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Abstract—A novel parametric model order reduction (PMOR)
technique based on matrix interpolation for multicondutor trans-
mission lines with delays having design parameter variations
is proposed in this paper. Matrix interpolation overcomes the
oversize problem caused by input-output system level interpo-
lation based parametric macromodels. The reduced state-space
matrices are obtained using a higher-order Krylov subspace
based model order reduction technique which is more efficient
in comparison to the Gramian based parametric modeling where
the projection matrix is computed using a Cholesky factorization.
The design space is divided into cells and then the Krylov
subspaces computed for each cell is merged and then truncated
using an adaptive truncation algorithm with respect to their
singular values to obtain a compact common projection matrix.
The resulting reduced order state-space matrices and the delays
are interpolated using positive interpolation schemes making it
computationally cheap and accurate for repeated system evalu-
ations under different design parameter settings. The proposed
technique is successfully applied to RLC and multiconductor
transmission line circuits with delays.

Index Terms—Parametric model order reduction, Krylov sub-
spaces, delayed systems, singular values, projection matrix, in-
terpolation.

I. INTRODUCTION

C IRCUIT analysis using electromagnetic (EM) simulation
methods [1] can generate very large systems of equa-

tions. Time delays must be included during the process of
modeling, when the geometric dimensions become electrically
large and the frequency content of signal waveform increases
[2], [3]. In such cases, comprehensive model order reduction
(MOR) techniques are crucial to reduce the complexity of large
scale models and the computational cost of the simulations,
while retaining the important physical features of the original
system.

Time-delay systems (TDSs) in the Laplace domain contains
transfer function with elements of the form e−sτ , where τ
corresponds to the time delay present in the circuit. Several
techniques of MOR for TDSs have been presented during
recent years, and any of the approaches based on Krylov-
subspace algorithms [3]–[7] can be used as non-parametric

This work was supported by the Interuniversity Attraction Poles Programme
BESTCOM initiated by the Belgian Science Policy Office and the Research
Foundation Flanders (FWO). Copyright (c) 2013 IEEE. Personal use of this
material is permitted. However, permission to use this material for any other
purposes must be obtained from the IEEE by sending an email to pubs-
permissions@ieee.org.

Elizabeth Rita Samuel, Luc Knockaert and Tom Dhaene are with Ghent
University - iMinds, Gaston Crommenlaan 8 Bus 201, B-9050 Gent, Bel-
gium,email: {elizabeth.ritasamuel, luc.knockaert, tom.dhaene}@ugent.be

MOR technique. The system response of TDSs can be affected
by design parameters, other than frequency, such as geometric
features. Therefore, it is important to predict the response
of the circuit as a function of general design parameters,
such as geometric and physical features. Parametric model
order reduction (PMOR) methods are well suited to efficiently
perform design activities.

A number of PMOR methods have been developed in
recent years for TDSs based on input-output interpolation [8]–
[10]. In [8], the approach is based on a multiorder Arnoldi
algorithm which is used to implicitly calculate the moments
with respect to frequency and the design parameters, as well
as the cross-moments. Also in [9] an input-output based
interpolation technique is presented with scaling and frequency
shifting, which enhances the modeling capabilities. These
PMOR methods use input-output system level interpolation
which are proved to be robust and accurate, but the order of
the parametric macromodels may suffer from oversize due to
the nature of the input-output system level interpolation. A
Gramian-based PMOR for TDS is presented in [10] where
an affine model is used to represent the parametric behavior,
but the technique is computationally expensive as Cholesky
factorization is required for the computation of the projection
matrix.

