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Abstract. In this paper, we study the weighted (z(q + 1),x;2, ¢)-minihypers.
These are weighted sets of (g + 1) points in PG(2, ¢) intersecting every line in at
least x points. We investigate the decomposability of these minihypers, and define
a switching construction which associates to an (z(q + 1), z; 2, ¢)-minihyper, with
z < g% — ¢, not decomposable in the sum of another minihyper and a line, a g+
1),4;2, q)-minihyper, where j = ¢> — ¢ — z, again not decomposable into the sum
of another minihyper and a line. We also characterize particular (z(q+ 1), z;2, q)-
minihypers, and give new examples. Additionally, we show that (z(q + 1),;2,q)-
minihypers can be described as rational sums of lines. In this way, this work
continues the research on (z(q+ 1), z; 2, ¢)-minihypers by Hill and Ward [9], giving
further results on these minihypers.

1 Introduction

Let P be the set of points of the projective geometry PG(t, q). A multiset in
PG(t, q) is a mapping 8: P — N. This mapping is extended in a natural way
to the subsets of P: for any subset Q of P, we set R(Q) = > pco R(P). The
integer R(P) is called the multiplicity of the point P and n = ) p.p R(P)
is called the cardinality of K. The support supp K of a multiset R is the set
of all points of positive multiplicity. A multiset K is said to be projective if
R(P) € {0, 1} for all points P. Projective multisets can be considered as sets
of points by identifying them with their supports.

Conversely, given a finite set Q of points in PG(t, ¢), we define the char-
acteristic multiset xo by:

_J 1 iftPeQ,
XQ(P)_{O itP¢Q.

A multiset in PG(¢, q) is called an (n,w;t, q)-multiarc if

(b) R(H) < w for any hyperplane H;



(c) there exists a hyperplane Hy with &(Hp) = w.

A multiset § in PG(t,q) is called an (f,m;t,q)-blocking multiset or
(f,m;t, q)—mmihyper, if
(a) S(P) =
(b) §(H) > m > 0 for any hyperplane H;
(c) there exists a hyperplane Hy with §(Hp) =

To avoid trivialities, we impose m > 0 in the definition of an (f,m;2, q)-
minihyper.

We can speak of (n, w)-multiarcs or (f, m)-minihypers if the geometry we
consider is clear from the context. The characteristic multiset of a subspace
of dimension u in PG(t, ¢) is a minihyper with parameters (vy41,v,), where
Vy = q;:ll.

An (f,m)-minihyper § is called minimal if there exists no (f — 1, m)-
minihyper § with §'(P) < F(P) for all points P.

The sum § = §1 + §2 of two minihypers §F; and §o, where §; has param-
eters (fi,mi;t,q), i = 1,2, is the (f, m;t, ¢)-minihyper, with f = f; + fo,
m = mj+mg, and with the multiplicity of a point P in § equal to the sum of
its multiplicities in §1 and §o. As a particular example of a minihyper which
is the sum of minihypers, we note that the sum of any = (not necessarily
distinct) lines is a (z(q + 1), x; 2, ¢)-minihyper.

An (f, m;t, q)-minihyper § is called indecomposable or irreducible 7, Def-
inition 2.5] if it cannot be represented as a sum § = §1 + §2 of two other
minihypers §;, i = 1,2, where §; has parameters (f;, m;;t,q), i = 1,2. Note
again that this implies that mq, mo > 0.

Within this introduction, we also define two important substructures of
a projective plane PG(2, q).

A hyperoval K in PG(2,q), q even, is a set of ¢ + 2 points, no three
collinear. The classical example of a hyperoval in PG(2,q), ¢ even, is the
union of a conic and its nucleus; such a hyperoval is called a regular hyper-
oval. For ¢ even, ¢ > 16, in PG(2, q), there exist irregular hyperovals, i.e.,
hyperovals which are not the union of a conic and its nucleus. We refer to
[11] for the list of the known infinite classes of hyperovals in PG(2, q), ¢ even.

A mazimal arc K of PG(2,q) is a set of points intersecting every line in
zero or n points. For 1 < n < ¢, this necessarily implies that n is a divisor of
q. Ball, Blokhuis, and Mazzocca proved that such maximal arcs cannot exist
for ¢ odd [1, 2]. For ¢ even, Denniston proved the existence of a maximal
arc in PG(2,2") intersecting every line in 2¢ points, for every i satisfying
1<i<h-—1[4]




We also refer to the standard reference of Hirschfeld [10] for more infor-
mation on hyperovals and maximal arcs in PG(2, q), g even.

