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The dietary flavonoid epicatechin has been reported to exhibit a wide range of biological activities. The objective of the present study was to

investigate the time-dependent regulation by epicatechin on the activity of the main transcription factors (NF-kB, activator protein-1 (AP-1)

and nuclear transcription factor erythroid 2p45-related factor (Nrf2)) related to antioxidant defence and survival and proliferation pathways in

HepG2 cells. Treatment of cells with 10mM-epicatechin induced the NF-kB pathway in a time-dependent manner characterised by increased

levels of IkB kinase (IKK) and phosphorylated inhibitor of kB subunit-a (p-IkBa) and proteolytic degradation of IkB, which was

consistent with an up-regulation of the NF-kB-binding activity. Time-dependent activation of the AP-1 pathway, in concert with enhanced

c-Jun nuclear levels and induction of Nrf2 translocation and phosphorylation were also demonstrated. Additionally, epicatechin-induced NF-kB

and Nrf2 were connected to reactive oxygen species intracellular levels and to the activation of cell survival and proliferation pathways, being

phosphatidylinositol-3-kinase/protein kinase B (PI3K/AKT) and extracellular regulated kinase (ERK) associated to Nrf2 modulation and ERK

to NF-kB induction. These data suggest that the epicatechin-induced survival effect occurs by the induction of redox-sensitive transcription factors

through a tight regulation of survival and proliferation pathways.

Epicatechin: NF-kB signalling: Activator protein-1: Nuclear factor-erythroid 2p45-related factor-2

Epidemiological studies have related a diet rich in fruits and
vegetables to the prevention of chronic degenerative diseases
linked to oxidative stress(1). Thus, the antioxidant activity of
polyphenols has widely been involved in the explanation of
their protective properties(2,3). Additionally, these protective
effects have been demonstrated to be mediated by mechanisms
not only related to their antioxidant activity(4,5).

Epicatechin is a flavonoid commonly found in the diet,
particularly abundant in cocoa(6,7). Numerous studies have
demonstrated that epicatechin possesses in vitro antioxidant
activity, can effectively scavenge free radicals(2,3) and may
play a role in modulating oxidative stress by preventing
reactive oxygen species (ROS) generation(4,5,8). Moreover,
epicatechin exerts a cytoprotective role since it activates
survival and proliferation pathways(4,5). In this regard, it
has been suggested that epicatechin might exert beneficial
actions by stimulating the antioxidant defence response

through the redox-regulated transcription factors and by
modulating gene expression and signal cascades, such as
mitogen-activated protein kinases (MAPK)(4,9,10). However,
further studies to elucidate its molecular mechanism of
action are needed.

A number of transcription factors have been connected to
the oxidative stress, such as NF-kB, activator protein-1
(AP-1) and nuclear factor erythroid 2p45-related factor-2
(Nrf2), which also modulate signalling pathways involved in
the regulation of cell detoxification, proliferation, survival,
death and differentiation(11,12). NF-kB is activated in the
cytoplasm by disruption of the association of NF-kB with
inhibitor of kB protein (IkB). The phosphorylation of IkB
by the IkB kinase (IKK) complex results in the degradation
of IkB, leading to the nuclear translocation of NF-kB where
it can transactivate NF-kB target genes involved in cell
proliferation, anti-apoptosis, survival, etc(13).
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AP-1 is a transcription factor associated with cell pro-
liferation, survival, differentiation, apoptosis and stress
responses(12,14,15). AP-1 is a dimer most commonly formed
by the combination of structurally and functionally related
members of the Jun protein family (c-Jun, JunB and JunD)
and the Fos protein family (c-Fos, FosB, Fra-1 and
Fra-2)(12,15,16). AP-1 induction is modulated by different
mechanisms, one of which is mediated by the MAPK cascade,
such as c-jun amino-terminal kinase(14). Once activated, c-jun
amino-terminal kinase phosphorylates and activates c-Jun,
which enhances the AP-1 transcriptional activity.

Nrf2 plays a central role in the induction of phase II detox-
ifying enzymes through its binding to the antioxidant response
element. The primary control of Nrf2 function lies on its
subcellular distribution rather than on the induction of the pro-
tein(11,17). Nrf2 is sequestered in the cytoplasm as an inactive
complex with its cytosolic repressor Kelch-like erythroid cell-
derived protein with CNC homology (ECH)-associated protein
1 (Keap-1). Dissociation of Nrf2 from Keap-1 is crucial for its
nuclear translocation, followed by binding to the DNA and
activation of cytoprotective genes(18). In addition, different
signal transduction pathways related to cell survival and
proliferation (MAPK, phosphatidylinositol-3-kinase/protein
kinase B (PI3K/AKT), protein kinase C) might regulate
Nrf2(11,17). Indeed, Nrf2 phosphorylation by different kinases
at multiple sites seems to be an important mechanism in
Nrf2-mediated antioxidant response element activation and
in regulating the stability of this transcription factor(19,20).

Redox-sensitive transcription factor (NF-kB, AP-1 and
Nrf2) pathways are known to be important molecular targets
in chemoprevention(21). A cross-talk between upstream signal-
ling pathways (MAPK, PI3K and protein kinase C) leading to
differential modulation of these transcription factors appears
to connect them, although evidence confirming a direct link
among the transcription factors Nrf2, NF-kB and AP-1 is lack-
ing. Epicatechin seems not to affect AP-1 activity(22), but
stimulates Nrf2 nuclear translocation(23) and inhibits NF-kB
activity(24) in astrocytes and lymphoma cells, respectively,
similarly to the epicatechin dimer, procyanidin B2(25). On
the other hand, this flavanol and its dimer can inhibit NF-kB
activation induced by various agents(26,27). However, compar-
able studies about the mechanisms underlying the chemopre-
ventive effects of epicatechin alone related to transcription
factors are limited. Most of these studies have been carried
out after long-term treatments, but potential variations of the
observed effects could take place in a time-dependent manner.