This paper, proposes a matrix interpolated PMOR method
for multiconductor transmission lines (MTLs) with delays.
The proposed technique approximates the delays using an
expansion series and uses higher-order Krylov subspace based
MOR as described in Section II. Then the reduced state-space
systems are interpolated as in [11]. The paper enhances the
technique in [11], by implementing an adaptive truncation for
the singular values of the common projection matrix for the
design space considered. As the approach is based on matrix
interpolation it overcomes the oversize problem in input-output
system level interpolation and the technique uses higher-order
Krylov MOR to compute the reduced order models (ROMs)
for TDS [6], [7]. This is more efficient in comparison to
the augmented MOR technique proposed for PMOR TDS
in [9], as the augmentation generates an equivalent first-
order system which is larger than the size of the original
model, and the Gramian based MOR for PMOR of TDS
[10], as the computation of Gramians are expensive due to
Cholesky factorization. The proposed approach computes a
set of reduced system matrices in a common subspace using
higher-order Krylov MOR and interpolates these ROM and
the delays in order to generate PMOR for TDSs. The design
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space is first divided into cells and for each vertex model of the
cell a Krylov subspace is computed. The Krylov subspaces are
then merged and compacted by truncating with respect to their
singular values to generate a common projection matrix using
an adaptive truncation algorithm proposed in Section III A of
this paper. Next, the reduced system matrices of the delayed
system are interpolated using positive interpolation for PMOR
as described in Section III B.

II. OVERVIEW OF MODEL ORDER REDUCTION FOR TDSS

A time-delay system of degree n with p ports having k
delays τj , present in both the state and descriptor matrices,
can be represented in general delayed state space form as:

k∑
j=0

Ejẋ(t− τj) =

k∑
j=0

Ajx(t− τj) + Bu(t)

y(t) = Cx(t). (1)

Here, x(t) ∈ Rn is the state vector; u(t) ∈ Rp is the
control input with u(t) = 0 for t < 0; y(t) ∈ Rp is
the output. Aj,Ej,B,C are constant sparse matrices with
appropriate dimensions. The time delay τ0 = 0 and τj > 0,
j = 1, 2, . . . , k. From (1) we obtain the transfer function as:

H(s) = C(s

k∑
j=0

Eje
−sτj −

k∑
j=0

Aje
−sτj )−1B. (2)

In order to calculate the moments, the exponential terms of
(2) are approximated using a Taylor series [6] or Laguerre
expansion [7] upto an order r. On substituting the delay
expansion in (2), a r-th order transfer function is obtained
of the form:

H(s) = C
(
σrs

r + σr−1s
r−1 + ...+ σ1s+ σ0

)−1
B. (3)

The r-th order Krylov subspace is defined as in [12]

Kq(G1,G2, ...,Gr,L) = colspan [P0, P1, ..., Pq−1] (4)

where L = σ−10 B and Gi = σ−10 σi for i = 1, 2, ..., r, and

P0 = L; Pi = 0 for i < 0

Pj = G1Pj−1 + ...+ GrPj−r, j = 1, . . . , q − 1 (5)

where q is the reduced order that is estimated for the model.
This subspace is a generalization of Krylov subspaces for

higher-order systems and eliminates the standard approach
to model order reduction of large-scale higher-order linear
dynamical systems, which is to rewrite the system as an
equivalent first-order system and then employ Krylov-subspace
techniques for model order reduction of first-order systems.
Note that, to match the moments of an r-th order model, the
matrix σ0 should be invertible.

The column-orthogonal projection matrix Q for congruence
transformation is found by means of the economy-size singular
value decomposition (SVD):

UΣVT = SVD(Kq(G1,G2, ...,Gr,L), 0). (6)

In other words Q is equal to the left SVD factor of dimension
n× q associated with the (r + 1)th Krylov subspace.

The reduced order state-space matrices are then obtained by
the following classical congruence transformations:

Ajr = QTAjQ , Ejr = QTEjQ,

Br = QTB , Cr = CQ. (7)

III. PARAMETRIC MODEL ORDER REDUCTION

Considering the effect of N design parameters g =
(g(1), ..., g(N)), the descriptor state-space form (1) becomes:

E(g, τ)ẋ(t,g) = A(g, τ)x(t,g) + B(g)u(t)

y(t,g) = C(g)x(t,g). (8)

Two design space grids are used in the modeling process, an
estimation grid and a validation grid [9]. The estimation grid
is used for the construction of the PMOR while the validation
grid is used to study the accuracy of the parametric model
at the points that were not used during construction. Once
the design space is sampled, the reduced order q has to be
estimated for the samples on the estimation grid that is used
for the modeling of the PMOR. For this, we adopt the double-
strategy approach of [11]. The reduced order is first estimated
at the corner points of the design space using a bottom-
up approach or from the Hankel singular values (HSV), and
afterwards any of these two strategies can be followed for the
remaining samples in the estimation grid. This yields:

1) worst-case reduced order: the highest estimated reduced
order at the corner points is extended over the entire
design space. This approach can guarantee an accurate
reduction over the design space.

