}\left(H_{i}\right)\right\rangle=\left\langle e\left(H_{i}\right)\right\rangle$ is a hyperplane of Σ_{i} by Proposition 3.1. Notice that $\operatorname{dim}\left(\alpha_{1}\right)=\operatorname{dim}\left(\alpha_{2}\right)=2^{n-1}-2$.
Claim. The space $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$ is disjoint from $e(L)$.
Proof. Suppose the contrary. Let y be a point of L such that $e(y) \in$ $\left\langle\alpha_{1}, \alpha_{2}\right\rangle$. Without loss of generality, we may suppose that $y \neq x_{1}$. The space $\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$ contains $e\left(H_{1}\right)$ and $e\left(x_{1}\right)$ and hence also every point $e(z)$, $z \in M_{1}$, since H_{1} is a maximal subspace of M_{1}. Hence, $\Sigma_{1} \subseteq\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$. Now, since $e(y) \in\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$ and $y \neq x_{1}, e(z) \in\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$ for every point z of the line $L=x_{1} x_{2}$. In particular, $e\left(x_{2}\right) \in\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$. Since
$\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$ contains $e\left(H_{2}\right)$ and $e\left(x_{2}\right), \Sigma_{2} \subseteq\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$ (similar reasoning as above). Hence, $\Sigma=\left\langle\Sigma_{1}, \Sigma_{2}\right\rangle \subseteq\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle$. But this is impossible, since $\operatorname{dim}(\Sigma)=2^{n}-1$ and $\operatorname{dim}\left\langle\alpha_{1}, \alpha_{2}, e\left(x_{1}\right)\right\rangle \leq 2^{n}-2$. So, the claim is correct.

By the previous claim and Proposition 3.1, it readily follows that there is a unique locally singular hyperplane of Δ containing H_{1}, H_{2} and $x \in L$, namely the locally singular hyperplane of Δ arising from the hyperplane $\left\langle\alpha_{1}, \alpha_{2}, e(x)\right\rangle$ of Σ.

Lemma 3.5 Let H be a locally singular hyperplane of Δ. Then the set of deep points (with respect to H) is a subspace of Δ.

Proof. Let x_{1} and x_{2} be two distinct collinear points of H which are deep with respect to H, and let x_{3} denote a third point of the line $x_{1} x_{2}$. If Q is a quad through the line $x_{1} x_{2}$, then $Q \subseteq H$, since $x_{1}^{\perp} \cap Q \subseteq H$ and $x_{2}^{\perp} \cap Q \subseteq H$. Since this holds for every quad Q through $x_{1} x_{2}$, also the point x_{3} is deep with respect to H.

Lemma 3.6 If H_{1} and H_{2} are two distinct locally singular hyperplanes of Δ, then there exists a point in $H_{1} \backslash H_{2}$ which is not deep with respect to H_{1}.

Proof. Obviously, there exists a point $u \in H_{1} \backslash H_{2}$ (recall that H_{1} and H_{2} are maximal subspaces) and a point $v \in H_{1}$ which is not deep with respect to H_{1} (since H_{1} is a proper subspace). We choose such points u and v with $\mathrm{d}(u, v)$ as small as possible. If $\mathrm{d}(u, v)=0$, then we are done. So, suppose $\mathrm{d}(u, v) \geq 1$. Then u is deep with respect to H_{1} and $v \in H_{1} \cap H_{2}$. Let L_{v} denote a line through v contained in $H_{1} \cap\langle u, v\rangle$. Notice that if $\mathrm{d}(u, v)=1$, then $L_{v}=u v$. If $\mathrm{d}(u, v) \geq 2$, then such a line exists in any quad of $\langle u, v\rangle$ through v (recall that H_{1} is locally singular). Let v^{\prime} denote the point of L_{v} nearest to u and let L_{u} denote a line of $\langle u, v\rangle$ through u not contained in $\left\langle u, v^{\prime}\right\rangle$. Then every point of $L_{u} \subseteq H_{1}$ has distance $\mathrm{d}(u, v)-1$ from L_{v}. Now, precisely one point of L_{u} belongs to H_{2}, and by Lemma 3.5, at most one point of L_{v} is deep with respect to H_{1}. Hence, there exist points $u_{1} \in L_{u}$ and $v_{1} \in L_{v}$ satisfying the following properties:

- $u_{1} \in H_{1} \backslash H_{2}$;
- $v_{1} \in H_{1}$ and v_{1} is not deep with respect to H_{1};
- $\mathrm{d}\left(u_{1}, v_{1}\right)=\mathrm{d}(u, v)-1$.

