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Abstract. In this paper, we study the weighted (x(q + 1), x; 2, q)-minihypers.
These are weighted sets of x(q + 1) points in PG(2, q) intersecting every line in at
least x points. We investigate the decomposability of these minihypers, and define
a switching construction which associates to an (x(q + 1), x; 2, q)-minihyper, with
x ≤ q2 − q, not decomposable in the sum of another minihyper and a line, a (j(q +
1), j; 2, q)-minihyper, where j = q2 − q − x, again not decomposable into the sum
of another minihyper and a line. We also characterize particular (x(q + 1), x; 2, q)-
minihypers, and give new examples. Additionally, we show that (x(q + 1), x; 2, q)-
minihypers can be described as rational sums of lines. In this way, this work
continues the research on (x(q + 1), x; 2, q)-minihypers by Hill and Ward [9], giving
further results on these minihypers.

1 Introduction

Let P be the set of points of the projective geometry PG(t, q). A multiset in
PG(t, q) is a mapping K : P → N. This mapping is extended in a natural way
to the subsets of P: for any subset Q of P, we set K(Q) =

∑
P∈Q K(P ). The

integer K(P ) is called the multiplicity of the point P and n =
∑

P∈P K(P )
is called the cardinality of K. The support supp K of a multiset K is the set
of all points of positive multiplicity. A multiset K is said to be projective if
K(P ) ∈ {0, 1} for all points P . Projective multisets can be considered as sets
of points by identifying them with their supports.

Conversely, given a finite set Q of points in PG(t, q), we define the char-
acteristic multiset χQ by:

χQ(P ) =
{

1 if P ∈ Q,
0 if P 6∈ Q.

A multiset in PG(t, q) is called an (n,w; t, q)-multiarc if

(a) K(P) = n;

(b) K(H) ≤ w for any hyperplane H;
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(c) there exists a hyperplane H0 with K(H0) = w.

A multiset F in PG(t, q) is called an (f,m; t, q)-blocking multiset or
(f,m; t, q)-minihyper, if

(a) F(P) = f ;
(b) F(H) ≥ m > 0 for any hyperplane H;
(c) there exists a hyperplane H0 with F(H0) = m.

To avoid trivialities, we impose m > 0 in the definition of an (f,m; 2, q)-
minihyper.

We can speak of (n,w)-multiarcs or (f,m)-minihypers if the geometry we
consider is clear from the context. The characteristic multiset of a subspace
of dimension u in PG(t, q) is a minihyper with parameters (vu+1, vu), where
vu = qu−1

q−1 .
An (f,m)-minihyper F is called minimal if there exists no (f − 1,m)-

minihyper F′ with F′(P ) ≤ F(P ) for all points P .
The sum F = F1 + F2 of two minihypers F1 and F2, where Fi has param-

eters (fi,mi; t, q), i = 1, 2, is the (f,m; t, q)-minihyper, with f = f1 + f2,
m = m1 +m2, and with the multiplicity of a point P in F equal to the sum of
its multiplicities in F1 and F2. As a particular example of a minihyper which
is the sum of minihypers, we note that the sum of any x (not necessarily
distinct) lines is a (x(q + 1), x; 2, q)-minihyper.

An (f,m; t, q)-minihyper F is called indecomposable or irreducible [7, Def-
inition 2.5] if it cannot be represented as a sum F = F1 + F2 of two other
minihypers Fi, i = 1, 2, where Fi has parameters (fi,mi; t, q), i = 1, 2. Note
again that this implies that m1,m2 > 0.

Within this introduction, we also define two important substructures of
a projective plane PG(2, q).

A hyperoval K in PG(2, q), q even, is a set of q + 2 points, no three
collinear. The classical example of a hyperoval in PG(2, q), q even, is the
union of a conic and its nucleus; such a hyperoval is called a regular hyper-
oval. For q even, q ≥ 16, in PG(2, q), there exist irregular hyperovals, i.e.,
hyperovals which are not the union of a conic and its nucleus. We refer to
[11] for the list of the known infinite classes of hyperovals in PG(2, q), q even.

A maximal arc K of PG(2, q) is a set of points intersecting every line in
zero or n points. For 1 < n < q, this necessarily implies that n is a divisor of
q. Ball, Blokhuis, and Mazzocca proved that such maximal arcs cannot exist
for q odd [1, 2]. For q even, Denniston proved the existence of a maximal
arc in PG(2, 2h) intersecting every line in 2i points, for every i satisfying
1 ≤ i ≤ h− 1 [4].
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We also refer to the standard reference of Hirschfeld [10] for more infor-
mation on hyperovals and maximal arcs in PG(2, q), q even.

