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Abstract. We introduce a rank 3 geometry for any Ree group over a not necessarily perfect
field and show that its full collineation group is the automorphism group of the correspond-
ing Ree group. A similar result holds for two rank 2 geometries obtained as a truncation
of this rank 3 geometry. As an application, we show that a polarity in any Moufang gener-
alized hexagon is unambiguously determined by its set of absolute points, or equivalently,
its set of absolute lines.
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1 Introduction

The Ree groups in characteristic 3 (defined by Ree in [6]) and their generaliza-
tions over non-perfect fields (by Tits [11]) provide examples of rank 1 groups, or
Moufang sets, or split BN-pairs of rank 1 that behave roughly as simple algebraic
groups of rank 1, but over a one-dimensional root system consisting of six roots,
since the unipotent radicals have nilpotency class 3. This is a rather rare phe-
nomenon; indeed, until recently, these were the only known rank 1 groups with
this property (a second class was discovered and constructed in [5]). Associated
with each Ree group is a geometry (called a unital in the finite case), which is a
linear space (in the finite case a 2� .q3C1; qC1; 1/-design), see [4]. This geom-
etry can be viewed as the geometry of involutions in a Ree group, since the blocks
are in one-to-one correspondence with a conjugacy class of involutions (in the
finite case there is only one conjugacy class). This way, Ree groups can be better
understood in that several properties become more geometric and intuitive through
this geometry.

In the present paper we introduce another geometry for each Ree group, inspired
by the general construction of geometries associated to “wide” rank 1 groups as
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76 F. Haot, K. Struyve and H. Van Maldeghem

proposed by Tits in one of his lectures; see [15] for an account on this idea (“wide”
here means that the unipotent subgroups are not abelian). In fact, this construc-
tion is the counterpart for Ree groups of the inversive planes for Suzuki groups
(see also [15]). The structure of the geometries that we will introduce is probably
slightly more involved than that of the “unitals”, but they have the major advan-
tage that the automorphism groups of the corresponding Ree groups are their full
automorphism groups (and this is our Main Result below), a result that is not yet
proved for the unitals. This result contributes to Tits’ programme of characteriz-
ing all “wide” rank one groups in this way (i.e., proving a Fundamental Theorem
for these geometries). As an application, we can show that every collineation of a
Moufang hexagon of mixed type permuting the absolute points of a polarity, cen-
tralizes that polarity (or, equivalently, also permutes the absolute lines). This, in
turn, means that the set of absolute points of any polarity of any Moufang hexagon
(necessarily of mixed type) determines the polarity completely and unambigu-
ously.

The “new” geometries also have a number of interesting combinatorial prop-
erties, but we will not concentrate on these, though it would be worthwhile to
perform an investigation in that direction.

Every Ree group is the centralizer of a certain outer involution of a Dickson
group of type G2 over a field of characteristic 3 admitting a Tits endomorphism.
A geometric way to see this is to consider the associated Moufang generalized
hexagon, which is of mixed type. Then the outer involution is a polarity, and
the associated Ree group acts doubly transitively on the absolute points of that
polarity. That is exactly the way we are going to define and use the Ree groups.
These Moufang hexagons are called Ree hexagons in [14] precisely for that reason.

Hence, in order to investigate the Moufang sets (or rank 1 groups) associated
with the Ree groups, we turn to the Ree hexagons, which, as follows from our
remarks above, are defined over a field of characteristic 3 admitting a Tits endo-
morphism � , and they allow a polarity �. The absolute points under this polarity,
together with the automorphisms of the mixed hexagon commuting with �, form
the Ree–Tits Moufang set. Since we will need an explicit description of the abso-
lute points of �, we will use coordinates. These will be introduced in Section 2.
We define the Ree geometries in Section 4 and state our main results and main
application in Section 5 (but we formulate our main results also below in rough
terms). The rest of the paper is then devoted to the proofs.

Since the Ree groups have unipotent subgroups of nilpotency class 3 (at least, if
the base field is large enough), the Ree geometries that we will define have rank 3.
This means that we will have two types of blocks in our geometry. In this paper
we prove that every automorphism of such a geometry is an automorphism of the
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Ree geometries 77

corresponding Ree group, by writing down explicitly the automorphisms of this
geometry. But we also do slightly better and prove that the same conclusion holds
when restricting to one type of blocks. We call these geometries truncated Ree
geometries. Hence, loosely speaking, we may write our main result as follows:

The full automorphism group of a (truncated) Ree geometry is induced
by the full collineation group of the corresponding Ree hexagon.

As mentioned above, this is the Fundamental Theorem for the Ree geometries.
Other classes of “wide” rank one groups of algebraic origin for which the Funda-
mental Theorem has been proved are those of type 2A2 (see [13, 7]), E8;1 (unpub-
lished by Tits), F4;1 (see [2]), 2B2 (see [15]), and recently also 2F4;¹1;4º (see [8];
the latter groups are the centralizers of a polarity in an exceptional Moufang quad-
rangle of type F4). With the present paper, we add 2G2 to that distinguished list.

2 The coordinatization of the Ree hexagon

In this section, we present two coordinatizations of the Ree hexagons, which can at
the same time serve as a definition of these structures. We start with the coordina-
tization with respect to one flag ¹.1/; Œ1�º (a flag is a pair of elements consisting
of a point and a line that are incident). This coordinatization was first carried out
by De Smet and Van Maldeghem for (finite) generalized hexagons in [3]. For a
detailed description of the coordinatization theory for other generalized polygons
we refer to [14]. The second coordinatization follows in fact from the natural
embedding of the Ree hexagon in PG.6;K/.

2.1 Hexagonal sexternary rings for Ree hexagons

In [14] a coordinatization theory with respect to a flag ¹.1/; Œ1�º is described.
It is a generalization of Hall’s coordinatization for projective planes (which are
generalized triangles). Here we describe explicitly the coordinatization of the Ree
hexagon. Let K be a field of characteristic 3 and let � be a Tits endomorphism,
i.e., � is an endomorphism of K with the property that .x� /� D x3. Let K0 be the
image of K under � (note that K3 � K0 � K). We define a hexagonal sexternary
ring R D .K;K0; ‰1; ‰2; ‰3; ‰4/ with8̂̂̂̂

<̂
ˆ̂̂:
‰1.k; a; l; a

0; l 0; a00/ D a3k C l;
‰2.k; a; l; a

0; l 0; a00/ D a2k C a0 C aa00;
‰3.k; a; l; a

0; l 0; a00/ D a3k2 C l 0 C kl;
‰4.k; a; l; a

0; l 0; a00/ D �ak C a00;
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78 F. Haot, K. Struyve and H. Van Maldeghem

where a; a0; a00 2 K and k; l; l 0 2 K0. This defines the Ree hexagon H.K;K0/
as follows. The points and lines are the i -tuples of elements of K [ K0 (i � 5)
with alternately an entry in K and one in K0, and for points (lines) the last entry
is supposed to be in K (K0), except when i D 0, in case we denote the point by
.1/ and the line by Œ1� (we generally use round parentheses for points and square
brackets for lines). Incidence is defined as follows:

� If the number of coordinates of a point p differs by at least 2 from the number
of coordinates of a line L, then p and L are not incident.