This contradicts the minimality of $\mathrm{d}(u, v)$. Hence, the lemma holds.
Now, let H_{1} and H_{2} be two distinct locally singular hyperplanes of Δ. Let $\Gamma_{H_{1}, H_{2}}$ be the graph with vertices the points of $P \backslash\left(H_{1} \cup H_{2}\right)$, with two distinct vertices adjacent whenever either (i) or (ii) below holds:
(i) $\cdot \mathrm{d}(x, y)=1$;

- the line $x y$ meets $H_{1} \cap H_{2}$.
(ii) $\quad \mathrm{d}(x, y)=2$;
- $\langle x, y\rangle \cap H_{1} \cap H_{2}$ is a line L;
- $\pi_{L}(x)=\pi_{L}(y)$.

Let \mathcal{V} denote the set of all connected components of $\Gamma_{H_{1}, H_{2}}$, and define

$$
\left[H_{1}, H_{2}\right]:=\left\{H_{1}, H_{2}\right\} \cup\left\{V \cup\left(H_{1} \cap H_{2}\right) \mid V \in \mathcal{V}\right\} .
$$

Notice that in [5] there was given a slightly different but equivalent definition of the set \mathcal{V}.

Lemma 3.7 (Proposition 2.2 of [5]) If H is a locally singular hyperplane of Δ such that $H \cap H_{1}=H \cap H_{2}=H_{1} \cap H_{2}$, then $H \in\left[H_{1}, H_{2}\right]$.

Lemma $3.8\left[H_{1}, H_{2}\right]$ is the unique pencil of locally singular hyperplanes of Δ containing H_{1} and H_{2}.

Proof. Let $\alpha_{i}, i \in\{1,2\}$, denote the hyperplane of Σ giving rise to H_{i}. Let \mathcal{W} denote the set of all locally singular hyperplanes of Δ arising from a hyperplane of Σ through $\alpha_{1} \cap \alpha_{2}$. Then \mathcal{W} is a pencil of locally singular hyperplanes. By Lemma 3.7, $\mathcal{W}=\left[H_{1}, H_{2}\right]$. From Lemma 3.7, it is also clear that $\left[H_{1}, H_{2}\right]$ is the unique pencil of locally singular hyperplanes of Δ containing H_{1} and H_{2}.

The set \mathcal{H} of all locally singular hyperplanes of Δ carries the structure of a projective space isomorphic to $\mathrm{PG}\left(2^{n}-1, \mathbb{K}\right)$ if we take the sets $\left[H_{1}, H_{2}\right]$, $H_{1}, H_{2} \in \mathcal{H}$ and $H_{1} \neq H_{2}$, as lines. (Recall that there exists a bijective correspondence between the elements of \mathcal{H} and the points of the projective space Σ^{*}, dual of Σ.) If $H_{1}, H_{2}, \ldots, H_{k}$ are $k \geq 1$ elements of \mathcal{H}, then we denote by $\left[H_{1}, H_{2}, \ldots, H_{k}\right]$ the subspace of the projective space \mathcal{H} generated by $H_{1}, H_{2}, \ldots, H_{k}$.

Lemma 3.9 There exist 2^{n} singular hyperplanes in \mathcal{H} which generate \mathcal{H}.
Proof. We must show that there exist 2^{n} singular hyperplanes $H_{1}, \ldots, H_{2^{n}}$ in \mathcal{H} such that $\left\langle e\left(H_{1}\right)\right\rangle \cap\left\langle e\left(H_{2}\right)\right\rangle \cap \cdots \cap\left\langle e\left(H_{2^{n}}\right)\right\rangle=\emptyset$. But this follows immediately from the fact that the spin-embedding of Δ is the so-called minimal full polarized embedding of Δ, see Cardinali, De Bruyn and Pasini [3].

4 Proof of Theorem 1.1

Let f be an isometric embedding of the dual polar space $\Delta:=D Q(2 n, \mathbb{K})$ into the dual polar space $\Delta^{\prime}:=D Q\left(2 n, \mathbb{K}^{\prime}\right), n \geq 2$. Let P and P^{\prime} denote the point sets of Δ and Δ^{\prime}, respectively.