Consider a multiset K of PG(2, q); then to K corresponds the spectrum
(ai)i≥0 of K. The spectrum (ai)i≥0 of K is the sequence of numbers ai, i ≥ 0,
with ai the number of lines of PG(2, q) intersecting K in i points.

2 Minihypers with parameters (x(q + 1), x)

In [9], Hill and Ward consider minihypers with parameters (x(q + 1), x),
x < q, in PG(2, q). They try to characterize all indecomposable minihypers
with the above parameters. Hill and Ward restrict the values of x to x < q so
that the associated codes are Griesmer codes. In [3], this problem is studied
for x = q in the terms of multiarcs. The following result describes divisibility
properties of (x(q+1), x)-minihypers and is a straightforward generalization
of Theorem 5.1 in [3].

Theorem 1. ([9, Theorem 18]) Let F be an (x(q + 1), x)-minihyper in Π =
PG(2, q), q = pm, p prime, m ≥ 1, with x < q, where pf divides x. Then
for each line L in Π, F(L) ≡ x (mod pf+1).

This theorem implies two useful corollaries.

Corollary 2. ([9, Theorem 20]) Every (x(q + 1), x)-minihyper in PG(2, q),
q = pm, p prime, m ≥ 1, with x ≤ q − q

p , is a sum of x lines. In particular,
if F is an indecomposable (x(q + 1), x)-minihyper, then x > q − q

p or F is a
line.

We wish to stress that the preceding corollary implies that the only in-
decomposable (x(q+ 1), x; 2, q)-minihypers in PG(2, q), q prime, with x < q,
are the (q + 1, 1; 2, q)-minihypers, so are the lines of PG(2, q), q prime.

Corollary 3. ([9, Theorem 23]) Let K be an indecomposable (x(q + 1), x)-
minihyper in PG(2, q), q = pm, p prime, m ≥ 1, for which x ≤ y < q and
pf divides y.

(i) For each line L, K(L) ≤ x+ q − pf+1.

(ii) For each point P , K(P ) ≤ x− pf+1.

(iii) If q − p+ 1 ≤ x ≤ q − 1 and K(P ) > x− 2p, then K(P ) is divisible by
q
p − 1.
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A challenging problem is that of the classification of all indecomposable
(x(q + 1), x)-minihypers, x < q, in projective planes over arbitrary finite
fields. This problem has been solved for PG(2, 8) and PG(2, 9) by Hill and
Ward in [9]. In the same paper, they describe five families of indecomposable
(x(q + 1), x)-minihypers in the planes of square order.

3 Ball’s construction

A nice class of indecomposable (x(q + 1), x)-minihypers was found by Ball
in an unpublished note. The class of Ball’s minihypers is explained below.

Suppose that q = 2m and consider two hyperovals F1 and F2 in PG(2, q)
that meet in q + 2 − x points. Let F = F1 + F2 (mod 2), i.e. supp F is
the symmetric difference of the supports of the two hyperovals F1 and F2.
Clearly, |F| = 2x and F(L) = 0, 2, or 4 for every line L. If we dualize and
regard 4-lines as 2-points, 2-lines as 1-points, and 0-lines as 0-points, we get
an (x(q + 1), x)-minihyper with spectrum

ax = q2 + q + 1− 2x, ax+ q
2

= 2x, ai = 0, for i 6= x, x+
q

2
.

This construction works in a more general setting. Assume that we are
given a multiset K with |K| = sx such that K(L) = is, i ∈ N, for every line L,
i.e. the multiplicity of every line is a multiple of s. We define a multiset F in
the dual plane in which lines of multiplicity is become points of multiplicity
i. Then F is an (x(q + 1), x)-minihyper. We prove this as follows.

Let (ai)i≥0 be the spectrum of K. By counting the flags (P,L), P ∈ L,
we obtain

sas + 2sa2s + · · · = sx(q + 1).

This implies that
∑
iais = x(q + 1), which means that F has the de-

sired cardinality. Let P be an arbitrary point. It has to be checked that∑
i ibis(P ) ≥ x, where bj = bj(P ) denotes the number of lines through P

that have multiplicity j. Assume that K(P ) = ε. Then

bs + b2s + · · · = q + 1,
(s− ε)bs + (2s− ε)b2s + · · · = |K| − ε = sx− ε,

which implies that
bs + 2b2s + · · · = x+ ε

q

s
.