� If the number ip of coordinates of a point p differs by exactly 1 from the
number iL of coordinates of a line L, then p is incident with L if and only if
p andL share the first i coordinates, where i is the smallest among ip and iL.

� If ip D iL ¤ 5, then p is incident with L if and only if p D .1/ and
L D Œ1�.

� A point p with coordinates .a; l; a0; l 0; a00/ is incident with a line with
coordinates Œk; b; k0; b0; k00� (with above notation, and with b; b0 2 K and
k0; k00 2 K0) if and only if8̂̂̂̂

<̂
ˆ̂̂:
‰1.k; a; l; a

0; l 0; a00/ D k00;
‰2.k; a; l; a

0; l 0; a00/ D b00;
‰3.k; a; l; a

0; l 0; a00/ D k0;
‰4.k; a; l; a

0; l 0; a00/ D b0:

In general, a generalized hexagon is a point-line structure with the property that
each pair of elements (en element can be a point, a line or a flag – the latter is
an incident point-line pair) is contained in an ordinary hexagon, but never in an
ordinary pentagon, quadrangle, triangle or digon. For a general introduction to
generalized hexagons, we refer to [14]. We mention that generalized hexagons –
and more general, generalized polygons – were introduced by Jacques Tits [10].

Roughly, a Ree group is the centralizer of a polarity in a Ree hexagon, and
it acts on a Ree–Tits ovoid (namely, the set of absolute points of the polarity).
A polarity is an involutive incidence preserving bijection between points and lines,
and between lines and points. A point or line incident with its image is called
absolute. An ovoid of a generalized hexagon is a set of mutually opposite points
(i.e., points at distance 6 in the incidence graph) such that each point not in the
ovoid is collinear to exactly one point of the ovoid. The dual notion is a spread.
It is a general fact that the set of absolute points (lines) of a polarity is an ovoid
(spread), see Chapter 7 of [14].
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Ree geometries 79

2.2 The embedding of the Ree hexagon in PG.6; K/

The Ree hexagon has a natural full embedding in PG.6;K/ (here, full means that
all points of PG.6;K/ incident with a line of the Ree hexagon are points of the Ree
hexagon). Indeed, H.K;K0/ is a substructure of the split Cayley hexagon H.K/,
which has itself a natural embedding in PG.6;K/ as discovered and described
by Tits in [10], see also Chapter 2 of [14]. Here, we content ourselves with the
table translating the above coordinates to the projective coordinates. We refer to
Chapter 3 of [14] for details and proofs.

We write ˛ for �al 0 C a02 C a00l C aa0a00 and ˇ for l � aa0 � a2a00.

Coordinates in H.K;K0/ Coordinates in PG.6;K/

.1/ .1; 0; 0; 0; 0; 0; 0/

.a/ .a; 0; 0; 0; 0; 0; 1/

.k; b/ .b; 0; 0; 0; 0; 1;�k/

.a; l; a0/ .�l � aa0; 1; 0;�a; 0; a2;�a0/

.k; b; k0; b0/ .k0 C bb0; k; 1; b; 0; b0; b2 � b0k/

.a; l; a0; l 0; a00/ .˛;�a00;�a;�a0 C aa00; 1; ˇ;�l 0 C a0a00/

Coordinates in H.K;K0/ Points generating this line

Œ1� .1/ and .0/
Œk� .1/ and .k; 0/
Œa; l� .a/ and .a; l; 0/
Œk; b; k0� .k; b/ and .k; b; 0/
Œa; l; a0; l 0� .a; l; a0/ and .a; l; a0; l 0; 0/
Œk; b; k0; b0; k00� .k; b; k0; b0/ and .0; k00; b0; k0 C kk00; b/

The subgroup of PSL7.K/ stabilizing the point set and line set of H.K;K0/ is
denoted by G2.K;K0/ and is simple (a mixed group of type G2, see [12]).

3 The Ree–Tits ovoid

We start from the Ree hexagon H.K;K0/, where K0 D K� , with � as above a
Tits-endomorphism of K. There is a natural bijective correspondence between the
conjugacy classes of Tits-endomorphisms of K mapping K onto K0 and conjugacy
classes of polarities of H.K;K0/, see Chapter 7 of [14]. It is possible to choose a
polarity � naturally associated with � under the above correspondence such that
it fixes the flags ¹.1/; Œ1�º and ¹.0; 0; 0; 0; 0/; Œ0; 0; 0; 0; 0�º, maps the point .1/
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80 F. Haot, K. Struyve and H. Van Maldeghem

onto the line Œ1�, and such that it has the following actions on points and lines with
five coordinates:

.a; l; a0; l 0; a00/� D Œa� ; l��1 ; a0� ; l 0��1 ; a00� �;
Œk; b; k0; b0; k00�� D .k��1 ; b� ; k0��1 ; b0� ; k00��1/;

for all a; a0; a00; b; b0 2 K and k; k0; k00; l; l 0 2 K0. Moreover, this action deter-
mines the images of all other points and lines, see again Chapter 7 of [14]. The
absolute points under this polarity form an ovoid of the Ree hexagon: the Ree–Tits
ovoid, see Chapter 7 of [14]. Now the point .a; l; a0; l 0; a00/ is absolute for � if and
only if it is incident with its image. This leads to the following conditions:´

l D a00� � a�C3;
l 0 D a2�C3 C a0� C a�a00� :

Coordinates of the Ree–Tits ovoid in PG.6; K/. We write .a; a00; a0 � aa00/ as
a shorthand notation for the absolute point with coordinates .a; a00� � a3C� ; a0;
a3C2� C a0� C a�a00� ; a00/. Hence the mapping

K3 ! K5 W .a; a0; a00/ 7! .a; a0� � a3C� ; aa0 C a00; a3C2� C a00� � a�a0� ; a0/
identifies K3 with the set of absolute points distinct from .1/. Now, for a; a0; a00 2
K, we put

f1.a; a
0; a00/ D �a4C2� � aa00� C a1C�a0� C a002 C a01C� � a0a3C� � a2a02;

f2.a; a
0; a00/ D �a3C� C a0� � aa00 C a2a0;

f3.a; a
0; a00/ D �a3C2� � a00� C a�a0� C a0a00 C aa02:

So the set of absolute points can be described in PG.6;K/ by

� D ¹.1; 0; 0; 0; 0; 0; 0/º [ ¹.f1.a; a0; a00/;�a0;�a;�a00; 1;
f2.a; a

0; a00/; f3.a; a0; a00// j a; a0; a00 2 Kº:

Compact notation. As before, we associate the triple .a; a00; a0 � aa00/ with the
point .a; a00� � a3C� ; a0; a3C2� C a0� C a�a00� /. The set of absolute points under
the polarity is now

� D ¹.1/º [ ¹.a; a0; a00/ j a; a0; a00 2 Kº:
The elements of the root group U1 (a root group is a unipotent subgroup) of the
ovoid fixing the point .1/ act as follows on the remaining points .x; x0; x00/: the
unipotent element that fixes .1/ and maps .0; 0; 0/ to .y; y0; y00/ maps .x; x0; x00/
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to

.x; x0; x00/ � .y; y0; y00/ D .xCy; x0Cy0C xy� ; x00Cy00C xy0� x0y � xy�C1/;
and this action can also be seen as the multiplication inside U1, see Chapter 7
of [14].