Lemma 4.1 For every locally singular hyperplane H of Δ, there is at most one locally singular hyperplane H^{\prime} of Δ^{\prime} such that $f(H)=H^{\prime} \cap f(P)$.

Proof. We will prove this lemma by induction on n. We will use the same notations as in Section 2.

Suppose $n=2$. Then H is a singular hyperplane of Δ. Let x denote the deepest point of H and let L_{1} and L_{2} denote two distinct lines of Δ through x. If H^{\prime} is a locally singular hyperplane of Δ^{\prime} such that $f(H)=H^{\prime} \cap f(P)$, then $f\left(L_{1}\right), f\left(L_{2}\right) \subseteq H^{\prime}$. Hence, H^{\prime} coincides with the singular hyperplane of Δ^{\prime} with deepest point $f(x)$.

Suppose $n \geq 3$. Let M_{1}, M_{2} and M_{3} denote three mutually disjoint maxes of Δ. By Lemma 3.2, at most one of M_{1}, M_{2}, M_{3} is contained in H. So, without loss of generality, we may suppose that M_{1} and M_{2} are not contained in H. Let $H_{i}, i \in\{1,2\}$, be the locally singular hyperplane $M_{i} \cap H$ of M_{i}. By Lemma 3.3, there is a point $x_{1} \in M_{1} \backslash\left(H_{1} \cup \pi_{M_{1}}\left(H_{2}\right)\right)$. Put $x_{2}:=\pi_{M_{2}}\left(x_{1}\right)$. Then $x_{2} \notin H_{2}$. Let L be the line $x_{1} x_{2}$ and let x_{3} be the unique point of L contained in H. Notice $x_{3} \notin\left\{x_{1}, x_{2}\right\}$. By Proposition 2.4, $M_{1}^{\prime}:=\left(M_{1}\right)_{f}$ and $M_{2}^{\prime}:=\left(M_{2}\right)_{f}$ are two disjoint maxes of Δ^{\prime} and L_{f} is a line of Δ^{\prime} intersecting M_{1}^{\prime} and M_{2}^{\prime} in the respective points $f\left(x_{1}\right)$ and $f\left(x_{2}\right)$.

Suppose now that H^{\prime} is a locally singular hyperplane of Δ^{\prime} such that $f(H)=H^{\prime} \cap f(P)$. We will show that H^{\prime} is uniquely determined by H. Since $x_{3} \in H, f\left(x_{3}\right) \in H^{\prime}$. By Proposition 2.4, $f(P) \cap M_{i}^{\prime}=f\left(M_{i}\right)$. So, we obtain

$$
f(H) \cap M_{i}^{\prime}=H^{\prime} \cap M_{i}^{\prime} \cap f(P)
$$

$$
\begin{aligned}
f(H) \cap\left(f(P) \cap M_{i}^{\prime}\right) & =\left(H^{\prime} \cap M_{i}^{\prime}\right) \cap\left(M_{i}^{\prime} \cap f(P)\right) \\
f(H) \cap f\left(M_{i}\right) & =\left(H^{\prime} \cap M_{i}^{\prime}\right) \cap f\left(M_{i}\right) \\
f\left(H_{i}\right) & =\left(H^{\prime} \cap M_{i}^{\prime}\right) \cap f\left(M_{i}\right) .
\end{aligned}
$$

By the induction hypothesis, $H^{\prime} \cap M_{i}^{\prime}$ is the unique locally singular hyperplane G_{i}^{\prime} of M_{i}^{\prime} such that $f\left(H_{i}\right)=G_{i}^{\prime} \cap f\left(M_{i}\right)$. Since $x_{i} \notin H_{i}, f\left(x_{i}\right) \notin G_{i}^{\prime}$. From Lemma 3.4, it now readily follows that H^{\prime} is the unique locally singular hyperplane of Δ^{\prime} containing $G_{1}^{\prime}, G_{2}^{\prime}$ and $f\left(x_{3}\right)$. So, H^{\prime} is uniquely determined by H.