This means that each line in the dual plane has multiplicity at least x
since εq/s ≥ 0.
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Example 1. In PG(2, q), q even, let M be a maximal arc of degree 2i and
let L be an external line to M. Define K = χP\L −M. Clearly, K(M) = 0,
q − 2i, or q for every line M of PG(2, q) and

|K| = q2 − q(2i − 1)− 2i = 2i
(
q2

2i
− q +

q

2i
− 1
)
.

If we set s = 2i, x = q2

2i − q + q
2i − 1, using Ball’s construction, we get a

minihyper with parameters(
(
q2

2i
− q +

q

2i
− 1)(q + 1),

q2

2i
− q +

q

2i
− 1; 2, q

)
.

Remark 4. In the general case, we do not know whether the minihypers
constructed in Example 1 are indecomposable. This can however be proven
in some special cases. For instance, if we start with a maximal arc of degree
q/2, q ≥ 4, we arrive at a minihyper with

x =
q2

q/2
− q +

q

q/2
− 1 = q + 1.

Note that in this case, the minihyper has q + 1 2-points, one 0-point, and
q2 − 1 1-points. The 0-point corresponds to the fixed external line L to the
maximal arc M, and the q+1 2-points correspond to the other q+1 external
lines to the maximal arc M. These q+2 external lines to the original maximal
arc M form a dual hyperoval, and so consequently, the 0-point and the q+ 1
2-points form a hyperoval in the plane where the ((q+ 1)(q+ 1), q+ 1; 2, q)-
minihyper F is embedded.

Assume that F = F1 + F2, with F1 an (f1, x1; 2, q)-minihyper and F2 an
(f2, x2; 2, q)-minihyper. Since there exists a 0-point to F, then F1 and F2

also have a 0-point. Considering all lines of PG(2, q) through this 0-point,
implies that f1 ≥ x1(q + 1) and f2 ≥ x2(q + 1), with q + 1 = x1 + x2.
Since (q + 1)(q + 1) = f1 + f2 ≥ (q + 1)(q + 1), necessarily f1 = x1(q + 1)
and f2 = x2(q + 1). So F1 is an (x1(q + 1), x1; 2, q)-minihyper and F2 an
(x2(q + 1), x2; 2, q)-minihyper.

Moreover, since x1 + x2 = q + 1, necessarily x1 ≤ q/2 or x2 ≤ q/2.
Assume that x1 ≤ q/2. Then Corollary 2 implies that F1 is the sum of
x1 lines. Let L1 be one of these lines. Then reducing the weight of every
point of F1 on L1 by one, a new ((x1 − 1)(q + 1), x1 − 1; 2, q)-minihyper F′1
is obtained. But then F′1 + F2 is a (q(q + 1), q; 2, q)-minihyper. This is only
possible if originally for L1, F(L1) ≥ q+ 1 + q = 2q+ 1. But L1 can contain
at most two points of weight two, so F(L1) ≤ q + 1 + 2. This contradicts
q ≥ 4. So F is indecomposable.
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Example 2. Take a (q+t, t)-arc K′ of type (0, 2, t = 2i). These (q+t, t)-arcs of
type (0, 2, t = 2i) have been studied in detail by Korchmáros and Mazzocca
[12], and by Gács and Weiner [6]. For instance, a particular property of a
(q + t, t)-arc K′ of type (0, 2, t = 2i) is that all the t-secants pass through a
common point.

Let L be an external line to K′. Set K = χP\L − K′. Then

|K| = q2 − q − 2i = 2 · (q
2

2
− q

2
− 2i−1).

We have one 0-line and secants of multiplicity q, q − 2, and q − 2i. By the
Ball construction, we get a minihyper with x = q2

2 −
q
2 − 2i−1.

Example 3. The complement of a unital. Consider PG(2, q), where q is a
square. Let U be a unital and set K = χP − U. Here

|K| = √q (q
√
q − q +

√
q)

with line multiplicities q − √q and q. By Ball’s construction, we get a
minihyper with parameters

((q
√
q − q +

√
q)(q + 1), q

√
q − q +

√
q; 2, q) .

In order to describe the fourth example, we need to define a linear block-
ing set in PG(2, q). We first of all introduce the notion of a Desarguesian
spread.

By what is sometimes called field reduction, the points of PG(2, q), q =
ph, p prime, h ≥ 1, correspond to (h− 1)-dimensional subspaces of PG(3h−
1, p), since a point of PG(2, q) is a 1-dimensional vector space over Fq, and
so an h-dimensional vector space over Fp. In this way, we obtain a partition
D of the point set of PG(3h − 1, p) by (h − 1)-dimensional subspaces. In
general, a partition of the point set of a projective space by subspaces of
a given dimension k is called a spread, or a k-spread if we want to specify
the dimension. The spread we have obtained here is called a Desarguesian
spread. Note that the Desarguesian spread satisfies the property that each
subspace spanned by two spread elements is again partitioned by spread
elements.