Consider a multiset R of PG(2,¢q); then to K corresponds the spectrum
(ai)i>0 of 8 The spectrum (a;);>0 of R is the sequence of numbers a;, i > 0,
with a; the number of lines of PG(2, ¢) intersecting £ in 4 points.

2 Minihypers with parameters (z(q+ 1), z)

In [9], Hill and Ward consider minihypers with parameters (z(q + 1), z),
x < q, in PG(2,q). They try to characterize all indecomposable minihypers
with the above parameters. Hill and Ward restrict the values of x to z < ¢ so
that the associated codes are Griesmer codes. In [3], this problem is studied
for x = ¢ in the terms of multiarcs. The following result describes divisibility
properties of (z(g+ 1), x)-minihypers and is a straightforward generalization
of Theorem 5.1 in [3].

Theorem 1. (|9, Theorem 18|) Let § be an (z(q + 1), x)-minihyper in I1 =
PG(2,q), ¢ = p™, p prime, m > 1, with x < q, where p/ divides x. Then
for each line L in TI, (L) = z (mod p/*1).

This theorem implies two useful corollaries.

Corollary 2. (|9, Theorem 20|) Every (x(q + 1), z)-minihyper in PG(2, q),
q=7p", pprime, m>1, withx < q— %, is a sum of x lines. In particular,
if § is an indecomposable (x(q + 1), x)-minihyper, then x > q — % or§ is a
line.

We wish to stress that the preceding corollary implies that the only in-
decomposable (z(q+ 1), z;2, ¢)-minihypers in PG(2, ¢), ¢ prime, with z < ¢,
are the (¢ + 1, 1;2, ¢)-minihypers, so are the lines of PG(2, q), ¢ prime.

Corollary 3. ([9, Theorem 23|) Let K be an indecomposable (x(q + 1),x)-
minthyper in PG(2,q), g = p™, p prime, m > 1, for which x < y < q and
p! divides y.

(i) For each line L, R(L) < x4+ q — p/*L.
(ii) For each point P, R(P) <z — p/*1.
(t5t) If g —p+ 1<z <qg—1 and R(P) >z — 2p, then R(P) is divisible by

4_1.
p



A challenging problem is that of the classification of all indecomposable
(x(q 4+ 1), x)-minihypers, x < ¢, in projective planes over arbitrary finite
fields. This problem has been solved for PG(2,8) and PG(2,9) by Hill and
Ward in [9]. In the same paper, they describe five families of indecomposable
(x(q + 1), z)-minihypers in the planes of square order.

3 Ball’s construction

A nice class of indecomposable (z(g + 1), z)-minihypers was found by Ball
in an unpublished note. The class of Ball’s minihypers is explained below.

Suppose that ¢ = 2™ and consider two hyperovals §1 and F2 in PG(2, q)
that meet in ¢ + 2 — x points. Let § = F1 + F2 (mod 2), i.e. suppgF is
the symmetric difference of the supports of the two hyperovals §; and Fo.
Clearly, |§| = 2z and F(L) = 0,2, or 4 for every line L. If we dualize and
regard 4-lines as 2-points, 2-lines as 1-points, and 0-lines as 0-points, we get
an (z(q + 1), z)-minihyper with spectrum
q
5

This construction works in a more general setting. Assume that we are
given a multiset 8 with |R| = sx such that &(L) = is, i € N, for every line L,
i.e. the multiplicity of every line is a multiple of s. We define a multiset § in
the dual plane in which lines of multiplicity is become points of multiplicity
i. Then § is an (x(q + 1), x)-minihyper. We prove this as follows.

Let (a;)i>o0 be the spectrum of K. By counting the flags (P,L), P € L,
we obtain

ay = ¢ +q+1— 2z, am+%:2:c,ai:0, for i # x,x +

sas + 2sags + - = sw(qg+1).

This implies that > ia;s = 2(q + 1), which means that § has the de-
sired cardinality. Let P be an arbitrary point. It has to be checked that
> ibis(P) > x, where b; = b;(P) denotes the number of lines through P
that have multiplicity j. Assume that K(P) = . Then

bs+bos+--- = q+1,
(s—e)bs+ (2s —e)bos + -+ = [R]|—e=sz—¢,
which implies that
bs—|—2b23—|—---:x—|—sg.