The present study analyses the influence of epicatechin,
followed over time, on the mechanisms related to the
regulation of major transcription factors (NF-kB, AP-1 and
Nrf2) in HepG2 cells. Results demonstrate that the survival
effect of epicatechin is due to the early-initiated merged
induction of critical redox-sensitive transcription factors
linked to pro-survival pathways.

Experimental methods

Materials and chemicals

Epicatechin, 40,6-diamidino-2-phenylindole, diphenyleneiodo-
nium (DPI), wortmannin, 2-(2-amino-3-methoxyphenyl)-4H-
1-benzopyran-4-one (PD98059), bovine serum albumin,

gentamicin, penicillin G and streptomycin were purchased
from Sigma Chemical (Madrid, Spain). Anti-NF-kB p65
(sc-7151 and sc-372), anti-IKKa (sc-7218 and sc-7607),
anti-IkBa (sc-371), anti-phospho-Ser32-IkBa (sc-21869-R),
anti c-Jun (sc-1694), anti-Nrf2 (C-20, sc-722), anti-Nrf2
(H-300, sc-13032), anti-poly(ADPribose)polymerase (anti-
PARP) (sc-7150) and anti-growth factor receptor-bound
protein 2 (sc-255) were purchased from Santa Cruz Biotech-
nology Inc. (Santa Cruz, CA, USA). Alexa Fluor 594 goat
anti-rabbit IgG (H þ L) (A11012) and anti-b-actin (4697)
were obtained from Molecular Probes (Invitrogen, Merelbeke,
Belgium) and Cell Signalling Technology (Izasa, Madrid,
Spain), respectively. Reagents and consensus oligonucleotides
for the electrophoretic mobility shift assays were from
Promega (Madrid, Spain). Materials and chemicals for electro-
phoresis were from BioRad (Madrid, Spain). Cell-culture
dishes and cell-culture medium were from Falcon (Cajal,
Madrid, Spain) and Biowhitaker Europe (Lonza, Madrid,
Spain), respectively. Vectashield was obtained from Vector
Laboratories, Inc. (Burlingame, CA, USA).

Cell culture, epicatechin treatment and obtaining
of cell lysates

Human hepatoma HepG2 cells were grown in Dulbecco’s
modified Eagle F-12 medium supplemented with 2·5 % fetal
bovine serum and antibiotics (50 mg/l; penicillin, streptomycin
and gentamicin). Cells were kept at 378C in a humidified
atmosphere with 5 % CO2.

To study the time-course effects of epicatechin, cells were
grown in serum-free Dulbecco’s modified Eagle F12
medium for 24 h before the assay, because the growth factors
contained in the fetal bovine serum might influence the results.
Subsequently, cells were treated with 10mM-epicatechin and
harvested at different incubation times (0, 5, 10, 15, 30, 60,
120, 240 and 1080 min).

In the experiments with epicatechin and the ROS scavenger,
DPI, cells were pre-incubated with DPI (20mM) for 30 min
before 10mM-epicatechin treatment during 240 or 1080 min.
Similarly, when cells were treated with epicatechin and the
inhibitors wortmannin (200 nM) or PD98059 (50mM), cells
were pre-incubated for 2 h with the inhibitor before flavanol
(10mM) treatment for 240 or 1080 min.

To obtain the total cell lysates and detect IkB and
phosphorylated IkB, cells were harvested after different
incubation times with epicatechin and centrifuged at 300 g,
48C for 5 min. Cells were lysed in cold buffer composed of
25 mM-HEPES (pH 7·5), 0·3 M-NaCl, 1·5 mM-MgCl2, 0·2 mM-
EDTA, 0·5 mM-dithiothreitol, 0·1 % Triton X-100, 200 mM-
b-glycerolphosphate, 0·1 mM-Na3VO4, 2mg/ml leupeptin and
1 mM-phenylmethylsulfonyl fluoride(28). Lysates were centri-
fuged at 10 000 g, 48C for 10 min. The supernatant fractions
were collected to determine protein concentration by the
Bio-Rad (Madrid, Spain) protein assay kit, and total cell
lysates were sampled and stored at 2808C until use for Western
blotting analysis.

To obtain the nuclear and cytosolic cell lysates and detect
NF-kB, IKK, c-Jun and Nrf2, cells were incubated with cold
lysis buffer A, containing 10 mM-HEPES (pH 7·9), 1·5 mM-
MgCl2, 10 mM-KCl, 0·5 mM-dithiothreitol and 0·2 mM-phenyl-
methylsulfonyl fluoride for 10 min. Next, samples were
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centrifuged at 10 000 g, 48C for 10 min and the supernatant
fractions (cytosolic cell extracts) were collected to determine
protein concentration. Pellets were re-suspended in cold lysis
buffer B, composed of 20 mM-HEPES (pH 7·9), 25 % glycerol,
420 mM-NaCl, 1·5 mM-MgCl2, 0·2 mM-EDTA, 0·5 mM dithio-
threitol, 2·5mg/ml leupeptin, 0·2 mM-phenylmethylsulfonyl
fluoride and 2·5mg/ml aprotinin, and kept for 20 min on
ice. Samples were centrifuged at 14 000 g, 48C for 10 min
and the supernatant fractions (nuclear cell extracts) were
collected to analyse protein concentration. Both cell extracts
were stored at 2808C until use for Western blotting or
electrophoretic mobility shift assay.

