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1 The Unit Disk of C

Qp-spaces were first introduced as interpolation spaces between two im-
portant function spaces on the unit disk of C: the Bloch space and the
Dirichlet space.

Let ∆ = {z : |z| < 1} be the complex unit disk. The Bloch space is then
defined by

B = {f : f analytic in ∆ and B(f) = sup
z∈∆

(1− |z|2)|f ′(z)| <∞}

while the Dirichlet space is given by

D = {f : f analytic in ∆ and
∫
∆

|f ′(z)|2dxdy <∞}.

The group of direct conformal mappings of the unit disk is generated by
rotations and by Möbius transformations of the form ϕa(z) = a−z

1−az . With
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a conformal map of the disk ϕ we can associate a mapping of functions on
the disk defined by

Φf = f ◦ ϕ.

This is not the only possible transformation of holomorphic functions (see
[7]), and the fact that in the higher dimensional analogue we construct here
such a choice is impossible will influence the theory.

It is quite natural to introduce, for a ∈ ∆, the weight function g(z, a) =
ln | 1−az

a−z | = − ln |ϕa(z)| with logarithmic singularity in a, and the spaces

Qp = {f : f holomorphic in ∆ and sup
a∈∆

∫
∆

|f ′(z)|2gp(z, a)dxdy <∞}.

This way D equals Q0, while for p → ∞ the mass of the weight function
g(a, z) is concentrated in a, and is proportional to

√
1− |a|2, which indi-

cates that B is the limiting space for p→ +∞ of Qp. But it turns out that
one must not take the limit p → +∞ to reach B [2]. More precisely the
essential inclusions are:

D ⊂ Qp ⊂ Qq ⊂ BMOA 0 < p < q < 1 [5]

Q1 = BMOA [5]

Qp = B ∀p > 1 [2].

This means the spaces Qp form a scale as desired and for special values
of the scale parameter p these spaces are connected with other known and
important spaces of analytic functions.

Another special property of these spaces is the conformal invariance un-
der Möbius transformations.

Obviously both spaces B and D defined above are invariant under rota-
tions for this kind of transformation, but it turns out that they are invariant
for fractional transformations as well.

Indeed we can rewrite B(f) as

B(f) = sup
a∈∆

(f ◦ ϕa)′(0),

showing conformal invariance, and a simple change of variable in the defin-
ing integral of D also shows invariance.

There are several attempts to generalize these ideas and the correspond-
ing approach to higher dimensions; independent of their method these ap-
proaches treat the case of the unit ball in Cn and not the case of the unit
ball in IRn. Basic ideas are to replace the derivative f ′ by the complex gra-
dient of f and the measure dxdy by a weighted measure dλ(z) = dv

(1−|z|2)n+1 ,
where dv stands for the usual Lebesgue measure. Using an invariant Green’s



J. Cnops, R. Delanghe, K. Gürlebeck, M.V. Shapiro 203

function some results similar to the complex one-dimensional case were
proved. The most important results are that

Qp = B for 1 < p <
n

n− 1
and Q1 = BMOA(∂B),

where ∂B is the surface of the unit ball in Cn. But, for p /∈ (n−1
n , n

n−1 ) all
Qp-spaces are trivial, i.e., only constant functions belong to Qp.
This is one of the reasons to look for other possibilities to generalize the
complex one-dimensional ideas. Furthermore, using the Cn-approach it is
impossible in principle to consider Qp-spaces in odd real dimensions of the
Euclidean space.
In this paper we study hypercomplex generalizations of Qp-spaces. We
will follow two main lines for the generalization of the complex (one-
dimensional) case.
In section 3 we consider the Qp-spaces as weighted spaces of Besov-type
where the weight is defined by the fractional transformation and the func-
tion is measured by means of its “derivative”. Instead of holomorphic func-
tions in the unit disk we study monogenic functions f : IRn 7→ C̀ 0,n−1 (i.e.,
solutions of generalized Cauchy-Riemann systems), which are a higher-
dimensional generalization of holomorphic functions also applicable to the
case of odd real dimensions of the Euclidean space. Important function
classes like the solutions of the div− rot system are included in the theory
of monogenic functions.