This means that each line in the dual plane has multiplicity at least x
since eq/s > 0.



Ezample 1. In PG(2,q), g even, let 9 be a maximal arc of degree 2¢ and
let L be an external line to 9. Define & = xp\z, — M. Clearly, R(M) = 0,
q — 2%, or q for every line M of PG(2,q) and

. e
|,fi|:(12—q(2’—1)—21—2l<22 +2Z—1>
Ifweset s=2, o =% —g+ 4 57 — 1, using Ball’s construction, we get a
minihyper with parameters

¢ ¢
(-0t g =D+ 0.5 0+ & - 12.0).
Remark 4. In the general case, we do not know whether the minihypers
constructed in Example 1 are indecomposable. This can however be proven
in some special cases. For instance, if we start with a maximal arc of degree
q/2, ¢ > 4, we arrive at a minihyper with

2
r=21 _ C1=g+1.

q/2 /2

Note that in this case, the minihyper has ¢ + 1 2-points, one 0-point, and
¢*> — 1 1-points. The 0-point corresponds to the fixed external line L to the
maximal arc 91, and the g+ 1 2-points correspond to the other ¢+ 1 external
lines to the maximal arc 9. These ¢+2 external lines to the original maximal
arc 91 form a dual hyperoval, and so consequently, the 0-point and the ¢+ 1
2-points form a hyperoval in the plane where the ((¢+1)(¢+1),¢+ 1;2, q)-
minihyper § is embedded.

Assume that § = §1 + §2, with §1 an (f1, 21; 2, ¢)-minihyper and §o an
(f2,2;2, q)-minihyper. Since there exists a 0-point to §, then §; and §»
also have a 0-point. Considering all lines of PG(2,¢) through this 0-point,
implies that fi > x1(¢+ 1) and fo > x2(q¢+ 1), with ¢ + 1 = 21 + x9.
Since (¢ +1)(¢+1) = fi+ fo > (¢ +1)(¢ + 1), necessarily f; = z1(¢ + 1)
and fo = z2(q +1). So F1 is an (z1(q + 1),21;2, ¢)-minihyper and F2 an
(x2(q + 1), x2; 2, ¢)-minihyper.

Moreover, since x1 + 2 = g + 1, necessarily z7 < ¢/2 or z2 < q/2.
Assume that z1 < ¢/2. Then Corollary 2 implies that §; is the sum of
21 lines. Let L; be one of these lines. Then reducing the weight of every
point of §; on Ly by one, a new ((z1 — 1)(q + 1), 21 — 1;2, ¢)-minihyper §}
is obtained. But then §) + &2 is a (¢(¢ + 1), ¢; 2, ¢)-minihyper. This is only
possible if originally for L1, §(L1) > g+ 1+ ¢ =2¢+ 1. But L; can contain
at most two points of weight two, so F(L1) < ¢+ 1 + 2. This contradicts
q > 4. So § is indecomposable.



Ezample 2. Take a (q+t,t)-arc & of type (0,2,t = 2¢). These (q-+t,t)-arcs of
type (0,2, = 2%) have been studied in detail by Korchméros and Mazzocca
[12], and by Géacs and Weiner [6]. For instance, a particular property of a
(q + t,t)-arc & of type (0,2,t = 2%) is that all the t-secants pass through a
common point.

Let L be an external line to &. Set & = xp\r — &. Then

2
|Jrc%|:(;2—(1—21:2-(5—5—2z D,

We have one 0-line and secants of multiplicity ¢,¢ — 2, and ¢ — 2°. By the

2 .
Ball construction, we get a minihyper with z = & — 4 — 2/~1,

Ezample 3. The complement of a unital. Consider PG(2, q), where ¢ is a
square. Let U be a unital and set & = xp — U. Here

18l =va(avg —a+Va)

with line multiplicities ¢ — /¢ and ¢q. By Ball’s construction, we get a
minihyper with parameters

((eva—a+va)la+1),av/a—q+ V32,9 .

In order to describe the fourth example, we need to define a linear block-
ing set in PG(2,q). We first of all introduce the notion of a Desarguesian
spread.