2) best-case reduced order: the lowest estimated reduced
order is extended over the design space. This approach
can guarantee more compact models with respect to the
worst-case, but the reduced order may be increased for
some design space regions by a bottom-up approach to
guarantee the desired accuracy.

From a practical view point for better computation and accu-
racy it is advisable to choose the worst-case reduced order
strategy as the highest reduced order is used for the entire
design space and the reduced order need not be computed
for each sample point in the design space as in the case for
best-case reduced order.

A. Common projection matrix computation

For each point in the estimation grid, a higher-order Krylov-
based MOR method for TDSs is applied to obtain a set of
projection matrices. In this paper, the Laguerre expansion
method [7] is used. All the projection matrices have the same
dimension in the worst-case reduced order scenario, while
they may have different dimensions for the best-case reduced
order scenario. Each design space cell has M vertices and for
every cell the projection matrices at the vertices are merged
by column stacking.

Qunion = [Q1,Q2, .....QM ]. (9)

Next, the economy-size SVD is computed for the merged
projection matrices

UΣVT = SVD(Qunion, 0). (10)
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TABLE I
ALGORITHM 1:TRUNCATION OF THE SINGULAR VALUES FOR Qunion

Data: dΣ = diag(Σ) from (10) and threshold
Result: qcomm for (11)
ds = length(dΣ);
qcomm = ds;
∆ = 0;
while ∆ ≤ threshold do

∆ = ∆ + dΣ(qcomm)2;
qcomm = qcomm − 1;

end

A common reduced order for a cell is defined based on the
first qcomm significant singular values of Qunion [11]. Thus a
common projection matrix Qcomm is obtained

Qcomm = U(:, 1 : qcomm). (11)

Adaptive singular values truncation: In [11] the value of the
threshold is set on a trial and error base for a desired level of
accuracy and compactness for the PMOR. On truncating the
singular values an approximated representation Q̂union of (9)
is obtained, and can be noted that the approximation error ∆
is dependent on the truncation i.e.,

∆ = ||Qunion − Q̂union||2,

∆ = ||
n∑
i=1

UiΣiV
T
i −

qcomm∑
i=1

UiΣiV
T
i ||2,

∆ = ||
n∑

i=qcomm+1

UiΣiV
T
i ||2. (12)

which can be written as,

∆ =

n∑
i=qcomm+1

dΣ2
i . (13)

where, dΣ are the diagonal elements of Σ. The adaptive
algorithm for truncating the singular values of the common
projection matrix Qunion is given in Algorithm 1 (see Table
I). For this paper a threshold equal to 0.01 was considered
to produce accurate ROMs. Then, with Qcomm the common
projection matrix with dimension n× qcomm, the congruence
transformations (7) are performed to obtain the ROMs for the
design space considered.

B. Multivariate Interpolation

After the computation of the reduced matrices, they are
interpolated to build a PMOR. Any interpolation scheme in
the class of positive interpolation operators [9] can be used,
e.g., multilinear and simplicial methods [13]. Here we con-
sider multilinear interpolation, where each interpolated matrix
T(g(1), ..., g(N)) is

T(g(1), ..., g(N)) =
∑K1

k1=1 · · ·
∑KN

kN=1T(g
(1)
k1
,...,g

(N)
kN

)

lk1(g(1)) · · · lkN (g(N)). (14)

TABLE II
ALGORITHM 2:PARAMETRIC MODEL ORDER REDUCTION ALGORITHM

Data: Reduced order for M samples in the estimation grid.
Result: parametric ROM
Qunion = [ ] ;
for i← 1 to M do

Qi ;
Qunion = [Qunion Qi] ;

end
UΣV′ = SVD(Qunion, 0)(10);
Qcomm using Algorithm 1 (Table I);
Perform congruence transformation to obtain the ROM of
the TDSs ;
Matrix interpolate the ROM and τ to obtain the PMOR.
Validate the PMOR with the validation grid.

and K1 is the number of estimation points and the interpola-
tion kernel lki(g

i) satisfies the following constraints

0 ≤ lki(g(i)) ≤ 1,

lki(g
(i)) = δki,i∑N

i=1 lki(g
(i)) = 1. (15)

