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1. INTRODUCTION. Stirling’s formula for factorials deals with the behaviour of
the sequence

rn := ln
n! en

√
2π nn+ 1

2

(n = 1, 2, . . .). (1)

Its qualitative form simply states that

lim
n→+∞ rn = 0. (2)

Quantitative forms, of which there are many, give upper and lower estimates for rn . As
for precision, nothing beats Stirling’s series. This divergent series can be written as

rn  A

n
− B

n3
+ C

n5
− D

n7
+ · · · ,

(A, B, C, D, . . . are positive constants), where the symbol  means that rn lies be-
tween any two successive partial sums of the series. Usually (as in [1, pp. 529–534])
this formula is deduced from Euler’s summation formula. In this note we show how
to compute in succession the constants A, B, C, . . . by a very simple technique. Only
derivatives and limits of ln and of rational functions are involved, plus the following
elementary property: if f (x) is stricty decreasing (respectively, increasing) for x > 0
and limx→+∞ f (x) = 0, then f (x) > 0 (respectively, f (x) < 0) for x > 0. In the se-
quel we call this property simply (P). It also holds, and will be used, for sequences.

We also show that the constants obtained by this method are the best ones possible,
i.e., they cannot be improved by any method whatsoever. In the second section we
adapt our method to obtain Stirling’s series for the logarithm of the gamma function.

2. STIRLING’S SERIES FOR ln(n!). We start with a proof of the qualitative
form (2), adding monotonicity.

Theorem 1. The sequence 〈rn〉 is strictly decreasing and converges to 0.

Proof. We have

rn+1 − rn = 1 −
(

n + 1

2

)
ln

(
1 + 1

n

)
.

For 〈rn〉 to be decreasing, it suffices that ln(1 + 1
n ) − 1/(n + 1

2) be positive for all
integers n > 0. The latter is the case if

f (x) := ln

(
1 + 1

x

)
− 1

x + 1
2

> 0
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when x > 0. Now this is implied by (P): clearly limx→+∞ f (x) = 0, and f ′(x) =
−1/x(x + 1)(2x + 1)2 < 0, so f (x) is strictly decreasing on (0, ∞).

Now consider the sequence ern , n = 1, 2, . . . . It decreases, because 〈rn〉 decreases;
being bounded below by zero, it is convergent. It is well known how to deduce from
Wallis’s formula that its limit is 1. Hence rn → 0.

Corollary 1. For all integers n > 0 it is true that rn > 0, and this lower bound cannot
be improved.

The construction.

Step 1. Determine A > 0 such that 0 < rn < A/n for all integers n > 0.

As rn converges to zero, the same holds for an := rn − A/n. By (P), any A > 0 that
makes an strictly increasing as a function of n will satisfy our requirement. It suffices
that

an+1 − an = 1 −
(

n + 1

2

)
ln

(
1 + 1

n

)
+ A

(
1

n
− 1

n + 1

)
> 0

hold for all integers n > 0, which happens if

g(x) := 1

x + 1
2

− ln

(
1 + 1

x

)
+ A

1
x − 1

x+1

x + 1
2

> 0

for x > 0. Plainly, g(x) converges to zero as x → +∞. By (P), any A > 0 that makes
g(x) strictly decreasing will serve our purposes. Inspecting

g′(x) = x(1 + x) − A(12x2 + 12x + 2)

x2(x + 1)2(2x + 1)2
, (3)

we see that it suffices to choose A such that

A >
x(x + 1)

12x2 + 12x + 2
. (4)

For x > 0 the right-hand side of (4) has derivative

2x + 1

2(6x2 + 6x + 1)2
> 0.

Therefore the right-hand side in (4) increases to 1/12. Consequently, the best choice
by this method is A = 1/12.

Corollary 2. For all integers n > 0 it is true that 0 < rn < 1/12n, and the constant
1/12 cannot be improved.

Proof. Replace A = 1/12 with some A′ such that 0 < A′ < 1/12. We know that the
right-hand side of (4) increases to 1/12. Hence A′ is smaller than the right-hand side
for all sufficiently large x , say for x ≥ X . This implies that g′(x) > 0 for x > X . Then
by (P) g(x) < 0 for x > X , and an+1 − an < 0 from some index n = N on. Again
by (P), an > 0 for n > N , and finally rn > A′/n for n > N .
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Step 2. Determine B > 0 such that

1

12n
− B

n3
< rn <

1

12n

for all integers n > 0.

Because rn → 0, the same holds for

bn := rn − 1

12n
+ B

n3
.

By (P), any B > 0 that makes 〈bn〉 strictly decreasing will satisfy our requirement. It
is enough to pick B so that

bn+1 − bn = 1 −
(

n + 1

2

)
ln

(
1 + 1

n

)

+ 1

12

(
1

n
− 1

n + 1

)
− B

(
1

n3
− 1

(n + 1)3

)
< 0

for all integers n > 0, and this is the case if

h(x) := 1

x + 1
2

− ln

(
1 + 1

x

)
+ 1

12

1
x − 1

x+1

x + 1
2

− B
1

x3 − 1
(1+x)3

x + 1
2

< 0

for x > 0. Again, h(x) converges to zero for x → +∞. By (P), any B > 0 that makes
h(x) strictly increasing will work. Because

h′(x) = − x2(1 + x)2 − 12B(30x4 + 60x3 + 50x2 + 20x + 3)

6x4(1 + x)4(2x + 1)2
, (5)

it is sufficient to choose

B >
x2(x + 1)2

12(30x4 + 60x3 + 50x2 + 20x + 3)
. (6)

The right-hand side increases to 1/360, its derivative being

x(20x4 + 50x3 + 46x2 + 19x + 3)