By what is sometimes called field reduction, the points of PG(2,q), ¢ =
p", p prime, h > 1, correspond to (h — 1)-dimensional subspaces of PG (3h —
1,p), since a point of PG(2, ¢) is a 1-dimensional vector space over F,, and
so an h-dimensional vector space over IF,,. In this way, we obtain a partition
D of the point set of PG(3h — 1,p) by (h — 1)-dimensional subspaces. In
general, a partition of the point set of a projective space by subspaces of
a given dimension k is called a spread, or a k-spread if we want to specify
the dimension. The spread we have obtained here is called a Desarguesian
spread. Note that the Desarguesian spread satisfies the property that each
subspace spanned by two spread elements is again partitioned by spread
elements.

Definition 1. Let D be the Desarguesian (h — 1)-spread of PG(3h — 1, p),
corresponding to the points of PG(2,p") and let U be a subset of PG(3h —
1,p), then B(U) = {R € D||UNR # 0}. We identify the spread elements of
B(U) with the corresponding points of PG(2, p").



Definition 2. We denote the (h—1)-dimensional spread element of PG(3h—
1,p) corresponding to a point P of PG(2,p") by S(P). If U is a subspace of
PG(2,p"), then S(U) := {S(P)||P € U}.

Analogously to the correspondence between the points of PG(2,¢), ¢ =
p", and the elements of a Desarguesian spread D in PG(3h — 1, p), we obtain
the correspondence between the lines of PG(2, ¢) and the (2h—1)-dimensional
subspaces of PG(3h—1, p) spanned by two elements of D. With this in mind,
it is clear that any subspace U of dimension at least h of PG(3h—1, p) defines
a blocking set B(U) in PG(2,¢q). A blocking set constructed in this way is
called a linear blocking set. Linear blocking sets were first introduced by
Lunardon [14], although there a different approach is used. For more on the
approach explained here, we refer to [13].

Ezample 4. The complement of a linear blocking set in PG(2,q), ¢ = p", p

prime, h > 1.

Such a linear blocking set B(U) in PG(2,q) intersects every line in 1
(mod p) points. Suppose that e is the maximal integer such that every line
of PG(2, q) intersects B(U) in 1 (mod p€) points. Then the complement of
B(U) intersects every line in 0 (mod p€) points. If |B(U)| = ¢+ k + 1, then
the complement has size ¢> — k = p®(q?/p°® — k/p°), so defines a {(¢?/p® —
k/p°)(q + 1), ¢*/p° — k/p%; 2, ¢)-minihyper.

4 Rational sums of lines

It has been noted that an (x(q + 1), z)-minihyper is not necessarily a sum
of lines. However this is always the case if we assume rational multiplicities
for the points.

Theorem 5. Let § be an (x(q + 1), x)-minihyper in PG(2,q). Then there
exist lines L1, ..., Ls and positive rational numbers cy, ..., cs, such that

S =cixr, + -+ CsXLss
with Y7 ¢ = x.

Proof. Assume that there exists a line L with §(L) > x+¢q. Then § = F—x1
is an ((x —1)(¢ + 1),z — 1)-minihyper and we get the result by induction
on x. Hence, without loss of generality, we can assume that all lines have
multiplicity at most z + g — 1.



Let P be a point of multiplicity €. Denote by a; the number of lines
through P that have multiplicity . We have

qg—1
Zam-i-i = Q+17
=0

q—1
(x+i—¢e)agy; = x(q+1)—c¢,
=0
which implies
q—1 .
i
—Qg4i =&
i=0
Therefore,
q—1 i
=2 >
i=0 L:F(L)=a+i 9
which had to be proven. O

Ezample 5. Consider PG(2, q), ¢ even. Then this projective plane contains
hyperovals.

Consider a dual hyperoval {L1,..., Lg42} in PG(2,q), ¢ even. Then the
rational sum

1 1
.y R 5
5 1+ +2 q+2

isa ((34+1)(¢+1),4+ 1;2,¢)-minihyper in PG(2,¢), g even.

We know from Theorem 1 that if § is an (x(¢ + 1), z)-minihyper in
IT=PG(2,q), ¢ = p™, p prime, m > 1, with 2 < ¢ where p/ divides x, then
for each line L in II, (L) = x (mod p/*1).

This allows us to describe more in detail the rational coefficients of the
rational sum.

Corollary 6. Let § be an indecomposable (x(q + 1), x)-minihyper in I1 =
PG(2,q), ¢ = p™, p prime, m > 1, with x < q where p! is the mazimal
power of p that divides x, then

1 2
§ = D mrrum T e b
L) p L®) p

pm—f—l -1
Z i1 Xpem=f=1-1)
Lem=f=1-1)



with LY the lines intersecting § in x+pf T points, with L3 the lines inter-
secting § in x+2pT 1 points, ..., and with L™ =1) the lines intersecting
Finx+ (P71 — D)p/*t points.