Lemma 4.2 Let H_{1} and H_{2} be two distinct locally singular hyperplanes of Δ. If there exist locally singular hyperplanes H_{1}^{\prime} and H_{2}^{\prime} in Δ^{\prime} such that $f\left(H_{1}\right)=f(P) \cap H_{1}^{\prime}$ and $f\left(H_{2}\right)=f(P) \cap H_{2}^{\prime}$, then for every locally singular hyperplane H of $\left[H_{1}, H_{2}\right]$, there exists a locally singular hyperplane H^{\prime} of [$\left.H_{1}^{\prime}, H_{2}^{\prime}\right]$ such that $f(H)=f(P) \cap H^{\prime}$.
Proof. Remark that $H_{1}^{\prime} \neq H_{2}^{\prime}$ since $H_{1} \neq H_{2}$. We may suppose that $H_{1} \neq H \neq H_{2}$. Let x denote an arbitrary point of $H \backslash\left(H_{1} \cap H_{2}\right)$. Since $x \notin H_{1} \cup H_{2}, f(x) \notin H_{1}^{\prime} \cup H_{2}^{\prime}$. Let H^{\prime} denote the unique hyperplane of [$H_{1}^{\prime}, H_{2}^{\prime}$] containing $f(x)$.
We will show that $f(H) \subseteq f(P) \cap H^{\prime}$. We have $f\left(H_{1} \cap H_{2}\right)=f\left(H_{1}\right) \cap f\left(H_{2}\right)=$ $f(P) \cap H_{1}^{\prime} \cap H_{2}^{\prime} \subseteq f(P) \cap H^{\prime}$. So, we still must show that $f\left(H \backslash\left(H_{1} \cap H_{2}\right)\right) \subseteq$ $f(P) \cap H^{\prime}$. Let $\Gamma_{H_{1}, H_{2}}$ be the graph with vertex set $P \backslash\left(H_{1} \cup H_{2}\right)$ as defined in Section 3. We show the following: if $y_{1}, y_{2} \in H \backslash\left(H_{1} \cap H_{2}\right)$ are adjacent vertices of $\Gamma_{H_{1}, H_{2}}$ such that $f\left(y_{1}\right) \in f(P) \cap H^{\prime}$, then also $f\left(y_{2}\right) \in f(P) \cap H^{\prime}$. The claim then follows from Lemma 3.7 and the fact that $f(x) \in f(P) \cap H^{\prime}$.

Suppose first that $y_{1} y_{2}$ meets $H_{1} \cap H_{2}$ in a point y_{3}. The line $f\left(y_{1}\right) f\left(y_{2}\right)$ of Δ^{\prime} contains the point $f\left(y_{3}\right) \in f\left(H_{1} \cap H_{2}\right) \subseteq H^{\prime}$. Since $f\left(y_{1}\right) \in H^{\prime}$, also $f\left(y_{2}\right) \in H^{\prime}$.

Suppose next that the following holds: $\mathrm{d}\left(y_{1}, y_{2}\right)=2 ;\left\langle y_{1}, y_{2}\right\rangle \cap H_{1} \cap H_{2}$ is a line $L ; \pi_{L}\left(y_{1}\right)=\pi_{L}\left(y_{2}\right)$. Put $Q:=\left\langle y_{1}, y_{2}\right\rangle$ and $x_{3}:=\pi_{L}\left(y_{1}\right)=\pi_{L}\left(y_{2}\right)$. Let $x_{i}, i \in\{1,2\}$, denote the deepest point of the singular hyperplane $Q \cap H_{i}$ of Q. Then L contains the points x_{1}, x_{2} and x_{3}. The quad Q_{f} contains the line L_{f} which itself contains the points $f\left(x_{1}\right), f\left(x_{2}\right)$ and $f\left(x_{3}\right)$. Since $f\left(H_{i}\right)=f(P) \cap H_{i}^{\prime}, H_{i}^{\prime} \cap Q_{f}$ is the singular hyperplane of Q_{f} with deepest point $f\left(x_{i}\right)$. Since $H^{\prime} \in\left[H_{1}^{\prime}, H_{2}^{\prime}\right], H^{\prime} \cap Q_{f}$ is a singular hyperplane whose deepest point lies on L_{f}. (Notice that the set of all singular hyperplanes of Q_{f} whose deepest points lie on L_{f} is the unique pencil of locally singular
hyperplanes of Q_{f} containing $f\left(x_{1}\right)^{\perp} \cap Q_{f}$ and $f\left(x_{2}\right)^{\perp} \cap Q_{f}$.) Since $f\left(y_{1}\right) \in H^{\prime}$, the deepest point of $H^{\prime} \cap Q_{f}$ coincides with $\pi_{L_{f}}\left(f\left(y_{1}\right)\right)=f\left(x_{3}\right)$. Now, $f\left(y_{2}\right)$ is collinear with $f\left(x_{3}\right)$. Hence, $f\left(y_{2}\right) \in H^{\prime}$. This was what we needed to show.