For MTLs consisting of lumped RLC components and lossless
transmission line (TLs) components, the MoC [3] technique is
used to model the lossless TLs. The delay for the k-th trans-
mission line in MoC is the k-th eigenvalue of d

√
(CpulLpul)

(Lpul and Cpul are the per- unit- length (P.U.L.) parameter
for the inductance and capacitance respectively and d denotes
the length of the TLs). The Lpul and Cpul are symmetric and
positive definite. Thus, as the delays are varying linearly with
respect to d of the TLs, we can obtain a good parametric
reduced order delay model by interpolating all the delays using
positive interpolating operators. It should be noted that the
interpolation kernel functions of these methods only depend
on the design space grid points and their computation does
not require the prior solution of a linear system to impose an
interpolatory constraint. The algorithmic steps of the proposed
PMOR technique for TDSs is given in Algorithm 2 (see Table
II).

C. Complexity

Concerning the complexity of the proposed PMOR tech-
nique, the most expensive step is related to the computation
of the higher-order Krylov subspaces for the estimation grid.
It has a complexity of O(4n2q) where q is the reduced
order estimated for the model. But it can be seen that the
proposed technique is much more efficient than the Gramian
based PMOR for TDS [10] which has a complexity of O(n3).
Then we have the computation of the singular values for the
common projection matrix which uses an economy-size SVD
to improve the computation. After obtaining the common pro-
jection matrix, congruence transformation is performed which
has a complexity equivalent to that of matrix multiplication.
Finally, the complexity of the last step depends on the selected
interpolation scheme. Even though the most expensive step in
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the proposed PMOR technique is the MOR step the PMOR
makes it more efficient for repeated design evaluations under
different parameter settings in comparison to the conventional
analysis techniques which requires the solution of partial
differential equations [2]. The complexity of the proposed
PMOR increases with the number of design parameters since
the number of points on the estimation grid required for
modeling increases and thereby increase the dimension of
the column stacked projection matrix Qunion, then the SVD
would become expensive. In order to make the algorithm more
efficient it is advised to perform adaptive sampling [14] of the
design space and when the number of parameters is more than
5 then a dimension reduction technique [15] can be performed.

IV. NUMERICAL EXAMPLES

A distributed system as explained in [8] is used to illustrate
the efficiency of the proposed technique. The RLC networks
is modeled using the conventional lumped technique [2] and
the lossless TLs which cause signal propagation delays, is
modeled using MoC. The general form of the modified nodal
analysis (MNA) matrices using the MoC and lumped elements
is described in [3].
Error criteria: The weighted RMS error between the original
frequency response Hij and the reduced order model Hr,(ij)

is defined as:

Err =

√∑Ks
k=1

∑Pin
i=1

∑Pout
j=1

|Hr,(ij)(sk)−H(ij)(sk)|2
W(ij)(sk)

PinPoutKs

W(ij)(sk) = |H(ij)(sk)|2 (16)

Here Ks, Pin and Pout are the number of frequency sam-
ples, input and output ports of the system, respectively. The
proposed PMOR technique, it is compared with the Gramian-
based PMOR [10] which is also based on state-space interpo-
lation.

A. CASE I: Variation in Length of the lossless TLs

A TDS of order 2115 is constructed using a 3 port linear
interconnected network connected with lossless 3 conductor
TLs. In this case the length d is varied for the range [1 cm−
1.5 cm] of the TLs for a frequency range of [1 kHz− 4 GHz].

The state-space matrices is computed for 5 uniformly
spaced values of d, for which the estimation points are
d = {1, 1.167, 1.33, 1.5} cm and the validation points are
d = {1.083, 1.25, 1.42} cm. We opt for the best-case scenario
and the higher-order Krylov subspaces are computed for the
estimation points as described in Section II. Then a common
projection matrix of dimension 360 is computed for the
entire design space as described in Algorithm 1. The singular
values of the merged Krylov subspaces is then truncated
using Algorithm 2 to obtain a compact common projection
matrix of size 148. Fig.1 and Fig.2 plots the magnitude and
phase of input admittance parameter Y11(s, d) respectively for
d = {1.083, 1.25, 1.42} cm. As mentioned in Section III-
C, the most expensive step in the PMOR technique is the
MOR and as the number of estimation samples increases the
computation becomes more expensive. But once an accurate
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Fig. 1. Magnitude of input admittance parameter Y11(s, d) for d =
{1.083, 1.25, 1.42} cm.
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Fig. 2. Phase of input admittance parameter Y11(s, d) for d =
{1.083, 1.25, 1.42} cm.