5 A construction for r = %

If Risa (¢ +q+2,q+2)-arc in PG(2,q), then &(P) < 2 for all points
P [3]. Thus the correspondence 8 < 2xp — K establishes a one-to-one
correspondence between such arcs and (g(q + 1), ¢;2, ¢)-minihypers § for
which §(P) < 2 for all points P. Thus the examples of |2, Section 2| provide
(¢(g+1),¢; 2, q)-minihypers having this added restriction. In particular, the
3-line construction from [3, Theorem 2.3] leads to the following results.

Theorem 7. Let G be a subgroup of the additive group (Fq,+). Let A, B,
and C be cosets of G in (Fq,+) with A+ B+C # G. Set

A=-B-C, B=-A-C, andC' = -A—-B.
Define in the following way a multiset K in PG(2,q):

2-points  (a,0,—1) forae A,
(b,—1,0) forbe B,
(¢, 1,1) forcel,

0-points  (a,0,—1) fora e A,
(b,—1,0) for b e B,
(c,1,1) forceC,
(1,0,0)

1-points  the remaining points.
Then the multiset R is a (¢* + q,q)-minihyper. Conversely, every (q* +
q, q)-minihyper for which the 2-points lie on three lines meeting in a 0-point
1s isomorphic to R.

Now consider the special case ¢ = 2", r > 2. Let G be a subgroup of
(Fy, +) of order 271, If & is the minihyper defined in Theorem 7, the lines
in PG(2, q) have the types described in Table 1 below.

multiplicity | # of such lines | # of 2-pts | # of 1-pts | # of 0-pts
(A) q 3 q/2 0 q/2+1
(B) q 3¢°/4 1 q—2
(€) q q—2 0 q 1
(D) qg+4 q?/4 3 q—2
Table 1



The points of PG(2,¢q) can be divided into four classes with respect to
the types of the lines they are incident with. The possible types of the points
are described in Table 2.

# lines of type
multiplicity | # of such points | (A) | (B) | (C) | (D)
() 2 3q/2 L | q/2] 0 |q/2
() 1 ¢ —2q 0 |3¢g/4| 1 |q/4
() 0 3q/2 1 q 0 0
(5) 0 1 31 0 |¢g—2] 0
Table 2

Now we define a new multiset § in the dual plane of PG(2,q) by

q/4 if 1 is of type (A);
Sl =<1 if [ is of type (B); (1)
0 if [ is of type (C) or (D).

Theorem 8. The multiset § is a 2-weight minihyper with parameters (%(q—i—

1), %) and spectrum

3q 5q

4 24 24
4747

3q .
a3q/4:q2_ 2—1'1» a5q/4:?7 a; =0 for i #

Proof. The proof is immediate from Table 2. Points of type («), (3), and
(0) become lines of multiplicity 3¢q/4, while lines of type (v) become lines of
multiplicity 5¢q/4. Table 2 implies also the values of as,/4 and as, /4. O

For » = 2, this construction gives a projective (15,3)-minihyper with
3- and 5-lines which is the complement of the hyperoval in PG(2,4). For
r = 3, the theorem gives a (54, 6)-minihyper with 6- and 10-lines which is an
“orphan” minihyper obtained in |9, Theorem 31|. For r = 4, the construction
gives a (204, 12)-minihyper with lines of multiplicity 12 and 20. For r > 4,
these minihypers do not come from Ball’s symmetric difference construction
since they have points of multiplicity 2”2 > 2, while in Ball’s construction
all points have multiplicity 0, 1, and 2.

This construction can be reversed: from a minihyper with three collinear
points of multiplicity ¢/4 (the remaining points on the line being 0-points),
3¢? /4 points of multiplicity 1 and ¢?/4 4 ¢ — 2 points of multiplicity 0, one
can obtain back the (¢(¢ + 1), ¢)-minihyper and the (¢? + ¢ + 2, q + 2)-arc
from the 3-line construction.