Definition 1. Let D be the Desarguesian (h − 1)-spread of PG(3h − 1, p),
corresponding to the points of PG(2, ph) and let U be a subset of PG(3h−
1, p), then B(U) = {R ∈ D||U ∩R 6= ∅}. We identify the spread elements of
B(U) with the corresponding points of PG(2, ph).
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Definition 2. We denote the (h−1)-dimensional spread element of PG(3h−
1, p) corresponding to a point P of PG(2, ph) by S(P ). If U is a subspace of
PG(2, ph), then S(U) := {S(P )||P ∈ U}.

Analogously to the correspondence between the points of PG(2, q), q =
ph, and the elements of a Desarguesian spread D in PG(3h−1, p), we obtain
the correspondence between the lines of PG(2, q) and the (2h−1)-dimensional
subspaces of PG(3h−1, p) spanned by two elements of D. With this in mind,
it is clear that any subspace U of dimension at least h of PG(3h−1, p) defines
a blocking set B(U) in PG(2, q). A blocking set constructed in this way is
called a linear blocking set. Linear blocking sets were first introduced by
Lunardon [14], although there a different approach is used. For more on the
approach explained here, we refer to [13].

Example 4. The complement of a linear blocking set in PG(2, q), q = ph, p
prime, h ≥ 1.

Such a linear blocking set B(U) in PG(2, q) intersects every line in 1
(mod p) points. Suppose that e is the maximal integer such that every line
of PG(2, q) intersects B(U) in 1 (mod pe) points. Then the complement of
B(U) intersects every line in 0 (mod pe) points. If |B(U)| = q + k + 1, then
the complement has size q2 − k = pe(q2/pe − k/pe), so defines a {(q2/pe −
k/pe)(q + 1), q2/pe − k/pe; 2, q)-minihyper.

4 Rational sums of lines

It has been noted that an (x(q + 1), x)-minihyper is not necessarily a sum
of lines. However this is always the case if we assume rational multiplicities
for the points.

Theorem 5. Let F be an (x(q + 1), x)-minihyper in PG(2, q). Then there
exist lines L1, . . . , Ls and positive rational numbers c1, . . . , cs, such that

F = c1χL1 + · · ·+ csχLs ,

with
∑s

i=1 ci = x.

Proof. Assume that there exists a line L with F(L) ≥ x+q. Then F′ = F−χL
is an ((x − 1)(q + 1), x − 1)-minihyper and we get the result by induction
on x. Hence, without loss of generality, we can assume that all lines have
multiplicity at most x+ q − 1.
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Let P be a point of multiplicity ε. Denote by ai the number of lines
through P that have multiplicity i. We have

q−1∑
i=0

ax+i = q + 1,

q−1∑
i=0

(x+ i− ε)ax+i = x(q + 1)− ε,

which implies
q−1∑
i=0

i

q
ax+i = ε.

Therefore,

F =
q−1∑
i=0

∑
L:F(L)=x+i

i

q
χL,

which had to be proven.

Example 5. Consider PG(2, q), q even. Then this projective plane contains
hyperovals.

Consider a dual hyperoval {L1, . . . , Lq+2} in PG(2, q), q even. Then the
rational sum

1
2
L1 + · · ·+ 1

2
Lq+2

is a (( q2 + 1)(q + 1), q2 + 1; 2, q)-minihyper in PG(2, q), q even.

We know from Theorem 1 that if F is an (x(q + 1), x)-minihyper in
Π = PG(2, q), q = pm, p prime, m ≥ 1, with x < q where pf divides x, then
for each line L in Π, F(L) ≡ x (mod pf+1).

This allows us to describe more in detail the rational coefficients of the
rational sum.

Corollary 6. Let F be an indecomposable (x(q + 1), x)-minihyper in Π =
PG(2, q), q = pm, p prime, m ≥ 1, with x < q where pf is the maximal
power of p that divides x, then

F =
∑
L(1)

1
pm−f−1

χL(1) +
∑
L(2)

2
pm−f−1

χL(2) + · · ·+

∑
L(pm−f−1−1)

pm−f−1 − 1
pm−f−1

χ
L(pm−f−1−1) ,
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with L(1) the lines intersecting F in x+pf+1 points, with L(2) the lines inter-
secting F in x+2pf+1 points, . . ., and with L(pm−f−1−1) the lines intersecting
F in x+ (pm−f−1 − 1)pf+1 points.