Protein analysis by Western blotting

Equal amounts of protein (100mg) were separated by SDS-
PAGE. Proteins were transferred to polyvinylidene difluoride
filters (Protein Sequencing Membrane; Millipore, Madrid,
Spain). Membranes were incubated with the corresponding
primary antibody and then with peroxide-conjugated anti-
rabbit Ig as the secondary antibody (GE Healthcare, Madrid,
Spain). Blots were developed with the ECL Western blotting
detection reagents (GE Healthcare, Madrid, Spain). Anti-
growth factor receptor-bound protein-2 and anti-poly(ADPri-
bose)polymerase (anti-PARP) antibodies were used as markers
for the cytosolic and nuclear extracts, respectively. Equal
loading of Western blot was ensured by b-actin and band
quantification was carried out with a scanner and the Scion
Image software (Scion Corp., Frederick, MD, USA).

Electrophoretic mobility shift assay

Equal amounts of protein (5–10mg) were incubated for 20 min
at room temperature with NF-kB or AP-1-a-32P-labelled con-
sensus oligonucleotides in binding buffer, as previously
described(29). Labelling was performed by using T4 polynucleo-
tide kinase and a-32P-labelled deoxyadenosine triphosphate,
being NF-kB and AP-1 consensus oligonucleotides: 50-AGTT-
GAGGGGACTTTCCCAGGC-30 and 50-CGCTTGATGAGT-
CAGCCGGAA-30, respectively. The binding reaction mixture
contained 0·5 ng of doubled-stranded oligonucleotide probe,
1mg of poly(dI-dC) and nuclear extracts in 2ml incubation
buffer (50 mM-2-amino-2-hydroxymethyl-propane-1,3-diol
(Tris)–HCl (pH 7·5), 250 mM-NaCl, 5 mM-MgCl2, 2·5 mM-
EDTA, 2·5 mM-dithiothreitol and 20 % glycerol). Samples
were loaded on a 6 % polyacrylamide gel and were separated
via electrophoresis at 150 mV in 0·53 mM-Tris–borate–EDTA
running buffer for 2–3 h, at room temperature. Then, the gel
was autoradiographed and the complexes quantified by using
a scanner and accompanying software.

Immunofluorescence microscopy

Immunofluorescence assays were performed as previously
described(30,31). Briefly, HepG2 cells were seeded (25 000
cells/well) on glass coverslips with Dulbecco’s modified
Eagle F-12 medium supplemented with fetal bovine serum
for 24 h and changed to serum-free medium 24 h before the
assay. After incubation with epicatechin for the indicated
times, cells were washed with PBS at room temperature and
then fixed with 3·7 % paraformaldehyde for 10 min at room
temperature. Cells were rinsed with PBS, permeabilised with

ice-cold acetone and subsequently blocked with 1 % bovine
serum albumin. Cells were incubated with the corresponding
primary antibody, as indicated in the legends of Figs. 2
and 6, and then incubated with the anti-rabbit Alexa Fluor-
594 conjugated secondary antibody. Nuclei were visualised
by using 6-diamidino-2-phenylindole staining. The coverslips
were mounted in Vectashield and images were taken with
a Zeiss Axiovert 200M immunofluorescence microscope
(Carl Zeiss Microimaging GmbH, Munich, Germany) at 63 £

magnification. AxioVisionRel 4.6 software was used for the
analysis of the images obtained.

Statistics

Before statistical analysis, data were tested for homogeneity of
variances by the test of Levene; for multiple comparisons,
one-way ANOVA was followed by the Bonferroni test when
variances were homogeneous or by the Tamhane test when
variances were not homogeneous. P,0·05 was considered
significant. SPSS (version 15.0; SPSS, Inc., Chicago, IL,
USA) was used.

Results

Time-course effects on NF-kB pathway

NF-kB regulation. To study the time-course effect of epica-
techin on NF-kB in HepG2 cells, cytosolic and nuclear
NF-kB(p65) levels were analysed. As shown in Fig. 1(A)
and (B), epicatechin increased the nuclear translocation of
NF-kB after 5 min of treatment and remained enhanced up
to 240 min, observed by the remarkable augmentation in
the relative amount of nuclear v. cytosolic NF-kB levels.
The nuclear:cytosolic NF-kB ratio returned to control levels
at 1080 min (Fig. 1(A) and (B)).

Phosphorylation and degradation of inhibitor of kBa
protein. To further investigate the regulation of upstream
components of the NF-kB signalling pathway, IkBa modu-
lation was studied. Epicatechin induced the phosphorylation
of IkBa after a short incubation time (5 min), which was
maintained up to 10 min and then slowly decreasing to control
levels (15–1080 min) (Fig. 2(A) and (B)).

IkBa degradation was observed after 5 min of treatment
with epicatechin and remained diminished until 240 min
(Fig. 2(A) and (C)). Additionally, fluorescence microscopy
showed the cytosolic localisation of IkBa as well as its degra-
dation (Fig. 2(D)). In this analysis, IkBa levels were clearly
decreased up to 240 min, returning to control levels at
1080 min of incubation (Fig. 2(D)).