We will now show that $f(H)=f(P) \cap H^{\prime}$. Suppose $f\left(x^{\prime}\right)$ is a point of $f(P) \cap H^{\prime}$ not contained in $f(H)$. Then x^{\prime} is a point of $P \backslash\left(H_{1} \cup H_{2} \cup H\right)$. Let G denote the unique element of $\left[H_{1}, H_{2}\right]$ containing x^{\prime}. Since $f\left(x^{\prime}\right) \subseteq H^{\prime}$, $f(G) \subseteq H^{\prime}$ by the above reasoning. Now, by Lemma 3.6, there exists a point $u \in H_{1} \backslash H_{2}$ which is not deep with respect to H_{1}. Let L denote a line through u which is not contained in H_{1}. Put $\{v\}=L \cap H_{2},\{w\}=L \cap H$ and $\left\{w^{\prime}\right\}=L \cap G$. Since $f(w), f\left(w^{\prime}\right) \in H^{\prime}, f(z) \in H^{\prime}$ for every $z \in L$. In particular, $f(u) \in H^{\prime}$. This implies $f(u) \in H^{\prime} \cap H_{1}^{\prime} \cap f(P)=H_{1}^{\prime} \cap H_{2}^{\prime} \cap f(P)=$ $f\left(H_{1} \cap H_{2}\right)$, contradicting $u \in H_{1} \backslash H_{2}$. Hence, $f(H)=f(P) \cap H^{\prime}$ as claimed.

Lemma 4.3 For every locally singular hyperplane H of Δ, there exists a hyperplane H^{\prime} of Δ^{\prime} such that $f(H)=f(P) \cap H^{\prime}$.

Proof. By Lemmas 3.9 and 4.2, it suffices to prove the lemma in the case that H is a singular hyperplane of Δ. So, suppose that H is singular and that x is the deepest point of H. Let H^{\prime} denote the singular hyperplane of Δ^{\prime} with deepest point $f(x)$. Since f is an isometric embedding, we necessarily have $f(H)=f(P) \cap H^{\prime}$. This proves the lemma.

Theorem 1.1 is a consequence of Lemmas 4.1 and 4.3.

5 Proof of Theorem 1.2

Let f be an isometric embedding of $\Delta=D Q(2 n, \mathbb{K})$ into $\Delta^{\prime}=D Q\left(2 n, \mathbb{K}^{\prime}\right)$. Let \mathcal{H} denote the set of all locally singular hyperplanes of Δ and let \mathcal{H}^{\prime} denote the set of all locally singular hyperplanes of Δ^{\prime}. For every hyperplane H of \mathcal{H}, let $\theta(H)$ denote the unique hyperplane of \mathcal{H}^{\prime} for which $f(H)=f(P) \cap \theta(H)$. As explained above, the sets \mathcal{H} and \mathcal{H}^{\prime} can be given the structure of $\left(2^{n}-1\right)$ dimensional projective spaces. Obviously, the map θ defines an injection from the point-set of \mathcal{H} to the point set of \mathcal{H}^{\prime}. By Lemma 4.2, θ maps lines of \mathcal{H} to subsets of lines of \mathcal{H}^{\prime}. Hence, we have

Lemma 5.1 Let $H_{1}, H_{2}, \ldots, H_{k}$ be elements of \mathcal{H}. If $H \in\left[H_{1}, H_{2}, \ldots, H_{k}\right]$, then $\theta(H) \in\left[\theta\left(H_{1}\right), \theta\left(H_{2}\right), \ldots, \theta\left(H_{k}\right)\right]$.

Definition. A nonempty set X of points of a thick dual polar space $\widetilde{\Delta}$ is called scattered if $\bigcap_{x \in X} H_{x}=\emptyset$. Here, H_{x} denotes the singular hyperplane of $\widetilde{\Delta}$ with deepest point x. A scattered set X of points is called minimal if no proper subset of X is scattered. By De Bruyn and Pasini [8], every dual polar space of rank n has minimal scattered sets of size 2^{n}.