5 A construction for x = 3q
4

If K is a (q2 + q + 2, q + 2)-arc in PG(2, q), then K(P ) ≤ 2 for all points
P [3]. Thus the correspondence K ↔ 2χP − K establishes a one-to-one
correspondence between such arcs and (q(q + 1), q; 2, q)-minihypers F for
which F(P ) ≤ 2 for all points P . Thus the examples of [2, Section 2] provide
(q(q+ 1), q; 2, q)-minihypers having this added restriction. In particular, the
3-line construction from [3, Theorem 2.3] leads to the following results.

Theorem 7. Let G be a subgroup of the additive group (Fq,+). Let A, B,
and C be cosets of G in (Fq,+) with A+ B + C 6= G. Set

A′ = −B − C, B′ = −A− C, and C′ = −A− B.

Define in the following way a multiset K in PG(2, q):
2-points (a, 0,−1) for a ∈ A′,

(b,−1, 0) for b ∈ B′,
(c, 1, 1) for c ∈ C′,

0-points (a, 0,−1) for a ∈ A,
(b,−1, 0) for b ∈ B,
(c, 1, 1) for c ∈ C,
(1, 0, 0)

1-points the remaining points.
Then the multiset K is a (q2 + q, q)-minihyper. Conversely, every (q2 +

q, q)-minihyper for which the 2-points lie on three lines meeting in a 0-point
is isomorphic to K.

Now consider the special case q = 2r, r ≥ 2. Let G be a subgroup of
(Fq,+) of order 2r−1. If K is the minihyper defined in Theorem 7, the lines
in PG(2, q) have the types described in Table 1 below.

multiplicity # of such lines # of 2-pts # of 1-pts # of 0-pts
(A) q 3 q/2 0 q/2 + 1
(B) q 3q2/4 1 q − 2 2
(C) q q − 2 0 q 1
(D) q + 4 q2/4 3 q − 2 0

Table 1
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The points of PG(2, q) can be divided into four classes with respect to
the types of the lines they are incident with. The possible types of the points
are described in Table 2.

# lines of type
multiplicity # of such points (A) (B) (C) (D)

(α) 2 3q/2 1 q/2 0 q/2
(β) 1 q2 − 2q 0 3q/4 1 q/4
(γ) 0 3q/2 1 q 0 0
(δ) 0 1 3 0 q − 2 0

Table 2

Now we define a new multiset F in the dual plane of PG(2, q) by

F(l) =


q/4 if l is of type (A);
1 if l is of type (B);
0 if l is of type (C) or (D).

(1)

Theorem 8. The multiset F is a 2-weight minihyper with parameters (3q
4 (q+

1), 3q
4 ) and spectrum

a3q/4 = q2 − q

2
+ 1, a5q/4 =

3q
2
, ai = 0 for i 6= 3q

4
,
5q
4
.

Proof. The proof is immediate from Table 2. Points of type (α), (β), and
(δ) become lines of multiplicity 3q/4, while lines of type (γ) become lines of
multiplicity 5q/4. Table 2 implies also the values of a3q/4 and a5q/4.

For r = 2, this construction gives a projective (15, 3)-minihyper with
3- and 5-lines which is the complement of the hyperoval in PG(2, 4). For
r = 3, the theorem gives a (54, 6)-minihyper with 6- and 10-lines which is an
“orphan” minihyper obtained in [9, Theorem 31]. For r = 4, the construction
gives a (204, 12)-minihyper with lines of multiplicity 12 and 20. For r ≥ 4,
these minihypers do not come from Ball’s symmetric difference construction
since they have points of multiplicity 2r−2 > 2, while in Ball’s construction
all points have multiplicity 0, 1, and 2.

This construction can be reversed: from a minihyper with three collinear
points of multiplicity q/4 (the remaining points on the line being 0-points),
3q2/4 points of multiplicity 1 and q2/4 + q − 2 points of multiplicity 0, one
can obtain back the (q(q + 1), q)-minihyper and the (q2 + q + 2, q + 2)-arc
from the 3-line construction.
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6 Indecomposable minihypers

In [9], Hill and Ward consider plane (x(q + 1), x)-minihypers with x < q
only. The reason is that such minihypers give rise to Griesmer codes via
the well-known construction of Hamada [5, 8]. If F is an (x(q + 1), x; 2, q)-
minihyper and s is the maximal multiplicity of a point, then sχP − F is an
(s(q2 + q + 1)− x(q + 1), s(q + 1)− x; 2, q)-arc. The code associated to this
arc has parameters [s(q2 + q+ 1)−x(q+ 1), 3, sq2−xq] and is easily checked
to meet the Griesmer bound for x < q.