Regulation of the IkB kinase complex. IKK is a complex
composed of two catalytic subunits (IKKa and IKKb) and a
regulatory subunit (NF-kB essential modifier (NEMO)/
IKKg), which are upstream kinases of IkBa(32). Recent
studies have provided evidence that IKK subunits also trans-
locate into the nucleus to regulate NF-kB-dependent and
-independent gene expression(32). To gain more insight into
the NF-kB pathway regulation, cytosolic and nuclear levels
of both catalytic subunits of IKK (IKKa/b) were analysed.
Western blot analysis demonstrated that cytosolic IKKa

levels were increased after 5 min of treatment, and remained
enhanced up to 2 h, showing lower levels than controls after
18 h of incubation (Fig. 3(A) and (B)). An opposite effect
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was observed on the cytosolic IKKb levels, which clearly
decreased after 5 min up to 240 min, returning to control
values after 1080 min of treatment (Fig. 3(A) and (B)).

In the nucleus, after a prior enhancement of the IKKa levels
at 5–10 min of incubation, epicatechin induced a decrease at
15 min, which was maintained up to 1080 min (Fig. 3(A)
and (C)). Parallel to this, epicatechin evoked an increase in
the nuclear IKKb levels, which remained enhanced up to
60 min to return to control levels from 120 min of treatment
onwards (Fig. 3(A) and (C)).

Time-course effects on NF-kB activity

To further investigate the time-course effect of epicatechin
on the NF-kB pathway, NF-kB DNA-binding activity was
studied. Epicatechin induced an early increase of NF-kB
activity (5 min), which remained enhanced up to 240 min
and reached control values at the longest incubation time
(1080 min) (Fig. 4).

Time-course modulation of activator protein-1 and c-Jun

To study the time-dependent epicatechin effect on AP-1
DNA-binding activity, as well as on cytosolic and nuclear
c-Jun levels, both parameters were assayed for the indicated-
times.

Activator protein-1 DNA-binding activity. Epicatechin
induced an early increase of the AP-1 DNA-binding activity
(5 min), which remained higher than controls up to
1080 min (Fig. 5).

Fig. 2. Time-dependent effect of epicatechin on phosphorylated inhibitor of

kB protein (p-IkB)-a (Ser32) and total IkBa levels. (A) Representative blots.

Normalisation of Western blots, either p-IkBa or total IkBa levels, was

ensured by b-actin. (B) Percentage values of p-IkBa levels relative to the

control condition, determined by densitometric quantification. Values are

means (n 6), with standard deviations represented by vertical bars. a,b Mean

values with unlike letters were significantly different (P,0·05). (C) Percent-

age values of total IkBa levels relative to the control, determined by densito-

metric quantification. Values are means (n 6), with standard deviations

represented by vertical bars. a–e Mean values with unlike letters were

significantly different (P,0·05). (D) Immunofluorescence images of time-

dependent status and cellular localisation of IkBa (red signal). 6-Diamidino-

2-phenylindole (DAPI) staining was used to visualise nuclei (blue signal).

These results are representative of two independent experiments.

Fig. 1. Time-dependent effect of epicatechin on modulation of NF-kB(p65)

cytosolic (cyt) and nuclear (nuc) levels. (A) Bands of representative experi-

ments. Anti-growth factor receptor-bound protein-2 (GRB2) and anti-poly

(ADPribose)polymerase (anti-PARP) antibodies were used as markers for

the cyt and nuc extracts, respectively. (B) Nuc:cyt NF-kB ratio of bands

determined by densitometric quantification. Values are means (n 6), with

standard deviations represented by vertical bars. a,b,c Mean values with unlike

letters were significantly different (P,0·05).
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Subcellular levels and localisation of c-Jun. As shown in
Fig. 6, c-Jun protein was mainly located in the nucleus of
HepG2 cells. In agreement with the previous results of AP-1
activity, epicatechin induced an early enhancement of the
nuclear c-Jun protein levels (5 min), which was sustained up
to the longest incubation time (1080 min) (Fig. 6(A)). The
nuclear localisation of the protein was also shown by the
immunofluorescence analysis (Fig. 6(B)).

Time-course nuclear transcription factor erythroid
2p45-related factor-2 modulation

To assess the implication of Nrf2 on epicatechin effects,
time-course studies on the nuclear and cytosolic levels of
this transcription factor were performed. No phosphorylated
Nrf2 (100 kDa) was detected in the cytosolic fractions of
HepG2 cells. Epicatechin concurrently increased nuclear

translocation of Nrf2 (57 kDa) and nuclear content of phos-
phorylated Nrf2 (100 kDa) after 15 min of treatment
(Fig. 7(A)–(C)). This effect remained for up to 240 min as
can be deduced from the increment in the nuclear content
and nuclear:cytosolic ratio of Nrf2 (Fig. 7(A)–(C)). Control
levels were attained at 1080 min of incubation.