With the generalized Cauchy-Riemann operator D, its adjoint D̄, the
hypercomplex Möbius transformation ϕa(x) = (a − x)(1 − āx)−1, and a
modified fundamental solution g of the real Laplacian we consider general-
ized Qp-spaces defined by

Qp = {f ∈ kerD : sup
a∈B1(0)

∫
B

|D̄f(x)|2(g(ϕa(x)))pdx <∞}.

where B1(0) stands for the unit ball in IRn. This definition seems to be
natural because

• It has a deep structural analogy with the complex (one-dimensional)
definition.

• All items used generalize definitions (analyticity, derivative, Möbius
transformations and Green’s functions) from the complex one-dimen-
sional case.

• Generalized Qp-spaces have properties analogous to those of complex
QP-spaces.

To prove these analogous properties is the aim of this paper. We remark
that for the case of functions f : IR4 7→ IH it is already known from [15]



204 Qp-Spaces in Clifford Analysis

that D̄ may be interpreted as a derivative. In [13] it is proved that D̄ is a
derivative for any real dimension. In section 3 we restrict ourselves to the
case n = 3, the lowest non-commutative case, as a model case of general
Clifford analysis. Moreover, we will identify the Clifford-Algebra C̀ 0,2 with
the skew field of quaternions. Thus we consider functions f : IR3 7→ IH.

Beginning with Section 4 we generalize the complex Qp-spaces using
a conformally invariant way. This approach can be extended to spaces of
harmonic functions. The part on harmonic functions is also related to re-
sults of Leutwiler who considered in [14] spaces of harmonic functions with
bounded mean oscillation. One of the main ideas is to use weighted Sobolev
norms and that means we measure all the single partial derivatives of our
functions and not the “derivative” of the (in section 3 monogenic) func-
tions. It should be mentioned explicitly that both approaches generalize
the complex one-dimensional case in the sense that the restriction to this
case will describe the same class of functions. This is caused by the fact
that for holomorphic functions the norm defined by the help of the complex
derivative is equivalent to the usual Sobolev norm.

Acknowledgement

A part of this article was written within the joint German-Mexican Project
“Quaternionic analysis and partial differential equations”, supported by
Deutsche Forschungsgemeinschaft (DFG), CONACYT (Mexico), Instituto
Politecnico Nacional (Mexico). Mexican author was also partially sup-
ported by COFAA (IPN, Mexico) and by CONACYT project 25396E.

2 Preliminaries

Let e1, . . . , en be an orthonormal basis in IRn. Consider the 2n-dimensional
Clifford algebra C̀ 0,n generated from IRn equipped with a negative inner
product. Then we have the anti-commutation relationship eiej + ejei =
−2δije0, i, j = 1, . . . , n, where δij is the Kronecker delta symbol and e0 = 1
is the identity of C̀ 0,n. It may be observed that each element of the algebra
can be represented in the form

a =
∑
A

aAeA,

where aA are real numbers and eA, A ⊆ {1, . . . , n}, with eA = ei1 . . . eik
,

e{i} = ei, i = 1, . . . , n, and e∅ = e0, are the basis elements of C̀ 0,n.
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In what follows identify each element x = (x1, . . . , xn) of IRn with the
element

x =
n∑

k=1

xkek

of the Clifford algebra. In this way the vector space IRn is embedded in
C̀ 0,n and we will call these elements x of C̀ 0,n vectors.

By
ā =

∑
A

aAēA,

where ēA = ēik
. . . ēi1 , ēj = −ej , j = 1, . . . , n, we define a conjugate ele-

ment. We also define reversion by

a∗ =
∑
A

aAe
∗
A,

where e∗A = eik
. . . ei1 .