6(30x4 + 60x3 + 50x2 + 20x + 3)2
> 0

for x > 0. Hence our method yields B = 1/360 as best choice. As in the previous step,
one deduces:

Corollary 3. For all integers n > 0 it is true that

1

12n
− 1

360n3
< rn <

1

12n
,

and the constant 1/360 cannot be improved.
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Continuing in this manner, one proves that

rn  1

12n
− 1

360n3
+ 1

1260n5
− 1

1680n7
+ 1

1188n9
− · · · . (7)

All that is required is patience in calculating elementary derivatives (or some elemen-
tary computer algebra). The inequalities expressed by the notation

rn  1

12n
− 1

360n3
+ · · ·

are

1

12n
− 1

360n3
< rn <

1

12n
. (8)

The second of these inequalities was obtained in [6] and the first one appeared in [4],
derived by a modification of the argument in [6]. By means of

1

12n + 1
<

1

12n + 3
4n+2

<
1

12n
− 1

360n3
(n = 1, 2, . . .)

(trivially verified) the first inequality in (8) can be weakened in two steps. Each one of
the corresponding lower estimates for rn has appeared in this MONTHLY, the one with
the smallest lower bound in [6], the sharper one in [2]. In [3] an inequality is used that
amounts to adding a negative term to the minorant of (8).

Here, as we have shown, a general method applies to the whole set of inequalities
expressed by the series (7). Thus the partial sum

rn  1

12n
− 1

360n3
+ 1

1260n5
− · · ·

is equivalent to

1

12n
− 1

360n3
< rn <

1

12n
− 1

360n3
+ 1

1260n5
.

By a proof too long to be included here, it can be shown that our elementary method
continues to work for all subsequent terms. Moreover, the series so generated is exactly
the Stirling series

B2

1 · 2 · n
+ B4

3 · 4 · n3
+ B6

5 · 6 · n5
+ · · · , (9)

with the so-called Bernoulli numbers B0, B1, B2, . . . defined by

B0 = 1,

n∑
i=0

(
n

i

)
Bi = Bn (n = 2, 3, . . .).

This can be seen as follows. The series (9) is known to be the asymptotic development
of rn (see [1, p. 530]). By definition, this means that

lim
n→+∞ n

(
rn − B2

1 · 2 · n

)
= 0,

lim
n→+∞ n3

(
rn − B2

1 · 2 · n
− B4

3 · 4 · n3

)
= 0,
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etc. Hence

lim
n→+∞ nrn = B2

1 · 2
, (10)

lim
n→+∞ n3

(
rn − B2

1 · 2 · n

)
= B4

3 · 4
,

etc. On the other hand, our constants A, B, . . . have the property that for all positive
integers n

A

n
− B

n3
< rn <

A

n
,

A

n
− B

n3
< rn <

A

n
− B

n3
+ C

n5
,

etc. These inequalities imply that

lim
n→+∞ nrn = A, (11)

lim
n→+∞ n3

(
rn − A

n

)
= −B,

etc. Comparing (10) and (11) gives A = B2/(1 · 2), B = −B4/(3 · 4), and so forth.

3. STIRLING’S SERIES FOR ln(�(x)). Generalizing (1), we now put

r(x) = ln

(
�(x) ex

√
2π xx− 1

2

)
(12)

for x > 0. In [5] a short and direct proof was provided for the assertion that

lim
x→+∞ r(x) = 0. (13)

We now show how our method allows one to turn the qualitative formula (13) into a
sequence of highly precise upper and lower bounds for r(x). In fact, we can prove that

r(x)  1

12x
− 1

360x3
+ 1

1260x5
− 1

1680x7
+ 1

1188x9
− · · · (14)

for x > 0, the coefficients being those of the series (7). By the notation (14) we mean
that for x > 0

0 < r(x) <
1

12x
, (15)

1

12x
− 1

360x3
< r(x) <

1

12x
,

1

12x
− 1

360x3
< r(x) <

1

12x
− 1

360x3
+ 1

1260x5
,

etc. To illustrate the reasoning, we establish (15); the proofs are modeled after those
of Theorem 1 and step 1 in the previous section. For any x0 > 0, define the sequence

ρn(x0) = r(x0 + n) (n = 0, 1, 2, . . .).
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By (13), the sequence 〈ρn(x0)〉 converges to zero. It will be strictly decreasing if

ρn+1(x0) − ρn(x0) = 1 − (
x0 + n + 1

2

)
ln
(

1 + 1
x0+n

)
< 0

for each integer n ≥ 0, which would follow if

f (x) := ln
(

1 + 1
x0+x

)
− 1

x0 + x + 1
2

> 0

for every x > 0. The latter is implied by (P): limx→+∞ f (x) = 0 and

f ′(x) = − 1

(x0 + x)(x0 + x + 1)(2x0 + 2x + 1)2
< 0

for x > 0. So 〈ρn(x0)〉 is strictly decreasing to zero. By (P), ρn(x0) > 0 for each non-
negative integer n > 0; in particular,

ρ0(x0) = r(x0) > 0.

Since x0 > 0 was arbitrary,

r(x) > 0 (x > 0).

(Note that our proof does not rely on the fact that r(x) is strictly decreasing on (0, ∞),
a property not provided by [5].) To prove the second inequality in (15), define

αn(x0) = r(x0 + n) − 1

12(x0 + n)
(n = 0, 1, 2, . . .)

and proceed as in step 1. It should be clear now how to obtain, by a minor adaptation
of the earlier arguments, all the inequalities implicit in (14). Of course, the coefficients
are the best possible, since we have proved that they are the best ones even with x
restricted to the integers.
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