Epicatechin-induced nuclear transcription factor erythroid
2p45-related factor-2 and NF-kB expressions are mediated by
reactive oxygen species, phosphatidylinositol-3-kinase and
extracellular regulated kinase 1/2

Nrf2 and NF-kB have also been related to ROS and survival
and proliferation pathways(11,13,17). Since an epicatechin-
dependent ROS attenuation and AKT and ERK activation
have been reported(4,5), the possible implication of these
factors on the regulation of NF-kB and Nrf2 expressions
was analysed after 4 and 18 h of incubation. As shown in
Fig. 8(A)–(D), DPI prevented the phosphorylation and nuclear
translocation of Nrf2 induced by the flavanol at 4 h, which
were also diminished below control levels at the longest incu-
bation time (18 h), as shown by the remarkable decrease in the
nuclear phosphorylated content and nuclear:cytosolic ratio.
Both the nuclear:cytosolic ratio and nuclear phosphorylated
Nrf2 levels (100 and 57 kDa, respectively) remained unaltered
after treating control cells with DPI at 4 and 18 h. On the other

Fig. 3. Time-course effect of epicatechin on cytosolic (cyt) and nuclear (nuc)

IkB kinase (IKK)-a and IKKb levels. (A) Representative blots. Anti-growth

factor receptor-bound protein-2 (anti-GRB2) and anti-poly(ADPribose)poly-

merase (anti-PARP) antibodies were used as markers for the cyt and nuc

extracts, respectively. (B) Percentage values of cyt levels of IKKa (B) and

IKKb (A) relative to the control conditions, determined by densitometric

quantification. Values are means (n 6), with standard deviations represented

by vertical bars. a,b,c Mean values (for IKKa or IKKb) with unlike letters were

significantly different (P,0·05). (C) Percentage values of nuc levels of IKKa

(B) and IKKb (A) relative to the control conditions, determined by densito-

metric quantification. Values are means (n 6), with standard deviations

represented by vertical bars. a,b,c Mean values (for IKKa or IKKb) with unlike

letters were significantly different (P,0·05).

Fig. 4. Time-course effect of epicatechin on NF-kB activity. (A) Representa-

tive autoradiography of NF-kB electrophoretic mobility shift assay (EMSA).

( ˆ ), Positions of specific NF-kB–DNA complexes. Negative controls (2 )

without nuclear extract and positive controls (þ ) with a pure HeLa nuclear

extract were included in each experiment. To determine the specificity of the

NF-kB–DNA complexes, a nuclear fraction was incubated in the presence of

100-fold excess of unlabelled oligonucleotide containing the consensus

sequence for either an unspecific competitor (activator protein-1; AP-1) or

specific competitor (NF-kB) before the binding assay. (B) NF-kB activity as a

percentage relative to the control condition, determined by densitometric

quantification. Values are means (n 6), with standard deviations represented

by vertical bars. a,b,c Mean values with unlike letters were significantly

different (P,0·05).
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hand, DPI treatment also decreased the epicatechin-induced
NF-kB levels at both tested times (Fig. 8(E) and (F)), resulting
in the inhibition of NF-kB(p65) nuclear translocation. DPI
alone provoked an inhibition of the NF-kB translocation at
18 h, although levels similar to controls were observed after
4 h of incubation.

Treatment of HepG2 cells with wortmannin, an inhibitor of
AKT, followed by addition of epicatechin (10mM), diminished
the Nrf2-induced activation (57 and 100 kDa Nrf2 levels),
returning to control levels at 4 h. After 18 h of incubation,
the nuclear phosphorylated content and nuclear:cytosolic
ratio of Nrf2 (100 and 57 kDa) decreased below control
levels (Fig. 9(A)–(D)). NF-kB nuclear translocation was unal-
tered after treating the cells with epicatechin and wortmannin
at both times (4 and 18 h) (Fig. 9(E) and (F)). In addition,
wortmannin alone inhibited phosphorylation and nuclear
translocation of Nrf2 and did not alter the nuclear:cytosolic
ratio of NF-kB at both incubation times (Fig. 9).

Inhibition of epicatechin-induced ERK activation by the
ERK selective inhibitor PD98059 after 240 min of incubation
led to nuclear phosphorylated levels and a nuclear:cytosolic
ratio of Nrf2 (100 and 57 kDa) comparable with those of con-
trols at 4 h of treatment (Fig. 10(A)–(D)). Similarly, a
decrease in Nrf2 phosphorylation and nuclear translocation
was observed at 18 h in epicatechin þ PD98059-treated cells
(Fig. 10(A)–(D)). In addition, Nrf2 phosphorylation and trans-
location were inhibited by PD98059 incubation at 1080 min in
control cells (Fig. 10(A)–(D)). Selective blockage of ERK by
PD98059 resulted in the inhibition of NF-kB translocation
after 4 and 18 h of incubation with epicatechin and PD98059
(Fig. 10(E) and (F)). Moreover, PD98059 alone did not
alter the subcellular localisation of NF-kB after 4 and 18 h
of incubation (Fig. 10(E) and (F)).

Discussion

Polyphenols have been shown to possess anti-inflammatory,
anti-thrombogenic, antioxidant and anticarcinogenic activi-
ties(1,9,33). Recently, much interest has been focused on analys-
ing these biological properties, as polyphenolic compounds
seem to act on cellular oxidative stress, antioxidant metab-
olism, cell-cycle regulation, induction and/or suppression of
apoptosis and cell signalling(9,10). Since NF-kB, AP-1 and
Nrf2 play a central role in the cell antioxidant defence,
survival and proliferation, these transcription factors were
investigated as epicatechin targets. We have reported that
epicatechin (10mM) induces an enhancement of the intrinsic
cellular tolerance against oxidative insults, a transient attenu-
ation of intracellular ROS levels and a sustained activation
of major survival and proliferation signalling proteins (AKT,
ERK, etc), in concert with an early inactivation of key
death-related signals(4,5). In the present study, we show that
epicatechin transiently activates the NF-kB cascade and
Nrf2 signalling by stimulating PI3K/AKT and ERK pathways
and induces a sustained enhancement of AP-1-binding-activity
by up-regulating the nuclear levels of c-Jun.