PMOR is obtained, it becomes faster to predict the behavior
of the system for different parameter ranges. The frequency
response time for the original model is 277s and that for the
ROM is 6.819s, obtaining about 39 times speed up.

B. CASE II: Variation in Length of the TLs and P.U.L.
parameters

For this case a TDS of order 9307 is constructed using a 4
port linear interconnected network connected with 40 lossless
4 conductor TLs. The length d and the P.U.L. parameters of
the TLs are varied. The dependencies of P.U.L. parameters
of the distributed network on temperature T is modeled
using a first-order relation. The parameters d varies from
[1.5 cm− 2 cm] and T from [−20oC− 60oC] for a frequency
range of [1 kHz−6 GHz]. The state-space matrices with delays
(as in (8)) are computed over an uniform grid of 9× 9 (d, T ).
A 5×5 (d, T ) estimation grid, d = {1.5, 1.625, 1.75, 1.875, 2}
cm and T = {−20, 0, 20, 40, 60}oC is considered and a
validation grid of 4×4 (d,T ), d = {1.563, 1.687, 1.813, 1.937}
cm and T = {−10, 10, 30, 50}oC is considered. For this case
the worst-case scenario is used and the highest reduced order
estimated is 252 for the models. The higher-order Krylov
subspaces are computed over the estimation grid by means of
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the algorithm described in Section II. Similar to the previous
case by truncating the singular values of the merged projection
matrix, a common projection matrix of size 324 is obtained.
The weighted RMS error (16) of the ROM with respect to the
original model is 0.037. The frequency response time for the
original model is 2967.1s and that for the ROM is 21.62s,
obtaining 138 times speed up. As in the general analysis,
the TLs can be modeled by many cascaded sections of RLC
components. Nonetheless, the number of sections required
depends on the electrical length of TLs. TLs sometimes require
many sections to meet the reasonable accuracy. Thus, lumped
RLC circuits extracted from layouts usually contain large
circuit matrices that make the high CPU cost in simulation [2].
The proposed PMOR technique thus helps to overcome this
problem, as on obtention of an accurate PMOR, the repeated
design evaluations under different parameter settings becomes
more efficient.

C. Computational complexity

The computational efficiency of the proposed technique in
comparison to the Gramian-based PMOR [10] is illustrated in
Fig. 3. It plots the memory requirement and the CPU time
of the most computational expensive steps of the respective
PMOR for a 6 port TDSs with one parameter variation for
systems of order= {915, 2115, 5715, 9307}. The computa-
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Fig. 3. Comparison of the computational efficiency.

tional cost for the Gramian-based PMOR [10] process is very
high due to the Cholesky factorization and also due to the
SVD computed on an order n × n. While the computation
complexity of the proposed technique is lesser for obtaining
the Krylov subspace and also an economical SVD is performed
on a matrix of size n×qM (where, qM < n) in order to obtain
the PMOR.

V. CONCLUSION

A novel PMOR technique for MTLs with delay based on
matrix interpolation is presented in this paper. Matrix inter-
polation preserves the same number of poles for parametric
model order reduction over the design space while for input-
output interpolation the order of the parametric macromodels,

suffer from oversize due to the nature of the input-output
system level interpolation. The reduced order models are
obtained using a higher-order Krylov subspace decomposition.
First, the design space is divided into cells and for each vertex
model of the cell a Krylov subspace is computed and are then
merged and adaptively truncated based on the singular values
to obtain a common projection matrix. The resulting reduced
order models and also the delays are interpolated using positive
interpolation schemes such that the parametric dependence
is preserved. This PMOR approach makes multiple system
evaluations under different design parameter variations compu-
tationally cheap and still accurate. The numerical examples of
the RLC and MTL circuits with delays illustrates the efficiency
and accuracy of the proposed PMOR technique.
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