We obtain the Ree–Tits Moufang set. Formally, a Moufang set is a set X to-
gether with a family of (root) groups .Ux/x2X such that Ux acts sharply transi-
tively onX n¹xº and fixes x, and such that eachUy , y 2 X , acts by conjugation on
the set ¹Ux j x 2 Xº. The (simple) Ree groups arise as (simple subgroups of the)
centralizers of polarities in these hexagons. More exactly, the Ree group R.K; �/
is defined as the centralizer in G2.K;K0/ of the outer automorphism �. This group
is simple if jKj > 3 and the multiplicative group of K is generated by all squares
together with �1, see [6]. In any case, the group generated by the root groups is
simple, provided jKj > 3, and it coincides with the derived group R0.K; �/. For
jKj D 3, R.K; �/ D R.3/ is isomorphic to PΓL2.8/ and contains PSL2.8/ as a
simple subgroup of index 3.

We can see the Ree–Tits ovoid and its automorphism group embedded in the
Ree hexagon as a representation of the Ree–Tits Moufang set. Henceforth, we
will denote by� the Ree–Tits ovoid, and by Ux , x 2 �, the root group fixing x in
the Ree–Tits Moufang set over the field K with associated Tits endomorphism � .

We will also need the explicit form of a generic element of the root group
U.0;0;0/, which we shall briefly denote by U0. This is best given by the action
on coordinates in the projective space. Such generic element u.0;0;0/

.x;x0;x00/
then looks

like (and x; x0; x00 are arbitrary in K):

Nx D .x0 x1 x2 x3 x4 x5 x6/

7! Nx �

0BBB@
1 f2.x;x

0;x00/ f3.x;x
0;x00/ x00 f1.x;x

0;x00/ �x0 �x
0 1 �x� 0 x0�x1C� 0 0
0 0 1 0 x 0 0
0 �x x0 1 �x00 0 0
0 0 0 0 1 0 0
0 x2 �x00�xx0 x p 1 0

0 r s �x0Cx1C� q x� 1

1CCCA ;
where 8̂̂̂̂

<̂
ˆ̂̂:
p D x3C� � x0� � xx00 � x2x0;
q D x00� C x�x0� � xx02 � x2C�x0 � x1C�x00 � x3C2� ;
r D x00 � xx0 C x2C� ;
s D x02 � x1C�x0 � x�x00;

see Section 9.2.4 of [9].
We are now ready to define the Ree geometries.

Brought to you by | Universiteit Gent (Universiteit Gent)
Authenticated | 172.16.1.226

Download Date | 7/3/12 5:30 PM



82 F. Haot, K. Struyve and H. Van Maldeghem

4 The Ree geometry

As already mentioned, the Ree groups have root groups of nilpotency class 3. As a
consequence, the geometries that we will define corresponding to the Ree groups
will have rank 3. This means that we will have two types of blocks in our geometry
and that blocks of one type are subsets of the others. In order to distinguish the two
types of blocks, we will call the “smallest” ones circles, and the others spheres.

The point set P of our Ree geometry G D .P ;B/ is the Ree–Tits ovoid. The
circles arise as orbits of a point y under the center Z.Ux/ for some point x 2
P n ¹yº, together with that point x. This particular point x is then called a gnarl
of this circle. So every point and gnarl defines a circle in a unique way. The
spheres are again a point x together with the orbit of some point y, y ¤ x, but
this time under the group U 0x D ŒUx; Ux�. The point x is a gnarl of the sphere.
The circles and spheres together form the block set B of G . The set of circles
will be denoted by C , and the set of spheres by S . We can define two further
geometries by restricting the set of blocks. We call the geometries GC D .P ;C/

and GS D .P ;S/ the truncated Ree geometries. The gnarls of circles and spheres
will turn out to be unique.

Let us be more concrete now and look for the coordinates of the circles and
spheres which have .1/ for gnarl.

We first claim that, if jKj > 3, then the group U 01 is precisely ¹.0; u0; u00/ j
u0; u00 2 Kº. Indeed, computing an arbitrary commutator, we get

Œ.u1; u
0
1; u
00
1/; .u2; u

0
2; u
00
2/�

D .0; u1u�2 � u2u�1; u01u2 � u1u02 � u1u1C�2 C u2u1C�1 /:

Noting that .0; x0; 0/ � .0; 0; x00/ D .0; x0; x00/, we only have to show that
.0; x0; 0/ 2 U 01, for all x0 2 K, and that .0; 0; x00/ 2 U 01, for all x00 2 K. Putting
u1 D u001 D u02 D u002 D 0, u01 D 1 and u2 D x00 in the above commutator, we see
that .0; 0; x00/ 2 U1. Now let x0 2 K be arbitrary. Since jKj > 3, there exists an
element t 2 K with t3 � t ¤ 0. Put k D t3 � t and let y D x0k�� . Putting u01 D
u02 D u001 D u002 D 0 and .u1; u2/ D .y; t3/, respectively .u1; u2/ D .t�y; 1/,
we obtain .0; t3�y � t3y� ; 0/ 2 U 01 and .0; t�y � t3y� ; 0/ 2 U 01. Multiply-
ing the former with the inverse of the latter, we see that .0; x0; 0/ 2 U 01, proving
our claim.

If jKj D 3, then U 01 has order 3 and coincides with the center (see below). In
this case, we will substitute U 0x by the subgroup of Ux generated by the elements
of order 3, and we will denote it, with abuse of notation, by U 0x (but there will be
no confusion possible), since for jKj > 3, the derived group coincides with the
group generated by elements of order 3 (as one can check easily).
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The center of U1 is the subgroup ¹.0; 0; u00/ j u00 2 Kº. Indeed, this follows
from the explicit form of the multiplication in U1 by standard arguments. Since
the commutator of an element .0; u01; u001/ 2 U 01 and .u2; u02; u002/ 2 U1 is

Œ.0; u01; u001/; .u2; u02; u002/� D .0; 0; u01u2/
D .0; 0; u00/;

with u00 essentially arbitrary, we see that the second derived group U 001 coincides
with the center Z.U1/.