It is noteworthy to mention that the concentration of 10mM-
epicatechin used in the study is not far from realistic. In
human subjects, levels of 0·2–0·4mM-epicatechin have been

Fig. 5. Time-course-dependent effect of epicatechin on activator protein-1

(AP-1) activity. (A) Representative autoradiography of AP-1 electrophoretic

mobility shift assay (EMSA). ( ˆ ), Positions of specific AP-1–DNA com-

plexes. Negative controls (2 ) without nuclear extract and positive controls

(þ ) with a pure HeLa nuclear extract were included in each experiment. To

determine the specificity of the AP-1–DNA complexes, a nuclear fraction

was incubated in the presence of 100-fold excess of unlabelled oligonucleo-

tide containing the consensus sequence for either an unspecific competitor

(activator protein-2; AP-2) or specific competitor (AP-1) before the binding

assay. (B) AP-1 activity as a percentage relative to the control condition,

determined by densitometric quantification. Values are means (n 7), with

standard deviations represented by vertical bars. a,b,c Mean values with unlike

letters were significantly different (P,0·05).

Fig. 6. Time-dependent effect of epicatechin on cytosolic (cyt) and nuclear

(nuc) levels and subcellular localisation of c-Jun. (A) Representative bands

(n 3). Anti-growth factor receptor-bound protein-2 (anti-GRB2) and anti-poly

(ADPribose)polymerase (anti-PARP) antibodies were used as markers for

the cyt and nuc extracts, respectively. (B) Immunofluorescence images of

the subcellular localisation of c-Jun (red signal). 6-Diamidino-2-phenylindole

(DAPI) staining was used to visualise nuclei (blue signal). These results are

representative of two independent experiments.
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observed after ingestion of 50 g(34) and 80 g(35) chocolate and
426 ml green tea containing 76·5 mg epicatechin(36). More-
over, rats fed with epicatechin showed plasma concentrations
of epicatechin and epicatechin metabolites of about 35mM at
1 h after oral administration of 172mmol epicatechin/kg
body weight(37). However, at present the potential contribution
of the epicatechin metabolites to the biological activity
is unclear and it should not be underestimated(38,39); its evalu-
ation will require further studies. In this regard, a more
accurate approach recently used is the incubation of cultured
cells with plasma obtained from volunteers consuming the
molecule or food of interest(40).

Activation of the NF-kB signalling pathway by epicatechin
appeared to be mediated by an early increase of the NF-
kB(p65) nuclear translocation, which was accompanied by
transiently increased phosphorylated IkBa levels and sub-
sequent proteolytic degradation of IkB, consistent with the
increased NF-kB-binding activity. Later, phosphorylation of
IkBa was returned to control levels by the epicatechin treat-
ment, suggesting that the stimulating effects of this polyphenol
occur upstream of IkBa(13). In this regard, it has been reported
that IKKb plays a main role in NF-kB activation and that its
absence causes death due to extensive liver damage from
apoptosis(32), while IKKa is crucial for a correct development
as well as for cell proliferation and differentiation(32). More-
over, recent studies have demonstrated that IKK subunits
can translocate into the nucleus where IKKa, among other
activities, mediates NF-kB transcription and cell prolifer-
ation(32,41), although the nuclear accumulation of this protein
has been related to the promotion of apoptosis through a
novel molecular mechanism(42). Nuclear IKKb would recruit
to NF-kB-dependent promoters, such as IkB(32,43). Therefore,
early epicatechin-induced IKKa and IKKb nuclear transloca-
tion could be correlated to the enhanced NF-kB-binding
activity by IKKa and to IkB phosphorylation by IKKb.
In addition, several studies have also reported that IKKb

phosphorylates multiple NF-kB(p65) sites, suggesting that
this catalytic subunit is not only involved in the pathway leading
to IkB degradation, but also in the pathway leading to NF-kB
phosphorylation and transactivation(43,44). All this is in agree-
ment with previously reported stimulatory effects of IKK
induced by other flavonoids in Chang liver cells(45). However,
in different cell types, under NF-kB-stimulated conditions
other authors have reported inhibitory effects evoked by epica-
techin, such as decreased NF-kB(p65) levels and IKK phos-
phorylation, inhibition of both NF-kB nuclear translocation
and NF-kB-binding activity, as well as inhibition of the induc-
tion of IkB phosphorylation and degradation(24,26,27,46).

Numerous reports have demonstrated that AP-1, in addition
to its pro-apoptotic function, is also critically involved in cell
survival, proliferation, transformation and differentiation(15).
An extended explanation for these functions is that a robust
and persistent activation of AP-1 in DNA-damaged cells may
trigger apoptosis, but the activation of AP-1 in capable prolif-
erative cells promotes proliferation and survival(14,15). In this
regard, recent studies have demonstrated that the activation of
the AP-1 signalling pathway controls cell proliferation through
cell-cycle regulation in hepatocytes and other cell types(15).
Opposite to the activation of AP-1 described in the present
paper, several studies have reported that epicatechin alone is
unable to modify AP-1 activity even in the presence of AP-1
stimulators(22,47), although at higher concentrations (100mM)
epicatechin induces an inhibitory effect on AP-1 activity
together with a slightly decreased cell viability(22). The diver-
gence for AP-1 activity modulation could be related to the
specific modulation of transcription factors for the different
cell types(48,49) and to the different concentrations of the
flavanol used.