10



6 Indecomposable minihypers

In [9], Hill and Ward consider plane (z(q 4+ 1), z)-minihypers with x < ¢
only. The reason is that such minihypers give rise to Griesmer codes via
the well-known construction of Hamada [5, 8]. If § is an (z(q + 1),x;2, q)-
minihyper and s is the maximal multiplicity of a point, then syp — § is an
(s(¢> +q+1) —x(qg+1),s(qg+1) — x;2, q)-arc. The code associated to this
arc has parameters [s(q?> +q+1) —x(qg+1),3, s¢> — xq] and is easily checked
to meet the Griesmer bound for z < gq.

In what follows, we consider minimal, indecomposable (z(q + 1), x;2, q)-
minihypers without imposing an explicit restriction on z. It turns out that
the indecomposability requirement implies an upper bound on z.

Theorem 9. Every (z(q + 1),x;2, q)-minihyper, with x > ¢*> — q + 1, is
decomposable.

Proof. Assume that § is an indecomposable (z(q + 1), z)-minihyper. There
exists a point P in PG(2,¢) that is of multiplicity 0. Otherwise § can be
represented as the sum of yp and an ((x—qg—1)(¢+1)+¢, z—g¢—1)-minihyper,
a contradiction to the indecomposability condition.

Note that all lines through the O-point P are x-lines. Moreover the
multiplicity of any line L cannot be larger than x + ¢ — 1 (otherwise, the
minihyper is represented as the sum of xz and an ((x —1)(¢ + 1),z — 1)-
minihyper). Counting the flags (P’, L), with P' € L', we get

g+ 1) <az(g+1)+(x+q-1).
This implies z < ¢° — q. O

Theorem 10. For an indecomposable (x(q + 1), x;2, q)-minithyper with x <
q® — q, all points of PG(2,q) have weight at most q — 1.

Proof. Consider a point P of weight e, and now consider all the lines through
P. Since they all have weight at most z 4+ ¢ — 1, we obtain the inequality

ge+x(qg+1) <qglx+q—1)+um,

where we used the fact that every line has weight at most x + ¢ — 1, and

there is at least one z-secant through P. Namely, there is at least one point

P’ having weight zero, and the line PP’ is an z-secant to the minihyper.
This leads to e < g — 1. O

11



Corollary 11. There is no indecomposable (x(q+1), z;2, q)-minihyper with
r=q>—q.

Proof. Assume otherwise and let § be an indecomposable ((¢>—q)(q+1),¢*—
¢; 2, q)-minihyper. Then by the counting argument from Theorem 9, we
get that all points other than the O-point P have multiplicity ¢ — 1 and

= (¢ — Dxp\ypy- But xp\(py itself is a (¢(¢ + 1), ¢;2, g)-minihyper, a
contradiction to our initial assumption. O

Remark 12. Using the same arguments, we can improve on the bound for x
if we assume the existence of a certain number of 0-points. For example, if
we assume that there are two 0-points, then the number of z-lines becomes
at least 2¢ + 1 and the double counting argument gives

2(g+1)? <z + 1)+ (¢ —q)(z+q—1),

whence z < ¢® — 2¢ + 1.

7 A switching construction

Consider an indecomposable (x(q+ 1), z; 2, ¢)-minihyper with 2 < ¢> —¢—1.
Then all points have weight smaller than or equal to ¢ — 1 (Theorem 10),
and for every line L, F(L) < x + ¢ — 1. Then this minihyper has at least
one 0-point; see the proof of Theorem 9. Let us fix such a 0-point, P say.
All the lines through P are of multiplicity z. Set z = ¢> — ¢ —1v, 0 < y, and
define a new minihyper § in the following way:

, ~1-5(Q) QP
F@-{" ) reze e

We say that §' is obtained from § by using switching with respect to P. We
have

I§ = Z (-1-3@Q)=(*+q(g—1) - Z F(Q (3)
Q:QEP QQZP
= (@+qlg—1)—z(¢g+1) =y(g+1). (4)

Furthermore, all lines through P have multiplicity y = g(¢ — 1) — . For
the remaining lines L, one has

F(L)>(q+1)(g—1)—(x+qg—-1)=q(g—1)—z=y.

Hence, §' is a (y(q + 1), y)-minihyper.
It is clear that switching § with respect to P, we again obtain §.

12



Lemma 13. Let § be an (x(q+1), x;2, q)-minihyper, with x < q*>—q, having
a 0-point P and such that F(L) < x + q — 1 for every line L. Let § be the
(y(q + 1),y;2, q)-minihyper, y = ¢*> — q — x, obtained from § by switching
with respect to P. Then §'(L) < y+q— 1 for every line L. In particular, §'
18 not a sum of lines.