Now, since the circles having .1/ as gnarl are the orbits of a point .a; a0; a00/
under the group ¹.0; 0; x/ j x 2 Kº, all circles with .1/ as gnarl are given by

¹.a; a0; a00 C x/ j x 2 Kº [ ¹.1/º D ¹.a; a0; t / j t 2 Kº [ ¹.1/º:
The spheres with gnarl .1/ have the following description:

¹a; a0 C x0; a00 C x00 C ax0 j x0; x00 2 Kº [ ¹.1/º
D ¹.a; t 0; t 00/ j t 0; t 00 2 Kº [ ¹.1/º:

We can now interpret the algebraic description of a circle and a sphere with
gnarl .1/ in the corresponding Ree hexagon H.K;K0/. We leave it as an easy
exercise to the reader to see that these circles and spheres look as follows: a circle
is the set of absolute points at distance 3 from a non-absolute line M , not going
through an absolute point. The unique absolute point for which its corresponding
absolute line intersects M is the gnarl of the circle. Likewise, a sphere is the set
of absolute points not opposite some non-absolute point p, with p lying on an
absolute line. The unique absolute point at distance 2 from p is the gnarl of the
sphere. Conversely, every such set is a circle or sphere, respectively. It follows
now easily that the gnarl of a circle and of a sphere is unique. These gnarls will
play a prominent role in our proofs.
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84 F. Haot, K. Struyve and H. Van Maldeghem

As an application we make the following important observation.

Lemma 4.1. A sphere contains only circles with the same gnarl. Also, the point
set of a sphere, except for its gnarl, is partitioned by the circles contained in the
sphere.

Proof. Let us consider a sphere and circle, and assume that this sphere’s gnarl is
the absolute point p while the gnarl of the circle is a different absolute point q.
The flags ¹p; p�º and ¹q; q�º determine an unique apartment † containing both
flags, and because both flags are absolute � will stabilize †. Denote the unique
line in † at distance 2 from q� and at distance 3 from p with L and the projection
of q on p� with r . Let a be a third absolute point on the circle different from both
p and q.

Because a lies on the circle with gnarl q through p, a lies at distance 3 from
L. Similarly a also lies at distance 4 from r because of the definition of a sphere.
The last statement implies that a� lies at distance 4 from the line r�. This line
r� intersects the line L, so the point a and the lines L; r�; a� are contained in a
ordinary 5-gon, which contradicts the definition of a generalized hexagon. This
proves the first assertion.

For the second assertion, we just consider the circles defined by the non-abso-
lute lines of H.K;K� / through the point defining the sphere in question.

5 Statement of main results

Given the construction of the circles and spheres in the corresponding Ree hexagon
H.K;K� /, it is clear that every collineation of H.K;K� / that commutes with the
polarity � induces a collineation of the Ree geometry and its truncations. Our main
results now say that also the converse holds. More precisely:

Main Result 1. The full automorphism group of the Ree geometry G D .P ;B/ is
the centralizer of � in the full collineation group of H.K;K� /.

Likewise, we will show:

Main Result 2. The full automorphism groups of the truncated Ree geometries
GC D .P ;C/ and GS D .P ;S/ coincide with the centralizer of � in the full
collineation group of H.K;K� /.

As a main consequence we will be able to show:

Main Corollary. The stabilizer of a Ree–Tits ovoid in the full collineation group
of H.K;K� / coincides with the centralizer of the corresponding polarity in the full
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collineation group of H.K;K� /. Consequently, any polarity is determined by its
set of absolute points.

The latter was already announced in [14] as Theorem 7.7.9, but not proved
there.

Another consequence is the following. We denote by G the centralizer of � in
the full collineation group of H.K;K� /, andG� denotes the simple subgroup ofG
generated by the unipotent elements (or, equivalently, the last term in the derived
series of G).

Second Corollary. The full automorphism group of the Moufang set naturally as-
sociated with G is G itself. Also, the full automorphism group of G� is G.

The first assertion is direct consequence of Main Result 1 and the second asser-
tion follows immediately from the first by using the uniqueness of the unipotent
subgroups of G, as proved in [1]. As far as we are aware of, this has not been
observed before in full generality, certainly not for the imperfect case (in the finite
case everything follows from the classification of finite simple groups, of course).

We will now prove these results.

6 Auxiliary tools

6.1 The derived geometry at .1/

We define the structure G 0 D .P 0;B0/, where P 0 D P n ¹.1/º, and B0 is the set
of blocks of G going through .1/, with .1/ removed. We call this the derived
geometry at .1/, inspired by a similar concept in the theory of designs. In or-
der to know the coordinates of the circles through .1/ we first write down the
coordinates of the circles with gnarl .1/. As we saw earlier, these are the sets

¹.a; a0; t / j t 2 Kº [ ¹.1/º; with a; a0 2 K:

Removing the point .1/ gives us the vertical line La;a0 . We now compute the
coordinates of the circle with gnarl .0; 0; 0/ through .1/. The point .1/ is identi-
fied with .1; 0; 0; 0; 0; 0; 0/, so its orbit under Z.U0/ (using the elements u.0;0;0/

.0;0;x00/
defined above) is the set

¹.1; f2.0; 0; x00/; f3.0; 0; x00/; x00; f1.0; 0; x00/; 0; 0/ j x00 2 Kº
D ¹.1; 0;�x00� ; x00; x002; 0; 0/ j x00 2 Kº:

Putting x D x00�2�� (and hence x00 D x�2C� ), adding the gnarl and deleting
the point .1/, we obtain the set ¹.x; 0;�x2C� / j x 2 Kº. The image of this set
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under .a; a0; a00/ 2 U1 is the set

¹.aC x; a0 C a�x; a00 C .a0 � a1C� /x � x2C� / j x 2 Kº;
which we call the ordinary line C.a;a0;a00/ (with gnarl .a; a0; a00/). Note that unlike
the vertical lines, these are not affine lines.

Just as we did for circles, we consider the spheres with gnarl .1/ and the other
spheres through .1/ separately.

The spheres with gnarl .1/ are the sets ¹.a; t 0; t 00/ j t 0; t 00 2 Kº [ ¹.1/º, with
a 2 K. Removing the point .1/ gives us the vertical plane Pa.

The orbit of .1/ under U 00, using the elements u.0;0;0/
.0;x0;x00/

is the set

¹.1; f2.0; x0; x00/; f3.0; x0; x00/; x00; f1.0; x0; x00/;�x0; 0/ j x0; x00 2 Kº
D ¹.1; x0� ;�x00� C x0x00; x00; x002 C x01C� ;�x0; 0/ j x0; x00 2 Kº

D
°� x00� � x0x00
x002 C x01C� ;

�x0�
x002 C x01C� ;

�x00
x002 C x01C�

�
j

K �K 3 .x0; x00/ ¤ .0; 0/
±
[ ¹.1/º:

Note that x002 ¤ �x01C� is equivalent with .x0; x00/ ¤ .0; 0/. Adding .0; 0; 0/,
the image of this sphere under .a; a0; a00/ 2 U1 is the set°� x00� � x0x00
x002 C x01C� ;

�x0�
x002 C x01C� ;

�x00
x002 C x01C�

�
� .a; a0; a00/ j

K �K 3 .x0; x00/ ¤ .0; 0/
±
[ ¹.a; a0; a00/; .1/º:

Removing the point .1/ gives us the ordinary plane S.a;a0;a00/ (with gnarl
.a; a0; a00/). Again note that these are not affine planes, while the vertical planes
are.

Notice that points of vertical planes have constant first coordinate, while the
points of an ordinary line never have constant first coordinate. This provides an
algebraic proof of Lemma 4.1.