Expression of AP-1 genes is regulated by the phosphorylation
and the expression of individual AP-1 components (Jun and
Fos). Jun expression is required for fetal hepatocyte survival,
whereas in differentiated hepatocytes it is essential for cell-
cycle progression(15). Moreover, Jun and NF-kB can collaborate

Fig. 7. Time-course effect of epicatechin on cytosolic (cyt) and nuclear (nuc)

nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) levels (100

and 57 kDa). (A) Bands of representative experiments. Anti-growth factor

receptor-bound protein-2 (anti-GRB2) and anti-poly(ADPribose)polymerase

(anti-PARP) antibodies were used as markers for the cyt and nuc extracts,

respectively. (B) Percentage values of nuc levels of phosphorylated Nrf2

(100 kDa) relative to the control condition, determined by densitometric

quantification. Values are means (n 6), with standard deviations represented

by vertical bars. a,b Mean values with unlike letters were significantly different

(P,0·05). (C) Nuc:cyt Nrf2 (57 kDa) ratio of bands, determined by densito-

metric quantification. Values are means (n 6), with standard deviations

represented by vertical bars. a,b Mean values with unlike letters were signifi-

cantly different (P,0·05).
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to promote cell survival because of the ability of the c-jun
amino-terminal kinase signalling pathway to induce survival
or apoptosis depending on the cellular context(14,15). Accord-
ingly, the increased AP-1 activity and nuclear c-Jun levels
induced by epicatechin have been shown to be coordinated
with the enhanced nuclear NF-kB levels, as well as with the
activation of different key survival and proliferation signals,
in agreement with previous results(4,5). However, other authors
have reported that epicatechin treatment of a human colon cell
line did not modify c-Jun levels, in accordance with an AP-1
activity similar to controls(47).

Nrf2 is closely involved in the modulation of the antioxi-
dant defence system, as well as in cell survival and prolifer-
ation(11,50). In line with this, it has been demonstrated
that polyphenols alone could activate Nrf2(23,49), which is in

agreement with the present study. Phosphorylated Nrf2
(100 kDa) was not detected in the cytosolic fractions of
HepG2 cells, as previously shown(19). Nrf2 phosphorylation
has been described as a critical event for the nuclear translo-
cation of this transcription factor, as well as for its transcrip-
tional activity(19,20); this last feature could be related to the
nuclear phosphorylated Nrf2 levels described in the present
study. In this context, it is interesting to note that the acti-
vation of Nrf2 and NF-kB could be modulated by ROS,
MAPK (ERK), protein kinase C and PI3K(11,17,19,20).

ROS seem to play an important role in Nrf2 and NF-kB
activation, since low ROS levels induce Nrf2, whereas an
intermediate amount of ROS trigger the activation of NF-kB
and a high level of oxidative stress could result in apoptosis
or necrosis(51). Previously, we have shown that epicatechin

Fig. 8. Effects of epicatechin (EC) and diphenyleneiodonium (DPI) on cytosolic (cyt) and nuclear (nuc) nuclear transcription factor erythroid 2p45-related factor-2

(Nrf2) (100 and 57 kDa) and NF-kB levels. HepG2 cells were incubated with or without 10mM-EC for 240 or 1080 min in the presence or absence of 20mM-DPI.

(A, C, E) Bands of representative experiments. Anti-growth factor receptor-bound protein-2 (anti-GRB2) and anti-poly(ADPribose)polymerase (anti-PARP) anti-

bodies, used as markers for the cyt and nuc extracts, respectively, were not included in the plots due to the complexity of the figures. (B) Percentage of 100 kDa

nuc Nrf2 relative to the control (C) condition after 240 (B) and 1080 (A) min of incubation in the presence or absence of DPI, determined by densitometric quantifi-

cation. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b,c Mean values (for the 240 or 1080 min condition) with unlike letters

were significantly different (P,0·05). (D) Nuc:cyt Nrf2 (57 kDa) ratio after 240 (B) and 1080 (A) min of incubation in the presence or absence of DPI, determined

by densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b,c Mean values (for the 240 or 1080 min con-

dition) with unlike letters were significantly different (P,0·05). (F) Nuc:cyt NF-kB ratio after 240 (B) and 1080 (A) min of incubation in the presence or absence of

DPI, determined by densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b,c Mean values (for the 240

or 1080 min condition) with unlike letters were significantly different (P,0·05).
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treatment (10mM) causes a transient decrease of ROS (starting
at 30 min) in HepG2 cells(5). In this regard, it has been
reported that attenuation of ROS release by natural antioxidant
compounds is accompanied by increased Nrf2 accumulation in
the nucleus and increased transcriptional activity of Nrf2(52);
in addition, a transient modification of ROS production
could result in the modulation of genes related to oxidative
stress defence, as well as survival and proliferation signals
in HepG2 cells(53) and a blocked ROS production in HepG2
cells inhibited Nrf2-induced expression and nuclear transloca-
tion(53). Thus, these results suggest the importance of intra-
cellular ROS levels for epicatechin-induced Nrf2 and NF-kB
activation in HepG2 cells.

