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Abstract Texture classification is an important aspect
of many digital image processing applications such as
surface inspection, content-based image retrieval, and
biomedical image analysis. However, noise and com-
pression artifacts in images cause problems for most
texture analysis methods. This paper proposes the use
of features based on the human visual system for tex-
ture classification using a semi-supervised, hierarchical
approach. The texture feature consists of responses of
cells which are found in the visual cortex of higher pri-
mates. Classification experiments on different texture
libraries indicate that the proposed features obtain a
very high classification near 97%. In contrast to other
well-established texture analysis methods, the experi-
ments indicate that the proposed features are more ro-
bust to various levels of speckle and Gaussian noise.
Furthermore, we show that the classification rate of
the textures using the presented biologically inspired
features is hardly affected by image compression tech-
niques.

Keywords Texture classification · Grating cell ·
Gabor · Noise · Image compression

1 Introduction

An important aspect of many image processing appli-
cations, such as surface inspection, image retrieval and
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medical image processing, is the classification and in-
terpretation of textures. Texture classification involves
deciding what texture class an observed sample belongs
to. Although a plethora of texture analysis methods
have been proposed in the literature, there are still some
open issues where many applications struggle with. For
most practical applications, noise is a frequent problem
in texture characterization and causes difficulties for
interpretation. Furthermore, different methods used to
eliminate the noise, e.g., adaptive and non-adaptive fil-
tering, eliminate some actual image data as well which
results in the loss of texture information. Due to the
high data volume of digital images and video, compres-
sion is a popular technique to reduce the size and to
optimize the storage. However, the presence of artifacts
caused by compression algorithms is an issue for tex-
ture analysis. Aschkenasy et al. [1] have investigated
the effect of compression on texture analysis of echocar-
diographic images. They recommend the use of uncom-
pressed or lossless compressed digital images in studies
involving texture analysis since lossy compression af-
fects texture parameters.

In the literature some approaches exist to deal with
noise. For example, Iakovidis et al. [12] describe a fuzzy
extension to the local binary pattern (LBP) operator [25]
to deal with noise in images. An important drawback
of their approach is that a parameter to control the
degree of fuzziness has to be specified and an optimal
value for this parameter is highly content-dependent.
They also assume that the training and test images
contain an equal amount of noise. Murino et al. [24]
apply high-order statistics to create a feature vector.
However, a selection algorithm is needed to reduce the
high-dimensional data for classification. Fountain and
Tan [9] used a multi-channel Gabor filter bank for clas-
sifying textures from the Brodatz album. By process-
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ing an image using multiple resolution techniques, filter
banks have the ability to decompose an image into rel-
evant texture features that can be used to classify the
textures accordingly. They found that their method was
relatively robust to Gaussian noise by using a sufficient
number of features. In computer vision the use of vi-
sual neuroscience has often been limited to a tuning of
Gabor filter banks [6,7,15]. Little or no attention has
been given to biological features of higher complexity.
In 1992, Von der Heydt et al. [30] reported on the ex-
istence of a new type of orientation-selective neuron in
the visual cortex of higher primates which they called
grating cells. Grating cells respond vigorously to a grat-
ing of bars of appropriate orientation and periodicity,
but they don’t respond to bars that do not make part
of a grating. The main purpose of grating cells in the
human visual system (HVS) is a fast and reliable detec-
tion of periodic patterns of a certain orientation. The
behavior of grating cells could be a vital property of
a robust texture operator since they don’t respond to
non-texture features such as isolated pixels or edges.
There exist some computational models of grating cells
in the literature, e.g., by Kruizinga and Petkov [17],
Lourens et al. [18], and Zhang et al. [31]. Despite these
models, the application of grating cell features in the
computer vision domain is, at the time of writing, still
very limited. Zhang et al. apply their model in medical
image retrieval, and, Ma and Doermann [19] use the
model of Kruizinga and Petkov for classifying fonts of
scanned document images. They have found that the
grating cell operator can capture more texture differ-
ences between fonts than using isotropic Gabor filter
responses. In previous work [21], we have used grat-
ing cell outputs for segmenting textured and outdoor
scenery images and we obtained better results com-
pared to the use of widely accepted Gabor filter out-
puts.