For C1-functions defined on a domain Ω ⊂ IRn we introduce a generalized
Dirac operator by

D =
n∑

k=1

ek
∂

∂xk
.

Note that −D2 = ∆, where ∆ is the Laplacian in IRn.
A function f : Ω 7→ C̀ 0,n is said to be left-monogenic if it satisfies the

equation (Df)(x) = 0 for each x ∈ Ω.
In section 3 we will work in IH, the skew field of quaternions. As usual we

identify IH with C̀ 0,2 and write {1, i, j, k} instead of {e0, e1, e2, e1e2}. Points
of IR3 have coordinates (x0, x1, x2), and instead of the Dirac operator we
use the Cauchy-Riemann operator

D = ∂0 + i∂1 + j∂2.

This operator is a hypercomplex analogue to the complex Cauchy-Riemann
operator. In this case DD = DD = ∆, where D = ∂0− i∂1−j∂2 is the con-
jugate Cauchy-Riemann operator. Again an IH-valued function satisfying
Df = 0 in a domain will be called monogenic, or left monogenic.

Using the fundamental solution e(x) = 1
ω

x̄
|x|3 of D in IR3 we introduce

the Cauchy-type operator

(FΓu)(x) :=
∫

Γ

e(x− y)α(y)u(y) dΓy, x /∈ Γ,

where α(y) =
∑2

k=0 ekαk(y) is the outward pointing normal unit vector to
Γ at the point y and ω stands for the surface area of the unit ball in IR3.

Also, in what follows we will work in B1(0) ⊂ IR3, the unit ball in real
three-dimensional space. Moreover, we will consider functions f defined on
B1(0) with values in IH. The contents of this section follow the line and
basic ideas of [12].
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3 Definition of Qp-Spaces in IR3

For |a| < 1 we will denote by

ϕa(x) = (a− x)(1− āx)−1

the Möbius transform, which maps the unit ball onto itself. Furthermore,
let

g(x, a) =
1
4π

(
1

|ϕa(x)|
− 1
)

be the modified fundamental solution of the Laplacian in IR3 composed
with the Möbius transform ϕa(x). Especially, we denote for all p > 0

gp(x, a) =
1

4pπp

(
1

|ϕa(x)|
− 1
)p

.

Let f : B1(0) 7→ IH be a monogenic function. We will use, as in [12], the
seminorms

• B(f) = supx∈B1(0)(1− |x|
2)3/2|Df(x)|,

• Qp(f) = supa∈B1(0)

∫
B1(0)

|Df(x)|2gp(x, a)dBx,

which lead to the following definitions:

Definition 3.1 The spatial (or three-dimensional) Bloch space B is the
right IH-module of all monogenic functions f : B1(0) 7→ IH with B(f) <∞.

Definition 3.2 The right IH-module of all quaternion-valued functions f
defined on the unit ball, which are monogenic and satisfy Qp(f) < ∞, is
called Qp-space.

Remark 3.1 Because of the special structure of g(x, a) the seminorms
Qp(f) make sense for p < 3 only. Consequently, we will consider in this
section Qp-spaces for p < 3 only. In subsection 3.2 we will describe another
characterization of Qp-spaces which is equivalent with the definition under
consideration for p < 3 and which makes sense for p ≥ 3 also.

Obviously, these spaces are not Banach spaces. Nevertheless, if we consider
a small neighbourhood of the origin Uε, with an arbitrary but fixed ε > 0,
then we can add the L1-norm of f over Uε to our seminorms and B as
well as Qp will become Banach spaces. Because this additional term is
independent of p we will consider in the following only the spaces with the
corresponding seminorm, but we have to keep in mind that all our results
are also true in the case of the norm.

Definition 3.3 The right IH-module of monogenic functions f : B1(0) 7→
IH with ∫

B1(0)

|Df(x)|2dBx <∞,
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is called spatial (or three-dimensional) Dirichlet space D.

Remark 3.2 Since g(x, a) is non-negative in B1(0) we have, obviously,

D ⊂ Qp, 0 ≤ p < 3.