In what follows, we consider minimal, indecomposable (x(q + 1), x; 2, q)-
minihypers without imposing an explicit restriction on x. It turns out that
the indecomposability requirement implies an upper bound on x.

Theorem 9. Every (x(q + 1), x; 2, q)-minihyper, with x ≥ q2 − q + 1, is
decomposable.

Proof. Assume that F is an indecomposable (x(q + 1), x)-minihyper. There
exists a point P in PG(2, q) that is of multiplicity 0. Otherwise F can be
represented as the sum of χP and an ((x−q−1)(q+1)+q, x−q−1)-minihyper,
a contradiction to the indecomposability condition.

Note that all lines through the 0-point P are x-lines. Moreover the
multiplicity of any line L cannot be larger than x + q − 1 (otherwise, the
minihyper is represented as the sum of χL and an ((x − 1)(q + 1), x − 1)-
minihyper). Counting the flags (P ′, L′), with P ′ ∈ L′, we get

x(q + 1)2 ≤ x(q + 1) + q2(x+ q − 1).

This implies x ≤ q2 − q.

Theorem 10. For an indecomposable (x(q + 1), x; 2, q)-minihyper with x ≤
q2 − q, all points of PG(2, q) have weight at most q − 1.

Proof. Consider a point P of weight e, and now consider all the lines through
P . Since they all have weight at most x+ q − 1, we obtain the inequality

qe+ x(q + 1) ≤ q(x+ q − 1) + x,

where we used the fact that every line has weight at most x + q − 1, and
there is at least one x-secant through P . Namely, there is at least one point
P ′ having weight zero, and the line PP ′ is an x-secant to the minihyper.

This leads to e ≤ q − 1.
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Corollary 11. There is no indecomposable (x(q+ 1), x; 2, q)-minihyper with
x = q2 − q.

Proof. Assume otherwise and let F be an indecomposable ((q2−q)(q+1), q2−
q; 2, q)-minihyper. Then by the counting argument from Theorem 9, we
get that all points other than the 0-point P have multiplicity q − 1 and
F = (q − 1)χP\{P}. But χP\{P} itself is a (q(q + 1), q; 2, q)-minihyper, a
contradiction to our initial assumption.

Remark 12. Using the same arguments, we can improve on the bound for x
if we assume the existence of a certain number of 0-points. For example, if
we assume that there are two 0-points, then the number of x-lines becomes
at least 2q + 1 and the double counting argument gives

x(q + 1)2 ≤ x(2q + 1) + (q2 − q)(x+ q − 1),

whence x ≤ q2 − 2q + 1.

7 A switching construction

Consider an indecomposable (x(q+1), x; 2, q)-minihyper with x ≤ q2−q−1.
Then all points have weight smaller than or equal to q − 1 (Theorem 10),
and for every line L, F(L) ≤ x + q − 1. Then this minihyper has at least
one 0-point; see the proof of Theorem 9. Let us fix such a 0-point, P say.
All the lines through P are of multiplicity x. Set x = q2 − q − y, 0 < y, and
define a new minihyper F′ in the following way:

F′(Q) =
{
q − 1− F(Q) if Q 6= P ;

0 if Q = P.
(2)

We say that F′ is obtained from F by using switching with respect to P . We
have

|F′| =
∑

Q:Q6=P
(q − 1− F(Q)) = (q2 + q)(q − 1)−

∑
Q:Q 6=P

F(Q) (3)

= (q2 + q)(q − 1)− x(q + 1) = y(q + 1). (4)

Furthermore, all lines through P have multiplicity y = q(q − 1)− x. For
the remaining lines L, one has

F′(L) ≥ (q + 1)(q − 1)− (x+ q − 1) = q(q − 1)− x = y.

Hence, F′ is a (y(q + 1), y)-minihyper.
It is clear that switching F′ with respect to P , we again obtain F.
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Lemma 13. Let F be an (x(q+1), x; 2, q)-minihyper, with x ≤ q2−q, having
a 0-point P and such that F(L) ≤ x + q − 1 for every line L. Let F′ be the
(y(q + 1), y; 2, q)-minihyper, y = q2 − q − x, obtained from F by switching
with respect to P . Then F′(L) ≤ y+ q− 1 for every line L. In particular, F′

is not a sum of lines.