In this paper, we present the use of features inspired
by the HVS for texture classification. Furthermore, we
investigate the robustness against Gaussian and speckle
noise and, against artifacts of a Joint Photographic Ex-
pert Group (JPEG) image compression algorithm. The
remainder of the paper is structured as follows. Sec-
tion 2 explains the computational model for calculating
texture features and the relationship with the HVS. In
Sect. 3, the filter bank design and the construction of
our texture features is explained. Then in Sect. 4, we
explain how the textures are classified using a hierar-
chical, semi-supervised neural network. In Sect. 5, we
conduct classification experiments of the proposed tex-
ture features on two image sets and compare their re-
sults with other well-established texture analysis meth-
ods. The robustness of the proposed textures features

against noise and image compression are tested. Finally,
Sect. 6 ends this paper with conclusions.

2 Computational model

The computational model of the texture features we
propose for classification is described in this section.
At first, we take a closer look in Sect. 2.1 at the con-
figuration of the Gabor filter which is at the basic level
of our method. The model of Petkov and Kruizinga is
briefly explained in Sect. 2.2 to compute enhanced grat-
ing cell responses. Finally, Sect. 2.3 considers the spatial
smoothing of Gabor responses with regard to texture
analysis.

2.1 Gabor filter functionality

In the spatial domain, a Gabor function is a Gaussian
modulated by a sinusoid. To model the receptive fields
of simple cells in the visual cortex, the real part of the
following family of 2-dimensional Gabor filters are used
as proposed by Daugman [8]:

gλ,θ,ϕ(x, y) =
exp

([
−x′2

2σ2
x
− γ2y′2

2σ2
y

])
cos
(

2πx′

λ + ϕ
)

2πσxσy
(1)

where{
x′ = x cos θ − y sin θ
y′ = x sin θ + y cos θ.

The standard deviations σx and σy of the Gaussian
factor determine the effective size of the surrounding of
a pixel in which the summation takes place. A circular
Gaussian is preferred so that there is a constant spatial
extent in all directions, therefore σx = σy(= σ). The
parameter λ is the wavelength of the sinusoid, and the
ratio σ/λ determines the bandwidth of the filter. Exper-
iments indicate that the frequency bandwidth of simple
cells is about one octave [28], thus σ/λ ≈ 0.56. The spa-
tial aspect ratio γ determines the eccentricity and here-
with the eccentricity of the receptive field ellipse. Ac-
cording to Jones and Palmer [14], it has been found that
γ varies in a limited range of 0.23 < γ < 0.92 and is set
to a constant value of 0.5. Further, the orientation of the
filter is denoted by θ ∈ [0, π[. This is the normal to the
parallel lobes of the filter in the spatial-frequency do-
main, denoted by x′ in equation (1). Finally, the phase
offset ϕ affects the symmetry of the function. For ϕ = 0
or ϕ = π the filter is symmetric while for ϕ = π/2 or
ϕ = −π/2 the filter is anti-symmetric.

The response of the receptive field function of a sim-
ple cell tuned to orientation θ and frequency 1/λ to the
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luminance channel of an input image I(x, y) is then
given by:

rλ,θ,ϕ(x, y) =
∫∫

I(s, t)gλ,θ,ϕ(x− s, y − t)dsdt. (2)

2.2 Enhanced grating cell operator

Grating cells respond to bar gratings of a given orienta-
tion and periodicity, but not to single bars. In order to
better distinguish the salient texture-specific periodici-
ties and to obtain an improved texture discrimination,
an enhanced image I(x, y) is created by applying a his-
togram equalization to the original input image I(x, y).
Histogram equalization is a well-known technique that
rescales the range of the pixel values to produce an im-
age whose pixel values are more uniformly distributed
which results in an image with a higher contrast. In pre-
vious work, we found that applying a histogram equal-
ization increases the performance of texture segmenta-
tion when using grating cell outputs [20].