3.1 Properties of Qp-spaces

First we show that the Qp-spaces form a range of Banach IH-modules
(with our additional term added to the seminorm), connecting the spatial
Dirichlet space with the spatial Bloch space. For doing this several lemmas
are needed. Although these lemmas are only of technical nature we will at
least state these results to show that the approach to Qp-spaces in higher
dimensions which is sketched in this section is strongly based on properties
of monogenic functions. From the properties of the Cauchy integral we
obtain the following estimate.

Lemma 3.1 Let f be monogenic in the unit ball. Then we have for all
r < 1 ∫

Sr(0)

|Df(x)|dSx ≥ 4πr2|Df(0)|,

where Sr(0) is the surface of the ball Br(0) with centre at 0 and radius r.

Lemma 3.2 Under the same conditions as in lemma 3.1 we have that for
any fixed R < 1 ∫

BR(0)

|D̄f(x)|2dx ≥ 4πR3

3
|Df(0)|2

holds.

For the proof we have to use lemma 3.1 and the Cauchy-Schwarz inequality.
For details see [12].

Proposition 3.1 Let f be monogenic and 0 < p < 3, then we have

(1− |a|2)3|Df(a)|2 ≤ C1

∫
B1(0)

|Df(x)|2
(

1
|ϕa(x)|

− 1
)p

dBx, (1)

where the constant C1 does not depend on a and f .

The inequality has the same structure as in the complex one-dimensional
case. Only the exponent 3 on the left hand side shows how the real di-
mension of the space influences the estimate. To prove this proposition
we need the previous lemmas, some geometrical properties of the Möbius
transformation and the equality

1− |ϕa(x)|2

1− |x|2
=

1− |a|2

|1− āx|2
(2)
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which links properties of the (special) Möbius transformation ϕa with the
more general weight function 1− |x|2. This equality generalizes in a direct
way the corresponding property from the complex one-dimensional case.
Considering on both sides of (1) the supremum we obtain the following
corollary.

Corollary 3.3 For 0 < p < 3 we have Qp ⊂ B.

This corollary means that all Qp-spaces are subspaces of the Bloch space.
We recall that in the complex one-dimensional case all Qp-spaces with
p > 1 are equal and coincide with the Bloch space. This leads to a corre-
sponding question in the three-dimensional case considered here. Basis of
the necessary consideration is again a more technical result which proves
at the end that we have an analogous property, but according to the ex-
pectations it is dependent on the dimension.

Proposition 3.2 If f is monogenic in B1(0) and 2 < p < 3, then for all
|a| < 1 ∫

B1(0)

|Df(x)|2gp(x, a)dBx ≤ J(p)B(f)2,

where J(p) = 4π
∫ 1

0
r2−p

(1−r)3−p(1+r)3 dr is finite.

Theorem 3.4 Let f monogenic in the unit ball. Then the following con-
ditions are equivalent:

1. f ∈ B.

2. Qp(f) <∞ for all 2 < p < 3.

3. Qp(f) <∞ for some p > 2.

Proof. The implication (1. ⇒ 2.) follows from proposition 3.2. It is obvious
that (2. ⇒ 3.). From corollary 3.3 we have that 3. implies 1.
Theorem 3.4 means that all Qp-spaces for p > 2 coincide and are identical
with the Bloch space.

3.2 Another characterization of Qp-spaces

The one-dimensional analogue of definition 3.2 was the first definition of
Qp-spaces. This was motivated by the idea to have a range of spaces
“around” the space BMOA. Comparing the original definition and one of
the equivalent characterizations of BMOA in [6] it is obvious that Q1 =
BMOA. Another motivation is given by invariance properties of the Green
function used in the definition. Recent papers of Aulaskari and co-authors
(see e.g. [1]) show that the ideas of these weighted spaces can be gener-
alized in a very direct way to the case of Riemannian manifolds. Caused
by the singularity of the Green function difficulties arise in proving some
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properties of the scale. One of these properties is the inclusion property
with respect to the index p.