6.2 Parallelism in this derived structure

We consider the set of points .x; x0; x00/ as an affine space in the standard way,
and call the planes affine planes. We assume that the coordinates are given with
respect to a basis with axes X; Y;Z.

First we remark that every ordinary line C.a;a0;a00/ completely lies in the affine
plane with equation Y D a�X C .a0 � a1C� /. We say that two ordinary lines
C1 and C2 are parallel if all vertical lines intersecting C1 intersect C2 – in that

Brought to you by | Universiteit Gent (Universiteit Gent)
Authenticated | 172.16.1.226

Download Date | 7/3/12 5:30 PM



Ree geometries 87

case the two ordinary lines lie in the same affine plane – or if there is no vertical
line intersecting both ordinary lines – which implies that the ordinary lines lie in
parallel, but disjoint, affine planes.

We claim that two ordinary linesC.a;a0;a00/ andC.b;b0;b00/ are parallel if and only
if a D b. Indeed, a vertical line meeting the ordinary line C.a;a0;a00/ must lie in the
affine plane Y D a�X C .a0 � a1C� /, so any vertical line meeting both C.a;a0;a00/
and C.b;b0;b00/ must lie in the intersection of´

Y D a�X C .a0 � a1C� /;
Y D b�X C .b0 � b1C� /:

This has a unique solution if and only if a ¤ b, proving our claim.
We have the following direct lemma.

Lemma 6.1. The gnarls of the ordinary lines of the parallel class of C.a;a0;a00/ are
exactly the points of the vertical plane Pa.

Proof. The above says that the set of gnarls of the lines of the parallel class of
C.a;a0;a00/ is given by ¹.a; t 0; t 00/ j t 0; t 00 2 Kº, which is exactly Pa.

6.3 Ree unitals

In Section 10, we will use the Ree unitals mentioned in the introduction. We do not
need a formal definition, or a complete description of them, but only the following
two facts: (1) two different points are joined by exactly one block of the Ree
unital, (2) the block through .1/ and .a; 0; a00/, with a and a00 2 K, is given by
¹.1/º [ ¹.a; t; a00 � at/ j t 2 Kº (see Chapter 7 of [14]).

If B is a unital block containing .1/, then we will call the set B n ¹.1/º an
affine unital block.

7 Automorphism group of the Ree geometry

General idea. We consider an automorphism ' of the Ree geometry. Without
loss of generality we may assume that ' fixes both .1/ and .0; 0; 0/. We will
prove that ' must preserve gnarls, and this will imply that it has to preserve the
parallelism we just defined. We then compute the algebraic form of ' and conclude
that it can be extended to H.K;K� /.

Lemma 7.1. The automorphism ' maps the gnarl of any sphere onto the gnarl of
the image of the sphere, and it maps the gnarl of any circle onto the gnarl of the
image of the circle under '.

Brought to you by | Universiteit Gent (Universiteit Gent)
Authenticated | 172.16.1.226

Download Date | 7/3/12 5:30 PM
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Proof. Any automorphism of � maps spheres onto spheres and circles onto cir-
cles, since every circle is properly contained in a sphere, but no sphere is properly
contained in any circle or sphere. Since the gnarl of a sphere is exactly the inter-
section of all circles contained in it (by Lemma 4.1), and there are at least two such
circles, ' preserves gnarls of spheres. But then ' must also preserve the gnarls of
these circles.

Since ' fixes the points .1/ and .0; 0; 0/, it acts on the derived structure G 0,
and the previous lemma implies that ' fixes the set of vertical lines. Therefore
the points .a; a0; z1/ and .a; a0; z2/ are mapped on the same vertical line. If we
represent ' as follows:

' W .x; y; z/ 7! .g1.x; y; z/; g2.x; y; z/; g3.x; y; z//;

then both g1 and g2 have to be independent of z and we write gi .x; y; z/ D
gi .x; y/, i D 1; 2.

The mapping ' preserves the parallel relation between ordinary lines, since the
number of vertical lines meeting two circles (i.e. none, one or all) is preserved un-
der '. This translates to g1 being independent of y. Indeed, two points .a; y1; z1/
and .a; y2; z2/ being the gnarls of two parallel ordinary lines are mapped onto
two gnarls of parallel ordinary lines, which implies that g1.a; y1/ D g1.a; y2/ for
every choice for y1 and y2.

The point .0; 0; 0/ is fixed by ', so the affine plane Y D 0 – which is the unique
affine plane containing both C.0;0;0/ and L0;0, and which consist of the union of
vertical lines all meeting C.0;0;0/ – is fixed by '. The plane Y D c1 – which is
also a union of vertical lines – must necessarily get mapped onto a plane Y D c2.
So g2.x; c1/ D g2.0; c1/ for every choice of x 2 K.

It follows that there are two permutations ˛ and ˇ of K such that .x; y; z/'

is equal to .x˛; yˇ ; g3.x; y; z//. Since ' preserves gnarls, it maps the ordinary
line C.a;b;c/ onto the ordinary line C.a˛;bˇ;g3.a;b;c//. Now notice that the point
.x; y; z/ can only be contained in the ordinary line C.a;b;c/ if y D bC a� .x � a/.
Expressing that the point .a C x; y; z/ lies on the circle C.a;b;c/ if and only if its
image under ' lies in C '

.a;b;c/
shows that, for all a; b; x 2 K,

.b C a�x/ˇ D bˇ C .a˛/� ..x C a/˛ � a˛/: (7.1)

Putting b D 0, and noting that 0˛ D 0ˇ D 0, we see that .a˛/� ..x C a/˛ �
a˛/ D .a�x/ˇ , which implies, by substituting this back in Equation (7.1), that
.b C a�x/ˇ D bˇ C .a�x/ˇ . So ˇ is additive. Put ` D 1˛. Then we see, by
setting a D 1 and b D 0 in the Equation (7.1) above, that

xˇ D `� ..x C 1/˛ � 1˛/; (7.2)
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so ˛ is additive if and only if .x C 1/˛ D x˛ C 1˛. Plugging in x D m � 1 in
Equation (7.2) we have that .m�1/ˇ D `� .m˛�1˛/. Because of the additivity of
ˇ we have on the other hand that .m�1/ˇ D mˇC.�1/ˇ D `� ..1Cm/˛�2 �1˛/.
So ˛ is additive as well.

We now have that xˇ D `�x˛. We can define the bijection � W K ! `�1K W
y 7! y� D `�1y˛ (note that 1� D 1). Plugging in these identities in equation
(7.1) yields

.b C a�x/� D b� C .a� /�x� ;
for all a; b; x 2 K. Putting a D 1, we see that � is additive; putting b D 0 and
x D 1, we see that � commutes with � . Putting b D 0, we see that .xy/� D x�y�
for x 2 K� and y 2 K. If x; y 2 K, then

..xy/� /� D ..xy/� /� D .x�y� /� D .x� /� .y� /� D .x� /� .y� /� D .x�y� /� ;
and the injectivity of � implies that � is an automorphism of K. Now the action of
' on a point .x; y; z/ is given by .x; y; z/' D .`x� ; `1C�y� ; g3.x; y; z//, for all
x; y; z 2 K.

