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Abstract In this letter, a simple quadrature oscillator for
built-in self-test (BIST) of integrated analog filters is pro-
posed. A new hardware-efficient approach for amplitude
control is described, with as main assets: (i) the technique
requires little hardware which makes it very useful for BIST,
(ii) the oscillation amplitude is well defined, and (iii) the
distortion-level introduced by the amplitude control loop is
under control of the designer.

Introduction Quadrature oscillators are used in a number
of diverse applications. In telecommunication systems they
are key building blocks in many (de)modulation schemes.
However, quadrature oscillators are also useful in instru-
mentation and measurement systems, e.g., measuring an un-
known impedance as a function of frequency [1]. The fo-
cus of this letter is on another instrumentation-related appli-
cation: built-in self-test (BIST) of integrated analog filters.
Here, the in-fase signal vI of the quadrature oscillator is ap-
plied to the analog filter to be tested (fig. 1). The output volt-
age of the filter is then demodulated by means of the quadra-
ture signals for extracting amplitude and fase information of
the analog filter transfer. In general, it is expected that the im-
portance of such built-in self-test feature will steadily grow
to guarantee proper operation of performance-critical analog
blocks.
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Figure 1: Example configuration for the built-in self-test of an ana-
log integrated filter.

The requirements of quadrature oscillators strongly depend
on the application. In telecommunication systems, typical

∗This paper is a postprint of a paper submitted to and accepted for
publication in IET Electronics Letters and is subject to Institution of Engi-
neering and Technology Copyright. The copy of record is available at IET
Digital Library.

oscillator requirements are a high frequency, a moderate tun-
ing range, low phase noise, low quadrature phase errors, and
often square-wave quadrature signals are satisfactory. In con-
trast, for instrumentation systems one requires most of the
time two continuous-time sinusoidal signals, preferably with
medium-to-low distortion. And while the required frequen-
cies are typically lower for such applications, the needed tun-
ing range is often much larger (e.g., one or two decades).
These distinctive elements explain the often different ap-
proach followed.
For built-in self-test, there are important additional con-
straints. The extra test-circuits needed for BIST should be
relatively small compared to the rest of the system. In this
work, we will focus on the quadrature oscillator in fig. 1. It is
assumed that with good circuit-reuse, integration of the rest
of the test-setup can be done with a minimal amount of extra
circuits: a DAC is reused for setting the frequency of the os-
cillator, and an ADC for converting the demodulated outputs
to the digital domain. Further processing (e.g., extracting
amplitude and phase) can be done in the digital domain. A
lowpass filter should be present before the ADC to suppress
unwanted demodulator frequencies. If not present already,
a simple first-order filter could be added without significant
additional cost. In order to simplify the demodulation pro-
cess, the analog quadrature signals are first hard-limited. The
initially needed analog multiplier then reduces to a chopper.
The chopping operation becomes even trivial if the analog
filter is implemented differentially, which is often the case.

Oscillator topology For the targeted application, the abil-
ity to sweep the frequency over at least one decade is manda-
tory. The need for a high tuning range favors the use of a
two-integrator quadrature oscillator [2]. This well-known os-
cillator type is shown in fig. 2 (a). The real oscillator part
consists of the feedback-loop containing the two integrators
(grayed area). The two integrators are considered identical
(except for unavoidable random mismatch), have differen-
tial outputs and are tunable. Because of the use of integra-
tors with differential outputs, the sign inversion needed in
the loop can be obtained trivially by cross-connecting. Us-
ing identical integrator circuits is beneficial to obtain a good
quadrature relationship of the output signals, even in the pres-
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Figure 2: (a) Conventional two-integrator oscillator with amplitude
control, (b) New oscillator with simplified amplitude control, (c) Rep-
resentation as linearized system in the complex domain.

ence of parasitic effects such as additional poles or feed-
through signal paths. However, circuit imperfections do have
the effect of pushing the poles away from the imaginary axis.
For instance, the finite DC-gain of practical integrator cir-
cuits push the poles to the left-hand plane, which results in
damping of the oscillator. As a result, the oscillator cannot
function properly without some form of amplitude control.
A traditional solution for this is also shown in fig. 2 (a). By
squaring the quadrature signals and adding them up, we have
a measure of the (squared) oscillation amplitude. Compar-
ing this to a wanted reference level, we can setup a control
loop to change the local feedback of the integrators. Ob-
viously, the need for such an automatic gain control loop
adds significantly to the complexity of the oscillator. Another
approach for stabilizing the amplitude uses integrators with
soft-limiting non-linearity [2]. While the complexity of this
approach is low, the amount of non-linearity is very critical:
over-compensation of damping results in severe distortion,
while with under-compensation the circuit fails to oscillate.
Even if one manages to operate in the intermediate region,
the amplitude-level is not well controlled since it depends on
a subtle balance of linear and nonlinear effects (with different
temperature coefficients). Therefore, it is less appropriate for
situations where the distortion of the outputs is important and
needs to be guaranteed over a substantial temperature range.
In the next section, an alternative control strategy that avoids
these drawbacks is described.