Proof. For every point Q, F′(Q) ≤ q − 1− F(Q), so

F′(L) ≤ (q + 1)(q − 1)− F(L) ≤ q2 − 1− x = y + q − 1.

Theorem 14. Every (x(q + 1), x; 2, q)-minihyper, with x ≥ q2 − 2q + q
p , is

decomposable.

Proof. Assume otherwise and let F be an indecomposable minihyper with
parameters (x(q + 1), x), x ≥ q2 − 2q + q

p . Then x ≤ q2 − q by Theorem
9. By the switching construction, we get a (y(q + 1), y)-minihyper F′ with
y ≤ (q2−q)−(q2−2q+ q

p) = q− q
p . Since F is indecomposable, F(L) ≤ x+q−1

and, by Lemma 13, F′(L) ≤ y + q − 1. This contradicts Corollary 2.

8 Two characterization results

8.1 A first characterization result

Consider PG(2, q), q even; then there are two known ways to construct
(( q2 +1)(q+1), q2 +1; 2, q)-minihypers. First of all, there is the sum L1 + · · ·+
Lq/2+1 of q/2+1 lines L1, . . . , Lq/2+1, and secondly there is the rational sum
1
2(L1 + · · ·+ Lq+2), where {L1, . . . , Lq+2} is a dual hyperoval of PG(2, q).

We now show that all (( q2 + 1)(q + 1), q2 + 1; 2, q)-minihypers arise from
these two constructions.

Theorem 15. Every (( q2 + 1)(q+ 1), q2 + 1; 2, q)-minihyper K in PG(2, q), q
even, is either:

(1) a sum L1 + · · ·+ Lq/2+1 of q/2 + 1 lines L1, . . . , Lq/2+1, or
(2) a rational sum 1

2(L1 + · · · + Lq+2), where {L1, . . . , Lq+2} is a dual
hyperoval.

Proof. Let x = q/2 + 1 and y = 3q/4. Assume first of all that K is indecom-
posable. This implies in particular that the weight K(L) of every line L is at
most q/2 + 1 + q − 1. Then the following properties are valid.
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Add a sum of q/4 − 1 lines to K to obtain a ((3q/4)(q + 1), 3q/4; 2, q)-
minihyper K′. Then Theorem 1 implies that for every line L, K′(L) ≡ 3q/4
(mod q/2). Subtracting the contribution of the sum of the q/4 − 1 lines in
K′ − K, this implies that for every line L, K(L) ≡ x ≡ q/2 + 1 (mod q/2).
Since for every line L, K(L) ≡ x (mod q/2), and since K(L) ≤ x+ q−1, this
implies that K(L) ∈ {q/2 + 1, q + 1}.

Again, since x = q/2 + 1 ≤ y = 3q/4 = q/2 + q/4 and since q/4 divides
y, for every point P , K(P ) ≤ q/2 + 1− q/2 = 1 (Corollary 3). So K only has
points of weight one.

Let P be a point of K, let P belong to α (q/2 + 1)-secants and to β
(q + 1)-secants to K, then{

α+ β = q + 1,
α · q2 + β · q = ( q2 + 1)(q + 1)− 1 = q2

2 + 3q
2 .

This implies that β = 2. So every point of K belongs to two (q+1)-secants
to K. This implies that there are in total 2(q/2 + 1)(q + 1)/(q + 1) = q + 2
different (q + 1)-secants. Denote them by L1, . . . , Lq+2. Then since every
point of K belongs to two of the lines L1, . . . , Lq+2, the lines L1, . . . , Lq+2

necessarily define a dual hyperoval of PG(2, q), q even.

Assume now that K is decomposable. Then the same arguments as in
Remark 4 show that K = K1 + K2, with K1 an (x1(q+ 1), x1; 2, q)-minihyper
and with K2 an (x2(q + 1), x2; 2, q)-minihyper with x1 + x2 = x = q/2 + 1.
But since x1 ≤ q/2 and x2 ≤ q/2, K1 and K2 are respectively a sum of x1

and x2 lines (Corollary 2), so K is a sum of x = q/2 + 1 lines.

8.2 A second characterization result

Consider again PG(2, q), q even. Then we have already three constructions
for ((q/2 + 2)(q + 1), q/2 + 2; 2, q)-minihypers. The first construction is via
a sum of q/2 + 2 lines, the second construction via a (q + 4, 4)-arc of type
(0, 2, 4) (Example 2), and the third construction is via the sum of a line
and a (( q2 + 1)(q+ 1), q2 + 1; 2, q)-minihyper arising from a dual hyperoval in
PG(2, q), q even (Example 1).