Activation of Nrf2 and NF-kB involves regulation of
protein kinases(17,23,54), which may induce their nuclear

translocation, as well as Nrf2 phosphorylation(20). We have pre-
viously shown that epicatechin treatment (10mM) induces cellu-
lar survival by activating key kinases in HepG2 cells(5). In this
regard, specific protein kinase inhibitors of PI3K and ERK
repressed Nrf2 phosphorylation and nuclear translocation of
Nrf2 and NF-kB in HepG2 untreated cells, as previously
reported in different cell types(19,23,54 – 56). These findings
point out that PI3K/AKT and/or ERK signalling pathways
are required for Nrf2 and NF-kB activation in HepG2 cells.
The present results also suggest that the ERK pathway plays a
role in the epicatechin-induced activation of phosphorylation
and nuclear translocation of Nrf2 and NF-kB and that the
PI3K/AKT pathway does not significant affect NF-kB.
Reduction of NF-kB activation by the inhibition of the
ERK pathway has also been reported on the NF-kB pathway

Fig. 9. Effects of epicatechin (EC) and wortmannin (W) on cytosolic (cyt) and nuclear (nuc) nuclear transcription factor erythroid 2p45-related factor-2 (Nrf2) (100

and 57 kDa) and NF-kB levels. HepG2 cells were incubated with or without 10mM-EC for 240 or 1080 min in the presence or absence of 200 nM-W. (A, C, E)

Bands of representative experiments. Anti-growth factor receptor-bound protein-2 (anti-GRB2) and anti-poly(ADPribose)polymerase (anti-PARP) antibodies, used

as markers for the cyt and nuc extracts, respectively, were not included in the plots due to the complexity of the figures. (B) Percentage of 100 kDa nuc Nrf2 rela-

tive to the control (C) condition after 240 (B) and 1080 (A) min of incubation in the presence or absence of W, determined by densitometric quantification. Values

are means (n 5–6), with standard deviations represented by vertical bars. a,b Mean values (for the 240 or 1080 min condition) with unlike letters were significantly

different (P,0·05). (D) Nuc:cyt Nrf2 (57 kDa) ratio after 240 (B) and 1080 (A) min of incubation in the presence or absence of W, determined by densitometric

quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b Mean values (for the 240 or 1080 min condition) with unlike

letters were significantly different (P,0·05). (F) Nuc:cyt NF-kB ratio after 240 (B) and 1080 (A) min of incubation in the presence or absence of W, determined by

densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b Mean values (for the 240 or 1080 min condition)

with unlike letters were significantly different (P,0·05).
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stimulated with TNF(57). Additionally, it should be mentioned
that increased PI3K/AKT activity has been linked to the acti-
vation of Nrf2(23,52,56,58) and to an enhanced transcriptional

activity of NF-kB in different cell types(54,55), although in our

model AKT seems not to be connected to NF-kB activation.

However, an unchanged AKT expression along with inhibited

NF-kB activation have been reported previously in cells

exposed to ionising stimuli(48). Thus, modulation of Nrf2

and NF-kB nuclear translocation by PI3K/AKT and ERK

reinforces the idea that both transcription factors exert critical

and supporting functions in the regulation of hepatocyte survi-

val and proliferation pathways. Importantly, it has been

suggested that the role of each pathway in the regulation

of these transcription factors (Nrf2 and NF-kB) and their

molecular targets might be specific to the nature of the stimuli

and cell type(48,49).
In summary, new insights are provided into the relative

contribution of epicatechin on major transcription factors
associated with cell survival and proliferation pathways in
HepG2 cells. Epicatechin early activates the NF-kB pathway
by modulating NF-kB-related proteins, as well as the AP-1
route via nuclear accumulation of c-Jun. The induction of
the redox-sensitive transcription factor NF-kB was con-
nected to ERK, which are involved in the control of hepatic
cell survival and proliferation. Similarly, Nrf2 was activated
at an early time by the flavonoid and modulated by PI3K/
AKT and ERK pathways. All these features provide
evidence for a role of epicatechin in the promotion of cell
protection and survival pathways.

Fig. 10. Effects of epicatechin (EC) and 2-(2-amino-3-methoxyphenyl)-4H-1-benzopyran-4-one (PD98059; PD) on cytosolic (cyt) and nuclear (nuc) nuclear tran-

scription factor erythroid 2p45-related factor-2 (Nrf2) (100 and 57 kDa) and NF-kB levels. HepG2 cells were incubated with or without 10mM-EC for 240 or

1080 min in the presence or absence 50mM-PD. (A, C, E) Representative blots. Anti-growth factor receptor-bound protein-2 (anti-GRB2) and anti-poly(ADPribose)-

polymerase (anti-PARP) antibodies, used as markers for the cyt and nuc extracts, respectively, were not included in the plots due to the complexity of the figures.

(B) Percentage of 100 kDa nuc Nrf2 relative to the control (C) condition after 240 (B) and 1080 (A) min of incubation in the presence or absence of PD, deter-

mined by densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b Mean values (for the 240 or 1080 min

condition) with unlike letters were significantly different (P,0·05). (D) Nuc:cyt Nrf2 (57 kDa) ratio after 240 (B) and 1080 (A) min of incubation in the presence or

absence of PD, determined by densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars. a,b Mean values (for

the 240 or 1080 min condition) with unlike letters were significantly different (P,0·05). (F) Nuc:cyt NF-kB ratio after 240 (B) and 1080 (A) min of incubation in the

presence or absence of PD, determined by densitometric quantification. Values are means (n 5–6), with standard deviations represented by vertical bars.
a,b,c Mean values (for the 240 or 1080 min condition) with unlike letters were significantly different (P,0·05).
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