Let us now investigate what g3.x; y; z/ looks like.
The point p with coordinates .a � a0

a�
; 0; a00 C .a0 � a1C� /.�a0

a�
/ � .�a0

a�
/2C� /

lies on both C.a;a0;a00/ and on the ordinary line with gnarl�
0; 0; a00 C .a1C� � a0/1C� C a01C�

a2C�
�
:

So its image under ' lies on the ordinary lines with respective gnarls�
`a� ; `1C�a0� ; g3.a; a0; a00/

�
;

�
0; 0; g3

�
0; 0; a00C.a

1C� � a0/1C� C a01C�
a2C�

��
:

This leads to8̂̂̂̂
<̂̂
ˆ̂̂̂:

g3.a � a0

a�
; 0; a00 � .a0�a1C� /a0

a�
C . a0

a�
/2C� /

D g3.a; a0; a00/ � `2C� .a02a� � aa0 � a02C�

a3C2�
/� ;

g3.a � a0

a�
; 0; a00 � .a0�a1C� /a0

a�
C . a0

a�
/2C� /

D g3.0; 0; a00 C .a1C��a0/1C�Ca01C�
a2C�

/ � .`.a � a0

a�
/� /2C� :

Putting these two equations together we get

g3.a; a
0; a00/ D g3

�
0; 0; a00 C .a0 � a1C� /1C� C a01C�

a2C�

�
� `2C�

�
.a0 � a1C� /1C� C a01C�

a2C�

��
;
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for every a 2 Kn¹0º and a0; a00 2 K. We want to extend this equation to one with
a D 0. To this end, we note that the point .0; a0; a00/ lies on every circle with gnarl
.A; a0 C A1C� ; a00 C a0A � A2C� /, with A 2 K. We now only consider A ¤ 0.
Then we take the image under ' and obtain that

g3.0; a
0; a00/ D g3.A; a0 C A1C� ; a00 C a0A � A2C� / � `2C� .Aa0 � A2C� /� :

We can now use the above expression for g3.a; a0; a00/ for a ¤ 0 to express
g3.0; a

0; a00/ in terms of g3.0; 0; z/, for some z 2 K. We carry this out explicitly,
and substitute a0 D B��1 and A D B2�� , and obtain after a tedious calculation

g3.0; B
��1; a00/ D g3.0; 0; a00 � B/C `2C�B� ;

for all B 2 K n ¹0º, and all a00 2 K. Substituting �B for B , we see that
g3.0; 0; a

00 �B/ D g3.0; 0; a00 CB/C `2C�B� . We may now put a00 D �B and
finally obtain that g3.0; 0; B/ D `2C�B� . Plugging this into the formulae above
for g3.a; a0; a00/, a ¤ 0, and g2.0; a0; a00/, we see that g3.a; a0; a00/ D `2C�a00� ,
for all a; a0; a00 2 K.

So the action of ' on a point .x; y; z/ is given by

.x; y; z/' D .`x� ; `1C�y� ; `2C�z� /;

with � and � commuting automorphisms of K. This action is the restriction to �
of the collineation of H.K;K� / defined by the following mapping on the points
and lines with five coordinates:´

.a; l; a0; l 0; a00/ 7! .`a� ; `�C3l� ; `�C2a0� ; `2�C3l 0� ; `�C1a00� /;
Œk; b; k0; b0; k00� 7! Œ`�k� ; `�C1b� ; `2�C3k0� ; `�C2b0� ; `�C3k00� �:

Now, it is easy to see that ' centralizes the polarity �, and so this completes the
proof of our Main Result 1.

8 Automorphism group of the truncated Ree geometry restricted to
points and circles

General idea. Let GC D .P ;C/ be the truncated Ree geometry, with C the
set of circles. We first prove that the gnarls of circles have to be mapped onto
gnarls of circles. Then we use the result from the previous section to prove that
the automorphism group of GC is equal to the automorphism group of the Ree
geometry G .
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We denote by GC
0 the derived geometry in .1/ (so the point set is P n ¹.1/º

and the blocks are the vertical and ordinary lines, as defined in Section 6.1).

Lemma 8.1. The full groupG of automorphisms of GC
0 has two orbits on the lines,

which are the vertical and the ordinary lines.

Proof. It is clear thatG acts transitively on both the set of vertical lines and the set
of ordinary lines (as G contains the corresponding Ree group), so we only have
to exclude the possibility of one orbit. We suppose this is the case and derive a
contradiction.

Consider, as previously, the point set P n¹.1/º as a 3-dimensional affine space
with point set ¹.a; a0; a00/ j a; a0; a00 2 Kº. We project it on the 2-dimensional
space ¹.a; a0; 0/ j a; a0 2 Kº by the standard projection map .a; a0; a00/ 7!
.a; a0; 0/. The projection of a vertical line La;a0 is the point .a; a0; 0/, and the
projection of an ordinary line C.a;a0;a00/ is the affine line Y D a�XC .a0�a1C� /.
The images of a parallel class of ordinary lines will form a parallel class of affine
lines in the 2-dimensional space. This implies that all these affine lines form the
line set of a net N , and a parallel class of ordinary lines is projected to a parallel
class in this net. (A net is a point-line geometry where for each point p not on a
line L, there exist an unique line incident with p, parallel with L.)

Let L be a vertical line and M a vertical or ordinary line disjoint from L. If M
is a vertical line then the projection of L and M are two points. If there exists
one ordinary line such that the projection contains both points, then translating
this back to the lines means through each point of L there is an (ordinary) line
intersecting M (by varying the third coordinate a00). If, on the other hand, there is
no projection of an ordinary line containing both points, then there is no (ordinary)
line intersecting both L and M .

If M is an ordinary line, then the projection of M is a certain affine line with
equation Y D a�X C .a0 � a1C� /. As no projection of an ordinary line is of
the form X D c with c 2 K a constant, there are points of M through which no
(ordinary) line passes that also intersects L (because we would have projections
of the form X D c). Also, there obviously are ordinary lines whose projection
contains the projection of L and intersect the projection ofM . The set of ordinary
lines projected to this projection forms a subset of a parallel class exactly one
member of which intersects both L and M . We conclude that there exist lines
intersecting both L and M , but not through each point of M .

In the above two paragraphs we proved that we can tell a vertical line from an
ordinary line if one vertical line is given. Using the hypothesis that there is only
one orbit on the lines, this implies that there is an equivalence relation on the lines
which is preserved by G. One of the equivalence classes is obviously the set of
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vertical lines. By transitivity it follows that through each point of GC
0 there is

exactly one line of a given equivalence class. We now claim that the other classes
are the parallel classes of ordinary lines. Indeed, if an ordinary line C.a;a0;a00/
lies in a certain equivalence class, then all lines C.a;a0;k/ with k 2 K lie in this
class, because there is a vertical line through each point of C.a;a0;a00/ intersecting
C.a;a0;k/. The subsets of the equivalence classes thus obtained are exactly the set
of lines projected to a common affine line. As two intersecting affine lines can be
viewed as the projection of two intersecting ordinary lines, two of these subsets are
parallel if and only if the corresponding affine lines are parallel. This implies that
the equivalence classes are subpartitions of the parallel classes. But since through
each point there has to be a line of each equivalence class, the latter must coincide
with a parallel class.