We now prove that these are the only three constructions for ((q/2 +
2)(q + 1), q/2 + 2; 2, q)-minihypers.

Theorem 16. Every (( q2 + 2)(q+ 1), q2 + 2; 2, q)-minihyper K in PG(2, q), q
even, q ≥ 8, is either:

(1) a sum L1 + · · ·+ Lq/2+2 of q/2 + 2 lines L1, . . . , Lq/2+2, or
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(2) a (( q2 +2)(q+1), q2 +2; 2, q)-minihyper constructed via a (q+4, 4)-arc
of type (0, 2, 4), or

(3) the sum of a line and a (( q2 + 1)(q+ 1), q2 + 1; 2, q)-minihyper arising
from a dual hyperoval in PG(2, q), q even.

Proof. Assume first of all that K is indecomposable, then again in particular,
the weight of every line is at most q/2+2+q−1. Then the following properties
are valid.

We again use that x = q/2+2 ≤ y = 3q/4 = q/2+q/4. Since q/4 divides
y, for every point P , K(P ) ≤ q/2 + 2− q/2 = 2 (Corollary 3). So K only has
points of weight one and two.

Using the same technique as in the proof of the preceding theorem, The-
orem 1 implies that for every line L, K(L) ≡ q/2 + 2 (mod q/2), and since
K(L) ≤ q/2+2+q−1, this implies that K(L) ∈ {q/2+2, q+2}. We first de-
termine the numbers aq/2+2 and aq+2 of (q/2+2)-secants and (q+2)-secants.
The standard equations are:

aq/2+2 + aq+2 = q2 + q + 1,

(q/2 + 2)aq/2+2 + (q + 2)aq+2 = (q/2 + 2)(q + 1)2,

leading to aq/2+2 = q2 − 3 and aq+2 = q + 4.
The third standard equation is [9]:

(q/2 + 2)2aq/2+2 + (q + 2)2aq+2 = (q + 1)2(q/2 + 2)2 + q(p1 + 4p2),

where p1 is the number of points in K of weight one and p2 the number of
points in K of weight two. This leads to p1 + 4p2 = q2/2 + 3q + 4.

But we also have the equations

p0 + p1 + p2 = q2 + q + 1,
p1 + 2p2 = (q/2 + 2)(q + 1),

leading to p0 = q2/2− 5q/4, p1 = q2/2 + 2q, and p2 = q/4 + 1.
We now check how the secants pass through a point of weight zero, one,

or two. A 0-point only lies on (q/2 + 2)-secants. Suppose that a 1-point lies
on xq/2+2 different (q/2 + 2)-secants and on xq+2 different (q + 2)-secants.
Then

xq/2+2 + xq+2 = q + 1,
(q/2 + 2)xq/2+2 + (q + 2)xq+2 = (q/2 + 2)(q + 1) + q,
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leading to xq+2 = 2 and xq/2+2 = q − 1. So a point of weight one lies on
exactly two of the (q + 2)-secants.

Suppose that a 2-point lies on x′q/2+2 different (q/2 + 2)-secants and on
x′q+2 different (q + 2)-secants. Then

x′q/2+2 + x′q+2 = q + 1,

(q/2 + 2)x′q/2+2 + (q + 2)x′q+2 = (q/2 + 2)(q + 1) + 2q,

leading to x′q+2 = 4 and x′q/2+2 = q − 3.
A (q+ 2)-line is completely contained in K, and hence contains one point

of weight two and q points of weight one.
This all leads to the conclusion that a point of weight zero lies on zero

of the (q + 2)-lines, a point of weight one lies on exactly two of the (q + 2)-
secants, and a point of weight two lies on exactly four of the (q+ 2)-secants.
This implies that the (q+2)-secants form a dual (q+4, 4)-arc of type (0, 2, 4).
This shows that the minihyper arises from the construction of Example 2.

Assume now that K is decomposable, then K = K1 + K2, with K1 an
(x1(q + 1), x1; 2, q)-minihyper and with K2 an (x2(q + 1), x2; 2, q)-minihyper
with x1 + x2 = x = q/2 + 2. Assume that x1 ≥ x2. If x2 ≥ 2, then x1 ≤ q/2
and x2 ≤ q/2, so K1 and K2 are a sum of respectively x1 and x2 lines,
implying that K is a sum of x = x1 + x2 = q/2 + 2 lines. If x1 = q/2 + 1
and x2 = 1, then K1 is as described in the preceding theorem and K2 is a
line.
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