Alternative amplitude control The new approach with re-
spect to amplitude control is shown in fig. 2 (b). We already
explained that for the built-in self-test of analog filters ac-

cording to fig. 1, it is advantageous to have hard-limited ver-
sions of the quadrature signals available for phase-sensitive
demodulation of the filter output. These hard-limited sig-
nals are also the basis of the amplitude control loop. Intu-
itively, the method can be understood as follows. The hard-
limiting operation has the peculiar property that it converts
an input sinusoidal signal with unknown amplitude A into a
signal with exactly the same frequency and phase, but now
with a well-defined amplitude Aref = 4L/π determined by
the output levels ±L of the limiter. We use this signal now
as an implicit reference signal for setting up an amplitude
control loop. First, we subtract the true oscillator output
from it, which gives us a signal with a fundamental com-
ponent proportional to Aref − A. This signal is fed back to
the oscillator loop with a small gain α in such a way that
the system behaves in a stable way. Because the loop gain
is maximal at this fundamental frequency (theoretically in-
finite for ideal integrators), we expect that the systems will
actually nullate the error Aref − A, ultimately leading to
a stable, well-controlled amplitude A = Aref . In order
to gain further insight into system properties (e.g., stability
of the amplitude loop), we replace the hard-limiter by an
amplitude-dependent gain, which is actually the describing-
functions approximation of this non-linearity. As explained
in [3], it is advantageous to group quadrature-related signals
into a single complex signal to simplify the system-level di-
agram: v = vI + jvQ will represent the complex oscillator
output, and d = dI + jdQ the complex digital state of the
hard-limiters. We then obtain the system-representation of
fig. 2 (c). Note that we also introduced a term HD in this dia-
gram, which represents the harmonic-distortion components
introduced by the hard-limiter. From fig. 2 (c), the system
pole s = jω0 + α(4L/πA − 1) is derived. As expected,
only for A = Aref we obtain the purely imaginary pole
s = jω0, indicating oscillation at the frequency ω0/(2π). For
A < Aref , the pole is unstable, resulting in an (exponential)
increase of the amplitude. Likewise, for A > Aref the pole
is in the left-hand plane and the oscillation amplitude will di-
minish. Hence, we obtain thatA = Aref is a stable operation
point of the system, and (taking an appropriate time origin)
the oscillator output can be described as v(t) = Arefe

jω0t.

Distortion analysis The choice of α is influenced by two
design considerations. First, α should be large enough to
compensate the losses occurring in each integrator. On the
other hand, the larger α becomes, the more harmonics cre-
ated by the hard-limiters will couple to the oscillator, which
affects the distortion of the quadrature output signals. In this
section we derive an expression for the THD as a function of
α. Because the hard-limiter outputs which are simple square-
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wave functions, it is fairly easy to the derive the Fourier-
decomposition:

d =
4L
π

∑
k∈Z

ej(4k+1)ω0t

4k + 1

Subtracting from this the expected fundamental frequency
Arefe

jω0t, we have an expression for HD in fig. 2 (c). The
transfer from HD to the oscillator output (assuming the am-
plitude has settled to A = Aref ) is given by αω0/(s− jω0).
Combining these results, we can derive the following explicit
expression for the (complex) amplitude of the nth harmonic:

An =


α

n(n− 1)
Aref
j

n = 4k + 1, k ∈ Z0

0 others

Note that the only non-zero harmonics |n| < 7 are A−3 =
αAref/12j and A+5 = αAref/20j. These are the most im-
portant ones. From the expression for An, the total harmonic
distortion is calculated to be THD(dB)=20 log10(α/10), in-
dependent of the oscillation amplitude. For practical values
of α around 1/100, we obtain 60dB THD. Of course, in prac-
tical circuit implementations, also the distortion arising from
integrator non-linearity needs to be evaluated, which can be
substantial for gm-C integrators. Because integrator nonlin-
earity typically depends strongly on the oscillation ampli-
tude, stabilizing this amplitude to an appropriate level allows
to make actual designs with well-controlled THD.

Modeling accuracy The above results were derived with
the linearized (describing function) model of fig. 2 (c). In ad-
dition to this, the authors have also conducted an exact anal-
ysis of the system, which is feasible but very cumbersome.
It turns out that the exact oscillation condition requires that
there exist real-valued solutions a0 > 0 and T > 0 of the
following (transcendental) equation:

a0 =
α(1 + j)L
α− j

e(j−α)ω0T/4 − 1
e(j−α)ω0T/4 − j

This equation implies the following quarter-period relation of
the oscillator output: v(t) = jv(t− T/4) (for the smallest T
solution). Together with the following exact solution for the
first quarter-period:

v(t) = e(j−α)ω0t

[
a0 +

α (1 + j)L
j − α

]
− α (1 + j)L

j − α
the oscillator output is completely determined analytically
and is shown to be periodic with period T . By means
of Taylor expansion, an approximate analytical solution

for the oscillation frequency can be obtained as 1
T =

ω0
2π

(
1− 0.2146α2

)
. Consequently, the actual frequency is

slightly lower than the expected frequency ω0
2π , but this is only

a second-order effect. Also for other results, deviations have
been found to be of second order in α. Since in practice, α
will always be fairly small to limit the distortion, this vali-
dates the approximate analysis above.

Conclusion We have described a hardware-efficient way
(essentially two hard-limiters) to stabilize the amplitude of a
two-integrator quadrature oscillator. Based on the linearized
model fig. 2 (c), we have established the effectiveness of the
technique with respect to amplitude control, and derived an
explicit expression for the harmonic distortion, which turns
out to be suitable for practical built-in self-test.
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