Now consider the ordinary line C.0;0;0/ and its parallel class � . We can conju-
gate the center of U.1/ to obtain an automorphism � 2 G that fixes the ordinary
lines in � , acts freely on the points of such a line, fixes the equivalence classes,
and maps .0; 0; 0/ to .1; 0;�1/.

Let .x; x0; x00/ be an arbitrary point of GC
0. This point lies on the ordinary line

C.0;x0;b/ D ¹.t; x0; bCx0t� t2C� / j t 2 Kº for t D x with b WD x00�x0xCx2C� .
As this ordinary line is an element of � , the point .x; x0; x00/� also lies on this
line. Hence there exists an fx0;b.x/ 2 K such that .x; x0; x00/� D .fx0;b.x/; x

0;
bC x0fx0;b.x/� fx0;b.x/2C� /. Notice that the middle coordinate is always fixed.

The vertical line Lx;x0 D ¹.x; x0; t / j t 2 Kº must be mapped to another
vertical line Lfx0;b.x/;x0 D ¹.fx0;b.x/; x0; t / j t 2 Kº. From this it follows that
the function f is independent from the the last coordinate. As both the first and
second coordinate are independent from the last, it follows that � induces an au-
tomorphism �0 on the net N , mapping .x; x0; 0/ to .fx0;b.x/; x0; 0/. Now �0 also
fixes every parallel class of N (the parallel class coming from � is even fixed
linewise) and maps .0; 0; 0/ to .1; 0; 0/ (because .0; 0; 0/� D .1; 0;�1/). It is now
easy to see that this implies fx0;b.x/ D xC 1. This gives us the following explicit
formula for �:

� W .x; x0; x00/ 7! .x C 1; x0; x00 � x0x C x2C� C x0.x C 1/ � .x C 1/2C� /
7! .x C 1; x0; x00 C x0 C x2C� � .x C 1/2C� /:

The image of the ordinary line C.1;1;0/ D ¹.1C t; 1C t;�t2C� / j t 2 Kº, using
the formula for �, is

C
�

.1;1;0/
D ¹.t � 1; t C 1;�t2C� � t2 C t1C� C t / j t 2 Kº:

This has to coincide with a certain ordinary line C.1;a0;a00/ D ¹.1 C s; a0 C s;

a00 C .a0 � 1/s � s2C� / j s 2 Kº (because the parallel class is preserved) with
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a0; a00 2 K. This yields the following system of equalities:8̂<̂
:
t � 1 D 1C s;
t C 1 D a0 C s;
�t2C� � t2 C t1C� C t D a00 C .a0 � 1/s � s2C� ;

which simplifies to 8̂<̂
:
s D t C 1;
a0 D 0;
t D a00 C 1 � t� :

If t D 0 the last equation gives us a00 D �1, but if we use t D 1, we obtain
a00 D 1, which is a contradiction as a00 is a constant. It follows that the hypothesis
of one orbit is false.

The following corollary follows directly:

Corollary 8.2. The gnarls of circles are mapped onto gnarls of circles.

Using the above and Lemma 6.1, one can reconstruct the spheres, giving the
following result (which is part of Main Result 2):

Corollary 8.3. The automorphism group of GC is equal to that of G .

9 Absolute points and lines of polarities in the Ree hexagon

We now show our Main Corollary in the formulation below. We note that our proof
will not use the full strength of our results proved so far. Indeed, we will only use
Corollary 8.2. The last few lines of the proof of the next corollary can be deleted
if we use Main Result 1.

Corollary 9.1. If a collineation � of a Moufang hexagon stabilizes the set of all
absolute points of some polarity, then it stabilizes the set of all absolute lines as
well.

Proof. By Theorem 7.3.4 and Theorem 7.7.2 of [14], any polarity � of a Moufang
hexagon is associated to a Ree group, so it is a polarity of the associated Ree
hexagon.

As mentioned before, a circleC of the Ree geometry is the set of absolute points
at distance 3 from a line M , not going through an absolute point. The collineation
� maps this set to the set of absolute points at distance 3 fromM � , which is again
a circle since M � clearly is not incident with any absolute point (as � stabilizes
the set of absolute points). It follows that � induces an automorphism of GC .
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The gnarl of C is the absolute point x such that the corresponding absolute line
x� intersects M . Corollary 8.2 now implies that the absolute line .x� /� intersects
M � . As .x�/� also contains x� and intersectsM � , it follows that .x� /� D .x�/� .
This means that the absolute line x� is mapped to another absolute line. Varying
C we now see that the set of all absolute lines is stabilized by � .

10 Automorphism group of the truncated Ree geometry restricted to
points and spheres

General idea. Let GS D .P ;S/ be the truncated Ree geometry with S the set of
spheres. We again prove that the gnarls of spheres have to be mapped onto gnarls
of spheres. As a consequence one can recognize certain automorphisms of the Ree
geometry generating the Ree group, from which the circles can be reconstructed
giving us the full Ree geometry G and its automorphism group.

We denote by GS
0 the derived geometry in .1/ (so the point set is P n ¹.1/º

and the blocks are the vertical and ordinary planes, as defined in Section 6.1).
We start with some small observations:

Lemma 10.1. A vertical plane and an ordinary plane always intersect.

Proof. By transitivity we can suppose that the vertical plane is given by

Pa D ¹.a; t 0; t 00/ j t 0; t 00 2 Kº; with a 2 K

and the ordinary plane by S.0;0;0/, which is the set°� x00� � x0x00
x002 C x01C� ;

�x0�
x002 C x01C� ;

�x00
x002 C x01C�

�
j K �K 3 .x0; x00/ ¤ .0; 0/

±
[ ¹.0; 0; 0/º:

If a D 0, then .0; 0; 0/ 2 Pa \ S.0;0;0/. If a ¤ 0, then, putting x0 D 0 and
x00 D a�2�� in the formula of S.0;0;0/ gives the point .a; 0;�a2C� /, which is also
a point of Pa.

Lemma 10.2. The intersection of P0 and S.0;0;0/ is given by the set ¹.0; t; 0/ j t 2
Kº [ ¹.0; t��1; t / j t 2 Kn¹0ºº.
Proof. Using the representations of P0 D ¹.0; t; t 0/ j t; t 0 2 Kº and

S.0;0;0/ D
°� x00� � x0x00
x002 C x01C� ;

�x0�
x002 C x01C� ;

�x00
x002 C x01C�

�
j

K �K 3 .x0; x00/ ¤ .0; 0/
±
[ ¹.0; 0; 0/º;
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we see that the points of the intersection are determined by the equation x00� �
x0x00 D 0. The solutions of this equation are given by x00 D 0 or x0 D x00��1.
The first set of solutions gives us ¹.0; t; 0/ j t 2 Kº, the second ¹.0; t��1; t / j t 2
Kn¹0ºº.