To model the non-linear behavior of the grating
cells, we make use of the model of Kruizinga and Petkov
[17]. This model first computes the output sλ,θ,ϕ(x, y)
to an input signal, here I(x, y), of a simple cell of the
visual cortex tuned to a specific frequency 1/λ and ori-
entation θ, by a non-linear stage which includes thresh-
olding and contrast normalization:

sλ,θ,ϕ(x, y) =


0 if aλ(x, y) = 0

χ

(
rλ,θ,ϕ(x,y)

aλ(x,y) R

rλ,θ,ϕ(x,y)

aλ(x,y) +C

)
otherwise,

(3)

where R denotes the maximum response level, C is the
semi-saturation constant, and χ(t) = t for t ≥ 0 and
χ(t) = 0 for t < 0. The average gray value of the recep-
tive field is given by

aλ(x, y) =
∫∫

I(s, t) exp
(x− s)2 + γ2(y − t)2

2σ2
dsdt.

The simple cell outputs, given by equation (3), are then
used to calculate the activity of grating subunits qλ,θ

which are summed up together to obtain a grating cell
response:

qλ,θ(x, y) =
{

1 if ∀n, Mλ,θ,n(x, y) ≥ ρNλ,θ(x, y)
0 if ∃n, Mλ,θ,n(x, y) < ρNλ,θ(x, y)

(4)

where 0 < ρ < 1 is a threshold value in the proximity
of 1, e.g., ρ = 0.9. The quantities Mλ,θ,n and Nλ,θ for
ϕn = 0, n ∈ {−3,−1, 1} and ϕn = π for n ∈ {−2, 0, 2}
are given by:{

Mλ,θ,n(x, y) = max(u,v){sλ,θ,ϕn(u, v)}
Nλ,θ(x, y) = max{Mλ,θ,n(x, y)|n = −3,−2, ..2}

Finally, u and v satisfy the condition:{
nλ

2 cos θ ≤ u− x < (n + 1)λ
2 cos θ

nλ
2 sin θ ≤ v − y < (n + 1)λ

2 sin θ.

A grating subunit will thus be activated (qλ,θ(x, y) = 1)
if for the preferred orientation θ and spatial-frequency
1/λ, the receptive field function rλ,θ,ϕn

is alternately
activated in intervals of length λ/2 for n = −3,−2, .., 2
and this along a line segment of length 3λ centered on
point (x, y). This is the case if at least 3 parallel bars
with spacing λ and orientation θ of the normal to them
are encountered.

In the final stage, the output of the enhanced grat-
ing cell operator wλ,θ with frequency 1/λ and orienta-
tion θ to the normal of the grating is computed by a
weighted summation of the responses of the subunits
qλ,θ. The operator is made symmetric by considering
the opposite direction θ + π:

wλ,θ(x, y)=
∫∫

W (x, y) (qλ,θ(s, t)+qλ,θ+π(s, t)) dsdt (5)

where W (x, y) = 1√
2πσ

exp
(
− (x−s)2+(y−t)2

2(5σ)2

)
.

2.3 Spatial smoothing

Textures which do not have sufficiently narrow band-
widths may suffer from leakage. The effects of leakage
can be reduced by post-filtering the channel amplitudes
with Gaussian filters having the same shape as the cor-
responding channel filters but greater spatial extents.
Therefore, smoothed Gabor responses are known to im-
prove the performance for texture analysis [3]. There ex-
ists a physiological reason for utilizing smoothing since
it mimics characteristics of the HVS. Hall and Hall [10]
describe the existence of sustained channels in the vi-
sual system, indicating that the HVS not only considers
pixels in the field of view, but also pixels in the vicinity.

The spatially smoothed Gabor responses we use,
are obtained by convolving symmetric Gabor responses
with a Gaussian with standard deviation σ′ = 2σ:

r̃λ,θ = [rλ,θ,0 ∗ gauss](x, y) (6)

where

gauss(x, y) =
1

2πσ′2
exp

(
−x2 + y2

2σ′2

)
.