Proof. For every point @, §'(Q) < qg—1-F(Q), so
FL)<(g+)g-1)-FL) <@ -1-r=y+qg-1L
]

Theorem 14. Every (z(q + 1), x;2, q)-minihyper, with x > ¢ — 2q + %, is
decomposable.

Proof. Assume otherwise and let § be an indecomposable minihyper with
parameters (z(q + 1),2), © > ¢*> — 2¢ + %. Then z < ¢*> — ¢ by Theorem
9. By the switching construction, we get a (y(q + 1), y)-minihyper §" with
y < (q2—q)—(q2—2q+%) = q—%. Since § is indecomposable, §(L) < z+q—1
and, by Lemma 13, §(L) < y + ¢ — 1. This contradicts Corollary 2. O

8 Two characterization results

8.1 A first characterization result

Consider PG(2,q), ¢ even; then there are two known ways to construct
((2+1)(¢g+1),42+1;2, g)-minihypers. First of all, there is the sum Ly +---+
Lgjo41 0f ¢/2+1lines Ly, ..., Ly/o,1, and secondly there is the rational sum
$(L1+ -+ + Lgya), where {L1,..., Lgi2} is a dual hyperoval of PG(2,q).

We now show that all (( 4+ 1)(¢ + 1), 2 + 1;2, ¢)-minihypers arise from
these two constructions.

Theorem 15. Every ((4 +1)(¢+ 1), 2 4 1,2, q)-minihyper 8 in PG(2,q), q
even, is either:

(1) a sum Ly + -+ Lgjor1 of ¢/2+ 1 lines Ly, ..., Lgjaqq, or

(2) a rational sum (L1 + -+ + Lqy2), where {L1,...,Lqo} is a dual
hyperoval.

Proof. Let x = q/2+ 1 and y = 3¢/4. Assume first of all that K is indecom-
posable. This implies in particular that the weight (L) of every line L is at
most ¢/2 + 1+ ¢ — 1. Then the following properties are valid.
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Add a sum of ¢/4 — 1 lines to R to obtain a ((3¢/4)(q + 1), 3¢/4;2, q)-
minihyper &. Then Theorem 1 implies that for every line L, & (L) = 3q/4
(mod ¢/2). Subtracting the contribution of the sum of the ¢/4 — 1 lines in
R — R, this implies that for every line L, R(L) = z = ¢/2 + 1 (mod ¢/2).
Since for every line L, (L) = z (mod ¢/2), and since &(L) < x+ ¢ — 1, this
implies that R(L) € {¢/2+1,q + 1}.

Again, since x = q/2+ 1 <y = 3¢q/4 = q/2 + ¢/4 and since ¢/4 divides
y, for every point P, R(P) < ¢/2+4+1—¢q/2 =1 (Corollary 3). So £ only has
points of weight one.

Let P be a point of R, let P belong to o (¢/2 + 1)-secants and to 3
(g + 1)-secants to K, then

atf = q+1,
2
a-d+p8.q = G+1)(g+1)—-1=%L + 3.

This implies that 5 = 2. So every point of & belongs to two (¢+1)-secants
to K. This implies that there are in total 2(¢/2 +1)(¢+1)/(¢+ 1) =q+2
different (¢ + 1)-secants. Denote them by Li,..., Lsy2. Then since every
point of & belongs to two of the lines Li,..., Ly42, the lines Ly, ..., Lgio
necessarily define a dual hyperoval of PG(2,q), ¢ even.

Assume now that K is decomposable. Then the same arguments as in
Remark 4 show that 8 = R + Ko, with K an (x1(¢+ 1), x1;2, ¢)-minihyper
and with R an (z2(q + 1), x2; 2, ¢)-minihyper with z1 + 9 = 2 = ¢/2 + 1.
But since 21 < ¢/2 and z9 < ¢/2, R and Ky are respectively a sum of x;
and 9 lines (Corollary 2), so £ is a sum of 2 = ¢/2 + 1 lines. O

8.2 A second characterization result

Consider again PG(2,q), ¢ even. Then we have already three constructions
for ((¢/2+2)(q+1),q/2 + 2;2, q)-minihypers. The first construction is via
a sum of ¢/2 + 2 lines, the second construction via a (g + 4,4)-arc of type
(0,2,4) (Example 2), and the third construction is via the sum of a line
and a ((2 +1)(¢+1), § +1;2, ¢)-minihyper arising from a dual hyperoval in
PG(2,q), q even (Example 1).