Lemma $5.2\langle\theta(\mathcal{H})\rangle=\mathcal{H}^{\prime}$.
Proof. Let $x_{1}, x_{2}, \ldots, x_{2^{n}}$ be a set of 2^{n} points in Δ which form a minimal scattered set of points. Let $H_{x_{i}}, i \in\left\{1, \ldots, 2^{n}\right\}$, be the singular hyperplane of Δ with deepest point x_{i}, and let $H_{x_{i}}^{\prime}$ denote the singular hyperplane of Δ^{\prime} with deepest point $f\left(x_{i}\right)$. Then $\theta\left(H_{x_{i}}\right)=H_{x_{i}}^{\prime}$. Now, since $\left\{x_{1}, x_{2}, \ldots, x_{2^{n}}\right\}$ is a minimal scattered set of points,

$$
H_{x_{1}} \cap H_{x_{2}} \cap \cdots \cap H_{x_{i+1}} \varsubsetneqq H_{x_{1}} \cap H_{x_{2}} \cap \cdots \cap H_{x_{i}}
$$

for every $i \in\left\{1, \ldots, 2^{n}-1\right\}$. Now, since $f\left(H_{x_{i}}\right)=f(P) \cap H_{x_{i}}^{\prime}$ for every $i \in\left\{1, \ldots, 2^{n}\right\}$, we have

$$
H_{x_{1}}^{\prime} \cap H_{x_{2}}^{\prime} \cap \cdots \cap H_{x_{i+1}}^{\prime} \varsubsetneqq H_{x_{1}}^{\prime} \cap H_{x_{2}}^{\prime} \cap \cdots \cap H_{x_{i}}^{\prime}
$$

for every $i \in\left\{1, \ldots, 2^{n}-1\right\}$. If $y \in H_{x_{1}}^{\prime} \cap H_{x_{2}}^{\prime} \cap \cdots \cap H_{x_{i}}^{\prime}$, then y belongs to every hyperplane of $\left[H_{x_{1}}^{\prime}, H_{x_{2}}^{\prime}, \ldots, H_{x_{i}}^{\prime}\right]$. Hence, $H_{x_{i+1}}^{\prime} \notin\left[H_{x_{1}}^{\prime}, H_{x_{2}}^{\prime}, \ldots, H_{x_{i}}^{\prime}\right]$ for every $i \in\left\{1, \ldots, 2^{n}-1\right\}$. So, the points $H_{x_{1}}^{\prime}, H_{x_{2}}^{\prime}, \ldots, H_{x_{2 n}}^{\prime}$ of \mathcal{H}^{\prime} are linearly independent. It follows that $\left[H_{x_{1}}^{\prime}, \ldots, H_{x_{2} n}^{\prime}\right]=\mathcal{H}^{\prime}$, which implies that $\langle\theta(\mathcal{H})\rangle=\mathcal{H}^{\prime}$.

Lemma 5.3 If $\left\{H_{1}, H_{2}, \ldots, H_{k}\right\}$ is a linearly independent set of points of \mathcal{H}, then $\left\{\theta\left(H_{1}\right), \theta\left(H_{2}\right), \ldots, \theta\left(H_{k}\right)\right\}$ is a linearly independent set of points of \mathcal{H}^{\prime}.

Proof. Complete $H_{1}, H_{2}, \ldots, H_{k}$ to a generating set $H_{1}, \ldots, H_{k}, \ldots, H_{2^{n}}$ of \mathcal{H}. By Lemmas 5.1 and $5.2, \mathcal{H}^{\prime}=\langle\theta(\mathcal{H})\rangle=\left\langle\theta\left(H_{1}\right), \theta\left(H_{2}\right), \ldots, \theta\left(H_{2^{n}}\right)\right\rangle$. It follows that $\theta\left(H_{1}\right), \theta\left(H_{2}\right), \ldots, \theta\left(H_{2^{n}}\right)$ are linearly independent. In particular, $\theta\left(H_{1}\right), \theta\left(H_{2}\right), \ldots, \theta\left(H_{k}\right)$ are linearly independent.

Definition. For every subspace α of \mathcal{H}, let $\theta(\alpha)$ be the subspace of \mathcal{H}^{\prime} generated by all points $\theta(H), H \in \alpha$. Then $\operatorname{dim}(\alpha)=\operatorname{dim}(\theta(\alpha))$ by Lemmas 5.1 and 5.3.

Corollary 5.4 The points $\theta(H), H \in \mathcal{H}$, define a subgeometry of \mathcal{H}^{\prime} isomorphic to \mathcal{H}.