3 Texture features

An important aspect for implementing a Gabor filter,
is the size of the neighborhood window to compute
the filter’s response. In our model, the window size
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k is related to the standard deviation of the Gaus-
sian (and thus to the bandwidth of the filter), i.e.,
k = nint(2σ) + 1 ≈ nint(1.12λ + 1) pixels, where nint
denotes the nearest integer function. Consequently, the
size of the window changes according to the periodicity
of the texture: a smaller window for small periodicities,
and a larger window for the larger periodicities.

For texture classification, the texture features we
propose are composed as follows. For input images of
size 512×512, the center frequencies for the filter banks
are set to

√
2, 2
√

2, 4
√

2, 8
√

2, and 16
√

2 cycles per im-
age. Further, we use 8 orientations (θ=0, π

8 ,.., 7π
8 ) to

obtain a selectivity of 22.5 degrees.
Since r̃λ,θ has a different range than wλ,θ, a vec-

tor normalization is applied otherwise, larger values
tend to dominate the other values during classifica-
tion. Concatenating the normalized enhanced grating
cell responses w′

λ,θ and the normalized smoothed Ga-
bor filter responses r̃′λ,θ to a pixel (xi, yj), results in an
80-dimensional feature vector v(xi, yj):

v(xi, yj) =
{
w′

λk,θl
(xi, yj), r̃′λk,θl

(xi, yj)
}

(7)

for k = 0..4 and l = 0..7.

4 Semi-supervised Classification

To classify the extracted feature vectors v, we make
use of a hierarchical variant of the Self-Organizing Map
(SOM). The SOM is a single layer artificial neural net-
work that simulates the process of unsupervised self-
organization with a simple, yet effective numerical al-
gorithm [16]. There exists a lot of neurophysiologic evi-
dence to support the idea that the SOM captures some
of the fundamental processing principles of the human
(both visual and auditory) cortex. An important prop-
erty of the SOM is that it clusters similar data vectors
and projects dissimilar ones far from each other on the
map. A SOM includes a grid of nodes and each node
is associated with a parametric real vector, called the
model vector. For a given input, the model vectors are
updated according to the following rule: (i) find the best
matching unit (BMU) using a predefined metric (which
is usually the Euclidean distance), and (ii) change the
model vectors in a neighborhood of the BMU (the size
of the neighborhood is a decreasing function of time).
At first, a 2-dimensional SOM of a predefined size is
trained with labeled data. A result of this training pro-
cess is that pixels belonging to the same texture are
assigned to the same or adjacent nodes.

However, we have experienced that the number of
misclassifications increases with the number of textures
in the training data. A way to reduce these errors, is by
increasing the dimensions of the SOM. Though, a larger

map will also increase the computation time. In addi-
tion, a larger SOM won’t prevent that some nodes are
‘contaminated’, i.e. that a node is associated with train-
ing data from different textures. For example, when two
textures are relatively similar to each other compared
to several other textures in the training data, it is possi-
ble that these two textures are not distinguished by the
SOM. To tackle this issue, we employ a hierarchical ap-
proach utilizing the labels of the training data as some
means of supervision. The training vectors associated
with a contaminated node are then used to train a new,
smaller SOM. This process is iteratively repeated until
a certain stopping criterion is reached or no progress in
the classification is obtained. Suppose that a node N is
related to a set V of training vectors v of k classes ci,
i = 0..k−1: N ← V = {vc0,1..vc0,m0 , ..vcj ,1..vck−1,mk−1}
where mi denotes the number of training vectors of tex-
ture ci assigned to N . The stopping criterion is defined
by a threshold 0 < τ ≤ 1:

maxi=0..k−1 {mi}∑k−1
i=0 mi

≥ τ (8)

If (8) isn’t satisfied, V is used to train a new SOM.
This process is then repeated for the nodes of the re-
sulting SOM. The class of an unknown test sample is
easily obtained by calculating its BMU. If the BMU is
an empty node (no vectors were assigned to this node
during the training phase), the label of its closest node
is used. The parameter τ is empirically set to 0.95 and
the dimensions of the SOM for K texture classes are
chosen as follows: 4×4 for K = 2 or 3, 8×8 for K = 4,
10 × 10 for K = 5, 15 × 15 for K = 6 and 20 × 20 for
K ≥ 7.