We now prove that these are the only three constructions for ((q/2 +
2)(¢+1),q/2 + 2;2,q)-minihypers.

Theorem 16. Every ((4 +2)(¢+ 1), 2 4 2;2, q)-minihyper 8 in PG(2,q), q
even, q > 8, is either:
(1) a sum Ly + -+ Lgjato of q/2+2 lines Ly, ..., Lyjata, or
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(2) a (($+2)(q+1), % +2;2,q)-minihyper constructed via a (q+4,4)-arc
of type (0,2,4), or
3) the sum of a line and a (2 +1)(¢+1), 2 + 1;2, q)-minihyper arising
2 2
from a dual hyperoval in PG(2,q), q even.

Proof. Assume first of all that & is indecomposable, then again in particular,
the weight of every line is at most ¢/2+24¢—1. Then the following properties
are valid.

We again use that x = ¢/2+2 <y = 3¢/4 = q/2+q/4. Since ¢/4 divides
y, for every point P, R(P) < q/2+2—q/2 =2 (Corollary 3). So K only has
points of weight one and two.

Using the same technique as in the proof of the preceding theorem, The-
orem 1 implies that for every line L, R(L) = ¢/2 + 2 (mod ¢/2), and since
R(L) < q/242+q—1, this implies that R(L) € {¢/2+2,q+2}. We first de-
termine the numbers ag /9,9 and aq42 of (¢/2+2)-secants and (g+2)-secants.
The standard equations are:

Qg/2+2 + g2 = ¢ +a+1,
(/2 +2)agjoso + (@ +2)agr2 = (q/2+2)(q+1)%

leading to ag 949 = ¢*> — 3 and agy2 = q+4.
The third standard equation is [9]:

(¢/2+2)%ag 040 + (@ +2)%agr2 = (¢4 1)%(q/2+2)> + q(p1 + 4p2),

where p; is the number of points in & of weight one and ps the number of
points in & of weight two. This leads to p; + 4ps = ¢*/2 + 3¢ + 4.
But we also have the equations

po+pitpr = ¢+q+1,
p1+2p2 = (¢/2+2)(g+1),
leading to pg = ¢?/2 — 5q/4, p1 = ¢*/2 +2q, and py = q/4 + 1.
We now check how the secants pass through a point of weight zero, one,
or two. A O-point only lies on (g/2 + 2)-secants. Suppose that a 1-point lies

on 4949 different (¢/2 + 2)-secants and on z442 different (g + 2)-secants.
Then

Tgjo42 +Tqr2 = q+1,
(¢/2+2)zg/240 + (@ +2)2g42 = (q/2+2)(q+1) +q,
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leading to z4+2 = 2 and @919 = ¢ — 1. So a point of weight one lies on
exactly two of the (g + 2)-secants.

Suppose that a 2-point lies on z, Ja42 different (¢/2 + 2)-secants and on
y, o different (g + 2)-secants. Then

Tjpin tTqpr = ¢+ 1
(@/2+2)2y 500 + (@ +2)x00 = (¢/2+2)(q+1) +2q,

leading to @g o =4 and a7, = — 3.

A (g+2)-line is completely contained in £, and hence contains one point
of weight two and ¢ points of weight one.

This all leads to the conclusion that a point of weight zero lies on zero
of the (¢ + 2)-lines, a point of weight one lies on exactly two of the (¢ + 2)-
secants, and a point of weight two lies on exactly four of the (¢ + 2)-secants.
This implies that the (¢+2)-secants form a dual (¢+4, 4)-arc of type (0,2,4).
This shows that the minihyper arises from the construction of Example 2.

Assume now that K is decomposable, then & = RK; + Ko, with K an
(x1(g+ 1), 21;2, ¢)-minihyper and with R an (x2(q + 1), z2; 2, ¢)-minihyper
with 1 + 29 = ¢ = ¢/2+ 2. Assume that x1 > xo. If 29 > 2, then 21 < ¢/2
and x93 < ¢/2, so R, and Ky are a sum of respectively z; and xy lines,
implying that K is a sum of z = x1 + 9 = ¢/2 + 2 lines. If 1 = ¢/2+ 1
and x9 = 1, then K; is as described in the preceding theorem and Ko is a
line. O
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