For every point x (respectively line L) of Δ, let V_{x} (respectively V_{L}) denote the set of all hyperplanes of \mathcal{H} containing the point x (respectively the line $L)$ of Δ. Then V_{x} is a hyperplane of \mathcal{H} and V_{L} is a hyperplane of V_{y} for every point y of L. So, V_{L} is a $\left(2^{n}-3\right)$-dimensional subspace of \mathcal{H}.

Similarly, for every point x (respectively line L) of Δ^{\prime}, let V_{x}^{\prime} (respectively V_{L}^{\prime}) denote the set of all hyperplanes of \mathcal{H}^{\prime} containing x (respectively L). Then V_{x}^{\prime} is a hyperplane of \mathcal{H}^{\prime} and V_{L}^{\prime} is a $\left(2^{n}-3\right)$-dimensional subspace of \mathcal{H}^{\prime}.

Lemma 5.5 Let x be a point of Δ and let L be a line of Δ. Then $\theta\left(V_{x}\right)=$ $V_{f(x)}^{\prime}$ and $\theta\left(V_{L}\right)=V_{L_{f}}^{\prime}$.

Proof. Obviously, $\theta\left(V_{x}\right) \subseteq V_{f(x)}^{\prime}$. Since both subspaces are $\left(2^{n}-2\right)$ dimensional, $\theta\left(V_{x}\right)=V_{f(x)}^{\prime}$. In a similar way, one shows that $\theta\left(V_{L}\right)=V_{L_{f}}^{\prime}$.

Let \mathcal{H}^{*} and $\mathcal{H}^{\prime *}$ denote the dual projective spaces of \mathcal{H} and \mathcal{H}^{\prime}, respectively. The points of \mathcal{H}^{*} are mapped by θ to a subgeometry of $\mathcal{H}^{* *}$ isomorphic to \mathcal{H}^{*}.

The map $e_{1}: P \rightarrow \mathcal{H}^{*} ; x \mapsto V_{x}$ defines a full embedding of Δ into the projective space \mathcal{H}^{*}, isomorphic to the spin-embedding of Δ. The map e_{2} : $P^{\prime} \rightarrow \mathcal{H}^{\prime *} ; x \mapsto V_{x}^{\prime}$ defines a full embedding of Δ^{\prime} into the projective space $\mathcal{H}^{\prime *}$, isomorphic to the spin-embedding of Δ^{\prime}.

For every point x of Δ, we have $e_{2} \circ f(x)=V_{f(x)}^{\prime}=\theta\left(V_{x}\right)=\theta\left(e_{1}(x)\right)$. Theorem 1.2 is now obvious.

References

[1] F. Buekenhout and P. J. Cameron. Projective and affine geometry over division rings. Chapter 2 of the "Handbook of Incidence Geometry" (ed. F. Buekenhout), Elsevier, Amsterdam, 1995.
[2] P. J. Cameron. Dual polar spaces. Geom. Dedicata 12 (1982), 75-85.
[3] I. Cardinali, B. De Bruyn and A. Pasini. Minimal full polarized embeddings of dual polar spaces. J. Algebraic Combin. 25 (2007), 7-23.
[4] C. C. Chevalley. The algebraic theory of spinors. Columbia University Press, New York, 1954.
[5] B. De Bruyn. The hyperplanes of $D Q(2 n, \mathbb{K})$ and $D Q^{-}(2 n+1, q)$ which arise from their spin-embeddings. J. Combin. Theory Ser. A 114 (2007), 681-691.
[6] B. De Bruyn. The structure of the spin-embeddings of dual polar spaces and related geometries. European J. Combin., to appear.
[7] B. De Bruyn. Two classes of hyperplanes of dual polar spaces without subquadrangular quads. J. Combin. Theory Ser. A, to appear.
[8] B. De Bruyn and A. Pasini. Minimal scattered sets and polarized embeddings of dual polar spaces. European J. Combin. 28 (2007), 1890-1909.
[9] E. E. Shult. On Veldkamp lines. Bull. Belg. Math. Soc. Simon Stevin 4 (1997), 299-316.
[10] E. E. Shult and J. A. Thas. Hyperplanes of dual polar spaces and the spin module. Arch. Math. 59 (1992), 610-623.

[^0]: *Postdoctoral Fellow of the Research Foundation - Flanders (Belgium)