Note that P0 is the disjoint union of affine unital blocks. Indeed, the affine
blocks ¹.0; t; b/ j t 2 Kº, with b 2 K, partition P0. It is now clear that the
intersection of S.0;0;0/ and P0 contains exactly one affine unital block, and all
other affine unital blocks in P0 share exactly one point with that intersection.

Lemma 10.3. The ordinary planes S.0;0;0/ and S.0;a0;a00/ with a0; a00 2 K inter-
sect.

Proof. Since .0; a0; a00/ 2 U1 maps P0 to itself and S.0;0;0/ to S.0;a0;a00/, it fol-
lows from the paragraph preceding this lemma that P0 \ S.0;a0;a00/ contains an
affine unital block B . But from that same paragraph also follows that B shares a
point with P0 \ S.0;0;0/. That point is hence contained in S.0;0;0/ \ S.0;a0;a00/.

The above lemmas now allow us to prove the following analogue to Lemma 8.1.

Lemma 10.4. The full group G of automorphisms of GS
0 has two orbits on the

planes, which are the vertical and the ordinary planes.

Proof. As with the case of points and circles, it suffices to prove that the planes
cannot be all in one orbit. So suppose this is the case.

We call two vertical or ordinary planes parallel if they are disjoint or equal.
By the transitivity assumption on the planes and Lemma 10.1, for each point p
(different from .1/) and plane P , there is exactly one plane Q parallel to P and
containing p. Let $ be the parallel class where S.0;0;0/ belongs to. Because U1
preserves parallelism and acts regularly on the ordinary planes, the stabilizer V
of $ in U1 acts regularly on the planes in $ and S.a;a0;a00/ 2 $ if and only if
.a; a0; a00/ 2 V .

Let g D .a; a0; a00/ 2 U1 be a non-trivial element of V . Then, in view of
Lemma 10.3, a has to be different from 0. But as V is a group, g3 D .0; 0;�a2C� /
is also a non-trivial element of V , which does have as first coordinate 0, so the
hypothesis is false.

Lemma 10.5. In GS
0 the affine unital blocks are (geometric) invariants.

Proof. We will denote the intersection of a vertical plane through the point p with
the ordinary plane with gnarl p byWp. The setsWp are invariants of the geometry
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by virtue of Lemma 10.4. Lemma 10.2 implies that the affine unital block through
p is contained in Wp.

By transitivity, it suffices to construct the affine unital block B through .0; 0; 0/.
Let p 2 W.0;0;0/ be a point different from .0; 0; 0/. If p lies on B , then W.0;0;0/ \
Wp contains B itself and thus at least 4 points (as jKj > 3). Now suppose p … B ,
so p D .0; k��1; k/ for a certain k 2 K different from 0. Using .0; k��1; k/ as
an element of U1 and Lemma 10.2 we calculate that Wp D ¹.0; t C k��1; k/ j
t 2 Kº [ ¹.0; t��1 C k��1; t C k/ j t 2 Kn¹0ºº. The intersection W.0;0;0/ \Wp
contains two obvious intersection points on the affine unital blocks contained in
eitherW.0;0;0/ andWp. To look for more intersection points we need to investigate
whether or not it is possible to have .0; t��1 C k��1; t C k/ D .0; s��1; s/ for
certain s; t 2 Kn¹0º. Equality on the third coordinate gives us t C k D s, the
second gives us

s��1 D t��1 C k��1, .t C k/��1 D t��1 C k��1

, t2�� D �k2�� :
If we raise both hand sides of the last equation to the power 2C � , then we obtain
t D �k, implying s D 0, a contradiction.

Thus in this case we have that jW.0;0;0/\Wpj D 2. This allows us to recognize
the points of the affine unital block through .0; 0; 0/ as those for which jW.0;0;0/\
Wpj > 2.

Lemma 10.6. In GS , the circles of G are invariants.

Proof. Let p and q be two different points of GS and put G equal to the full
automorphism group of GS . Then we first want to determine the elements of G
which fix p and all the blocks of the unital through p within the sphere with gnarl
p through q. We will denote this group by GŒp;qŒ.

By 2-transitivity we can suppose that p D .1/ and q D .0; 0; 0/. The aim
is to prove that GŒ.1/;.0;0;0/Œ D ¹.0; t; 0/ j t 2 Kº DW H . It is easy to see
that these automorphisms satisfy the needed properties and act transitively (even
regularly) on the points of the affine unital block B through .0; 0; 0/. Suppose
there is another automorphism g which satisfies the properties. Then, possibly by
composing with a suitable element of H , we may assume that g fixes .0; 0; 0/.
This implies that the sphere with gnarl .0; 0; 0/ through .1/ is also fixed. By
Lemma 10.2 the points .0; k��1; k/ with k 2 Kn¹0º are also fixed, thus also
the blocks through .0; 0; 0/ in the sphere with gnarl .0; 0; 0/ through .1/, which
makes the situation symmetric in both points. We can also let the fixed points
of the form .0; k��1; k/ play the role of .0; 0; 0/, which yields the fixed points
.0; k��11 C k��12 C � � �C k��1n ; k1C k2C � � �C kn/ with ki 2 Kn¹0º by repeating
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the argument. Choosing n D 3 and k1 D �k2 D k3 D k with k 2 Kn¹0º gives
us the fixed points .0; 0; k/ for all k 2 K.

Interchanging the roles of the points .1/ and .0; 0; 0/, we obtain the fixed
points .k; 0;�k2C� / (to calculate these observe that .0; 0; k/ are the points differ-
ent from .1/ on the circle with gnarl .1/ through .0; 0; 0/, interchanging gives
us the points different from .0; 0; 0/ on the circle with gnarl .0; 0; 0/ through .1/).
If we let a fixed point .0; 0; l/ with l 2 K play the role of .0; 0; 0/, we obtain that
all the points of the form .k; 0; l/ with k; l 2 K are fixed points. On each affine
unital block lies a point of this form, so all affine unital blocks are fixed, and by
symmetry also the blocks of the Ree unital through .0; 0; 0/. It follows that all
points are fixed points, and that g is the identity.

The above proves that GŒp;qŒ is a subgroup of the root group Up and hence, if
jKj > 3, also a subgroup of the simple Ree group R0.K; �/. The group K gen-
erated by all groups of the form GŒp;qŒ is a normal subgroup of this Ree group
(indeed, if g is a automorphism of GS , then Gg

Œp;qŒ
D GŒpg;qgŒ). By simplicity, K

coincides with R0.K; �/. Now, by [1], the root groups of K are the unique unipo-
tent subgroups of K. Hence we can recover these root groups and consequently
also the circles constructed from these root groups.

If jKj D 3, then K is a normal subgroup of the Ree group R.3/ over the field
with 3 elements. But the groups GŒp;qŒ do not belong to the simple Ree group.
Hence, it is easy to see that K coincides with the Ree group R.3/ and, as above,
we can again recover the circles.

We have proved:

Corollary 10.7. The automorphism group of GS coincides with that of G .

This completes the proof of Main Result 2.
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