5 Classification Experiments

We use the SOM Toolbox [29] to create the SOMs, and
the Euclidean distance is employed as distance met-
ric. The performance and robustness of the SOM-based
classification with the proposed texture features is ana-
lyzed using two different data sets: 10 textures from the
Brodatz [4] (D6, D9, D12, D15, D19, D38, D68, D84,
D94, D104), and 10 textures from the Vistex album [27]
(Grass.0001, Bark.0012, Brick.0000, Metal.0002, Fab-
ric.0005, Fabric.0015, Food.0006, Leaves.0008, Sand.00-
01, Water.0005). From the 512× 512 pixels images, we
crop an area of 512 × 452 pixels and use it as training
data. The remaining 512 × 60 pixels are then used as
test data for classification. The texture features are ex-
tracted from patches of 4 × 4 pixels as a compromise
between the computation time and detail. This results
in a total of 1920 test features per texture.
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In order to investigate the robustness of the pro-
posed features v, we add zero mean speckle and Gaus-
sian noise of different variances to the test images us-
ing the Matlab Image Processing Toolbox [22], and try
to classify these noisy images using the (noise free)
training data. In the last experiment, we apply JPEG
compression of different quality levels using a compres-
sion algorithm of the Independent JPEG Group (IJG)
[13] on the color Vistex textures and, classify them
using the uncompressed training data. We also tackle
these classification problems using Gaussian Markov
Random Fields (GMRF) [5], multi-scale LBP [26], and
fuzzy LBP [12]. The implementation of the GMRF fea-
tures is obtained from the MeasTex site [23]. The 73-
dimensional GMRF feature vectors are computed us-
ing the standard symmetric masks and are obtained
by concatenating feature vectors of GMRF models of
order 1 to 7 (GMRF1−7). The multi-scale LBP, i.e.
LBP riu2

(8,1)+(16,2.4), are uniform and rotation invariant and
the 2-dimensional co-occurrence LBP histograms are
classified using a non-parametric L-statistic [26]. The
fuzzy LBP (FLBP) are calculated in a 3 × 3 neigh-
borhood (P = 8 pixels and radius R = 1 pixel) with
fuzzyfication parameter T = 75 as proposed in [12].
The resulting histograms are also classified using the
L-statistic.

5.1 Experiment 1

At first, the classification performance of the different
texture features is separately tested on the two data sets
using the noise free and uncompressed training data.
As can be seen in Tab. 1, the proposed texture features
and the multi-scale LBP attain the best classification
performance. Also the GMRF feature vectors acquire a
reasonable classification rate, in contrast to the FLBP
that obtain a rate near 40% due to the small spatial
support area (3× 3 pixels).

Table 1 Classification rate (%) of noise free and uncompressed

textures.

proposed GMRF1−7 LBP riu2 FLBP

Brodatz 97.8 81.5 97.7 39.0
Vistex 96.9 85.6 96.9 39.3

5.2 Experiment 2

In this experiment, we add zero mean speckle noise with
different variances (0.0025, 0.005, 0.01, 0.02, 0.03, and
0.04) to the training data. The noisy textures are then

classified using the neural network that is trained with
the noise free and uncompressed texture data. Speckle
noise is a random, granular noise, and the texture of
the observed speckle pattern does not correspond to
underlying structure. Although hardly visible at first

(a) (b) (c)

Fig. 1 Detail of the Vistex Metal.0002 texture (a) with zero
mean speckle noise and variance (b) 0.01, and (c) 0.04.

sight for the human eye in the images (see Fig. 1), the
amount of speckle noise has actually a strong influence
on the classification rates. As can be seen in Fig. 2, the
speckle noise affects the classification rates of all fea-
tures, but the proposed texture features clearly obtain
the best classification results and perform at least 25%
better than the multi-scale LBP for the highest variance
of the noise. For both the Brodatz and Vistex textures,
the performance of the multi-scale LBP and the GMRF
features drops as the variance of the noise increases.
The classification rate of the FLBP slightly decreases,
and, generally obtains a low performance. This not only
due to the small spatial support of FLBP, but also to
the fact that the classifier is trained with noise free
data, while in the experiments of Iakovidis et al. [12]
the training data also contain noise.