In this subsection we discuss another possibility to characterise Qp-
spaces, which is often easier to handle. Among others, this new charac-
terization implies the proof of the fact that the Qp-spaces are a scale of
function spaces with the Dirichlet space at one extreme point and the Bloch
space at the other.

Lemma 3.5∫
B1(0)

|Df(x)|2(1− |x|2)pdBx '
∫

B1(0)

|Df(x)|2gp(x, 0)dBx

with 1 < p < 2.99.

The idea to relate the Green function with more general weight functions
of the type (1 − |x|2)p is not new. For the complex case it was already
mentioned in [5], [3]. Another idea is to prove also a relation of gp(x, a) with
(1− |ϕa|2)p. This way saves on the one hand the advantages of the simple
term (1−|x|2)p and preserves on the other hand a special behaviour of the
weight function under Möbius transforms. As a hint we refer to equation
(2).

Theorem 3.6 Let f be monogenic in B1(0). Then, for 1 ≤ p < 2.99,

f ∈ Qp ⇔ sup
a∈B1(0)

∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)pdBx <∞.

At first glance, the condition p < 2.99 looks strange. But we have to keep in
mind that theorem 3.4 means that all Qp-spaces for p > 2 are the same, so
in fact this condition is only of technical nature caused by the singularity
of gp(x, a) for p = 3.

Especially for the proof of this theorem we need the properties of mono-
genic functions and of the Möbius transformation. The main idea is a

change of variables w = ϕa(x) (the Jacobian determinant
(

1−|a|2
|1−āw|2

)3

has
no singularities) to come back to the situation of the previous lemma.
The problem here is that, while Dxf(x) is monogenic, after the change
of variables Dxf(ϕa(w)) is not monogenic. But we know from [16] that

1−w̄a
|1−āw|3Dxf(ϕa(w)) is again monogenic. We also refer to Sudbery [17] who
studied this problem for the four-dimensional case already in 1979.

The above theorem makes it possible to state the same characterization
also in the case of p < 1.

Proposition 3.3 Let f be monogenic in B1(0). Then, for 0 < p ≤ 1,

f ∈ Qp ⇔ sup
a∈B1(0)

∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)pdBx <∞.
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Using the alternative definition of Qp-spaces it will be shown that the
Qp-spaces form a scale of Banach spaces.

Proposition 3.4 For 0 < p < q we have: Qp ⊂ Qq.

Proof. Let f ∈ Qp. Then

sup
a∈B1(0)

∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)pdBx <∞.

Because of (1− |ϕa(x)|2)p ≥ (1− |ϕa(x)|2)q if |x| ≤ 1 we have that∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)qdBx ≤
∫

B1(0)

|Df(x)|2(1− |ϕa(x)|2)pdBx.

Therefore,

supa∈B1(0)

∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)qdBx

≤ supa∈B1(0)

∫
B1(0)

|Df(x)|2(1− |ϕa(x)|2)pdBx.

This means f ∈ Qq.

4 Conformally Invariant Generalizations

In generalizing the results of the preceding section we have kept in mind
two important paradigms of the theory in the unit disk of C:

1. the theory is conformally invariant: all spaces are invariant for con-
formal maps of the unit disk. Moreover all conformal maps generate
an isometry on each Qp space;

2. the theory can be extended to include harmonic functions.

As already remarked, in complex analysis there is a certain freedom regard-
ing the representation of the conformal group on spaces of holomorphic
functions. In higher-dimensional theory this is much more restricted, and
one cannot hope to obtain isometries.

4.1 Conformal mappings of the unit ball

Clifford algebras are extremely well suited to describe conformal mappings
in more than two dimensions in a way quite similar to the one used in the
complex plane. The counterpart of the transformations ϕa of the complex
case are of the form φ~a(~x) = (~x− ~a)(~a~x+ 1)−1 which we can write in the
more classical form

φ~a(~x) =
~x− ~a
~a~x+ 1

, (3)
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where ~a is an arbitrary element of the unit ball in IRn. Each conformal
mapping of the unit ball can be written as the product of an orthogonal
transformation and a mapping of the form (3). Again we have that φ~a(~a) =
0 and (φ~a)−1 = φ−~a.

More generally, an arbitrary Möbius transformation of IRn can be written
in the form

g(~x) =
a~x+ b

c~x+ d
,

where a, b, c and d are Clifford numbers satisfying specific properties (the
so-called Vahlen conditions, see e.g. [8]). Specifically, these numbers can be
chosen in such a way that ad∗ − bc∗ = ±1. For the mapping φ~a we have
the coefficients

a = 1/
√

1 + ~a2 b = −~a/
√

1 + ~a2

c = ~a/
√

1 + ~a2 b = 1/
√

1 + ~a2

The mappings share many properties with complex fractional mappings
which can be written in a similar way. It is well known (see again [8]) that
the differential satisfies

|dg(~x)| = 1
|c~x+ d|2

|d~x|,

and we define the local contraction factor µg(~x) by

µg(~x) =
1

|c~x+ d|2
,

which leads to the formula∫
B1(0)

f(~y) d~y =
∫

B1(0)

f(φ~a(~x))µφ~a
(~x)n d~x

for a change of the integration variable.

4.2 Conformal mappings of harmonic and monogenic
functions

Transformation of harmonic and monogenic functions is more rigid here
than in the complex case, since the product of monogenic functions is not
necessarily monogenic. We do have:

1. if f is monogenic, then so is

γgf(~x) =
(c~x+ d)∗

|c~x+ d|n
f(g(~x));
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2. if h is harmonic, then so is

κgh(~x) = (µg(~x))n/2−1h(g(~x)).

For the transformations φ~a these can be expressed as

γ~af(~x) = (1 + ~a2)
n−1

2
~x~a+ 1
|~x~a+ 1|n

f(φ~a(~x))

κ~ah(~x) = (µ~a(~x))n/2−1h(φ~a(~x)).

For a rotation A we have b = c = 0 and d = a∗−1, with the normalization
|d| = |a| = 1, and the formulae become

γAf(~x) = af(A~x),
κAh(~x) = h(A~x).

If we denote by H the space of harmonic functions in the unit ball, and
byM the space of monogenic functions we can write this as follows:

For arbitrary g in the Möbius group of the unit ball H is invariant under
κg and M is invariant under γg.

5 Some Useful Estimates on Harmonic Functions
in the Unit Ball

In what follows we will be interested in several norms on monogenic or
harmonic functions, and on their derivatives. Apart from the Bloch and
Dirichlet norms, defined by

B(g) = sup
~x∈B1(0)

(1− |~x|2)n|g(~x)|2

D(g) =
∫

B1(0)

|g(~x)|2 d~x,

these norms will all be defined by a formula of the form

q(g, µp) = sup
a∈B1(0)

∫
B1(0)

|g(~x)|2µp(φ~a(~x)) d~x,

where µp is a suitable weight function on the unit ball. It should be noted
that B(g), D(g) and qp(g, µp) are all squares of norms rather than norms.

We now define for a parameter 0 ≤ q < +∞ the class of weight functions
Wp as being the class of functions µp for which there exist strictly positive
κ and k such that ∫

B1(0)
µp(~x) dx <∞, (4)

µp(~x) ≥ k if |~x| ≤ 1
2 , (5)

k(1 + ~x2)p < µp(~x) < κ(1 + ~x2)p if |~x| ≥ 1
2 . (6)
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The pivoting constant 1/2 is of course completely arbitrary, and can be
replaced by any R strictly between 0 and 1.

We have the following theorem:

Theorem 5.1 Let µp and νp be two weight functions in the class Wp. Then
the norms defined by q(·, µp) and q(·, νp) are equivalent on H. More exactly,
there are strictly positive finite constants C1 and C2 such that

C1q(g, µp) ≤ q(g, νp) ≤ C2q(g, µp),

for all g ∈ H, implying that q(g, µp) = +∞ if and only if q(g, νp) = +∞.