5.3 Experiment 3

Similarly to previous experiment, zero mean Gaussian
noise of different variances (0.0025, 0.005, 0.01, 0.02,
0.03, and 0.04) is now added to the test textures. As
exemplified in Fig. 3, the visual quality of the textures
is highly affected. Figure 4 plots the classification rate
of the texture samples with the Gaussian noise. As can
be seen, the proposed features obtain the best classifi-
cation rate while the other methods struggle with the
noise. The performance of the FLBP slightly decreases
as the variance of the Gaussian noise increases, while
the classification rate of the GMRF and the multi-scale
LBP steadily drops.
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Fig. 2 Classification rate of (a) Brodatz and (b) Vistex textures
in function of the variance of zero mean speckle noise.

(a) (b) (c)

Fig. 3 (a) Detail of the Vistex Fabric.0015 texture, with zero
mean Gaussian noise and variance (b) 0.01, and (c) 0.04.

5.4 Experiment 4

The robustness against JPEG compression is tested in
this experiment. There is no direct measure of the de-
gree of image distortion introduced by JPEG compres-
sion. We use the so-called ‘quality levels’ proposed by
IJG, which range from 0 (lowest quality) to 100 (high-
est quality). Therefore, the Vistex color test images are
compressed at different quality levels. Since little or
no artifacts appear by compressing gray-scale images
(JPEG compresses hue data more heavily than bright-
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(b)

Fig. 4 Classification rate of (a) Brodatz and (b) Vistex textures

in function of the variance of zero mean Gaussian noise.

ness data), the Brodatz pictures are not used in this
experiment. The lower the quality level, the more com-
pression artifacts that will arise and the high spatial-
frequencies of the texture are more affected as exempli-
fied in Fig. 5 As plotted in Fig. 6, it is obvious that

(a) (b) (c)

Fig. 5 (a) Detail of the Fabric.0005 texture, compressed at qual-
ity level (b) 75 and (c) 15.

the proposed features are hardly affected by the JPEG
compression. The multi-scale LBP can keep up with
the proposed features, but for quality levels lower than
75, the classification rate steadily drops and attains for
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Fig. 6 Classification rate of JPEG compressed Vistex textures
in function of the IJG quality levels.

quality level 15 a lower classification rate than FLBP
or GMRF. Also, the already low classification rate of
the FLBP drops for quality levels lower than 75. The
classification rate of the GMRF starts to decrease from
quality level 75.

6 Conclusions

This paper presented the use of HVS-inspired features
for semi-supervised texture classification using hierar-
chical SOMs. Experiments conducted on textures taken
from the Brodatz and Vistex album indicate that the
proposed features obtain very high classification rates
near 97%, and can thus compete with well-established
methods like multi-scale LBP.

However, noise is a frequent problem in many prac-
tical applications and causes difficulties for texture in-
terpretation. Therefore, we have investigated the ro-
bustness of texture analysis methods against various
levels of speckle and Gaussian noise. We added zero
mean speckle and Gaussian noise with different vari-
ances to the test data and, we classified these data us-
ing the noise-free training data. We have observed that
the classification rate of the proposed features is less
affected by the various amounts of noise and achieves
better classification rates than the other methods. The
proposed HVS-inspired features clearly obtain the best
classifications results over all test sets.

Since JPEG image compression is a popular tech-
nique to reduce the size of image data, we have also
investigated the impact of the compression rate on tex-
ture classification. Therefore, we applied JPEG com-
pression at various quality levels on the test images
and we observed that the proposed features are very
robust to JPEG compression. We noticed that the clas-
sification rate of the other considered texture features

starts to decrease as the quality level of the JPEG com-
pression decreases, while it has hardly an effect on the
classification rate of the proposed features.

It is obvious that our approach which is based on
a filter bank can deal better with the information loss
introduced by noise or image compression algorithms
than methods like GMRF and LBP since the latter
methods are more sensible to local changes of pixel val-
ues. To conclude, the proposed HVS-inspired features
are robust to speckle and Gaussian noise, and, the clas-
sification rate is hardly affected by JPEG image com-
pression.
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