Of course we could immediately have taken µp(~x) = (1 + ~x2)p, but in
the past other functions have been used, as in the complex case where
µp(z) = (− ln |z|)p, and we want to allow for an integrable singularity in 0.
Anyway the example µp(~x) = (1 + ~x2)p shows that the norms grow weaker
as the index p increases.

Obviously D(·) equals q(·, 1), and a constant function is element of W0.
The Bloch norm is defined using a pointwise estimate rather than an inte-
gral. However, it is possible to prove the following estimate for harmonic
functions:

Lemma 5.2 Let µp be a weight function in any of the classes Wp. Then
there exists a constant C such that for any arbitrary point ~a in B1(0), and
any g in H

(1 + ~a2)n|g(~a)|2 ≤ C
∫

B1(0)

|g(~x)|2µp(φ~a(~x)) d~x

This already shows the Bloch norm is weaker than any q(·, µp) norm.
However, looking at the Bloch norm we have the pointwise estimate

|g(~x)|2 ≤ (1 + ~x2)−nB(g).

It can be proved that this is sufficient to give a bound on the defining
integral for q(g, µp) if p > n− 1, proving that

Lemma 5.3 For p > n − 1, the Bloch norm is equivalent with any norm
defined by a weight function in Wp.

6 Conformally Invariant Spaces

In Section 2 we have used the operators D and D to define Qp-spaces.
Obviously, this definition is not rotationally invariant, as it emphasizes
the x0-axis. In this framework, a monogenic function independent of x0

satisfies Df = 0, while it is not necessary that the function be constant.
Before dealing with derivatives however, we take a look at the interplay
between the qp norms and the actions κ and γ.
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6.1 qp norms applied to harmonic functions.

It is obvious from the definition of the qp that they are invariant for rota-
tions. Therefore it is only necessary to look at what happens with trans-
formations of the form Φ~a with |~a| < 1. We obtain the following estimates,
using the function

K(g) =
(1 + |g−1(0)|)2

1− |g−1(0)|2
=

1 + |g−1(0)|
1− |g−1(0)|

.

Theorem 6.1 Let f be a measurable function in the unit ball. Then, for
arbitrary p ≥ 0 and g in the Möbius group of the unit ball we have

qp(κgf) ≤ K(g)2qp(f),
qp(γgf) ≤ K(g)qp(f).

We can now conveniently define a few subspaces of H:

1. The Bloch-like space

P = {f ∈ H : B(f) < +∞} ,

2. The harmonic Bergman space

T = {f ∈ H : D(f) < +∞} ,

3. The Kp spaces, for 0 ≤ p <∞,

Kp = {f ∈ H : qp(f) < +∞} .

The Bergman space can of course be identified with K0. The corresponding
spaces of monogenic functions (i.e. the intersections withM) will be written
asMP,MT andMKp respectively. Obviously all these spaces are Banach
spaces for the corresponding norm. From the definition of qp it follows that,
with increasing p the norms grow weaker, while Lemma 5.3 assures us that
all norms with p > n−1 are equivalent. On the other hand, the transforms
κ and γ are continuous with respect to each of the qp norms, and we can
summarize our results into one theorem:

Theorem 6.2 For 0 ≤ p ≤ q

T ⊂ Kp ⊂ Kq ⊂ P.

For p > n− 1, P ⊂ Kp. Hence

P = Kp p > n− 1.

Similar relations hold between the monogenic subspaces.
Each g in the Möbius group of the unit ball leads to two associated trans-

forms:
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1. the transform κg leaving the spaces Kp invariant, and having trans-
formation norm at most K(g)2 there;

2. the transform γg leaving the spacesMKp invariant, and having trans-
formation norm at most K(g).

It should be remarked that, even if MKp is a subspace of Kp, it is not
invariant for transformations of the form κg, and that it therefore makes
no sense to apply κg to this space. On the other hand the space Kp is
not invariant –in general– for γg: both spaces therefore carry their own
transformations. This is very much unlike the complex case, where the κg

can act both on harmonic and on holomorphic functions.

6.2 The qp-norms applied to derivatives of functions.

Until now we have only considered L2-like norms on harmonic and mono-
genic functions. In this section we shall take into account derivatives, which
results in a Sobolev-like structure. Unlike the complex case, where only
derivatives of functions appear in the norm (and constant functions are
eliminated to obtain a norm instead of a seminorm), here it will be nec-
essary to include both the functions’ values and the derivatives into the
norm. Contrary to holomorphic ones, monogenic functions do not have a
directional derivative of equal size in all directions, a fact we describe more
formally.

Take IRn, the unit ball there, B1(0), the spaceM of monogenic functions
in B1(0), and define the directional derivative as before: if ξ is a unit vector
then

∂ξf(~x) = ∂t f(~x+ tξ)|t=0 .

The mapping ξ → ∂ξf(~x) is a linear function, and we want a norm on
this function. The space of linear functions in n variables is of course finite
dimensional, so all norms are equivalent. All considerations which follow
hence will be valid for an arbitrary norm, and it is only for our convenience
that we take the norm given by

(Mf(~x))2 :=
n∑

i=1

|∂if(~x)|2

=
1
Bn

∫
Sn−1

|∂ξf(~x)|2 dSξ,

where Bn is a normalizing constant. This constant can be obtained by
substituting ∂ξf by a suitable linear function in ξ, e.g. the first coordinate
function. Hence

Bn =
∫

Sn−1
x2

1 dSξ.
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Notice that ∂ξf is monogenic whenever f itself is. For harmonic functions
Mf has a nice property. If we define, for two Clifford numbers a and b, [a, b]
to be the scalar part of āb, we have that

∆|f |2 = ∆[f, f ]

= [∆f, f ] + [f,∆f ] + 2
n∑

i=1

[∂if, ∂if ]

= 2(Mf)2.

In the complex case the directional derivative of a holomorphic function
has the same norm in all directions:

|∂ξf(z)| = |∂zf(z)|,

and so (Mf(z))2 = 2|∂zf(z)|2.
The counterparts of the complex Bloch, Dirichlet and Qp spaces are

1. The Bloch space

B = {f ∈ H : B(Mf) +B(f) < +∞} ,

2. The Dirichlet space

D = {f ∈ H : D(Mf) +D(f) < +∞} ,

3. The Qp spaces

Qp = {f ∈ H : qp(Mf) + qp(f) < +∞} ,

and the monogenic subspacesMB,MD andMQp, where again D = Q0.
Of course, Mf is not harmonic whenever f is. However, since (Mf)2 =∑

i |∂if |2, where ∂if is harmonic, and so qp(∂if) ≤ qp(Mf) ≤
∑

j qp(∂jf)
for any i it is easy to adapt to Mf the estimates obtained before and the
counterpart of Theorem 6.2 is:

Theorem 6.3 For 0 ≤ p ≤ q

D ⊂ Qp ⊂ Qq ⊂ B.

For p > n− 1, B ⊂ Qp. Hence

B = Qp p > n− 1.

It is when looking at the invariance under Möbius transformations of
these spaces that we see a profound difference between the two- and the
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n-dimensional case. In C we only have the transformations κgf = f ◦ g,
and so we have the pointwise estimate

|Mκgf(z)| = |Mf(gz)||g′(z)|.

In the higher dimensional case however the pointwise estimates on
|Mκgf(~x)| and |Mγgf(~x)| will have to include the function value of f
itself in g(~x). Therefore the Möbius group cannot be made to act in a uni-
tary way on the spaces defined above, although we still have continuity. We
obtain the following estimates for harmonic, resp. monogenic functions:

qp(Mκ~ah) ≤ n2 ((n− 2)K(~a) + 1)2 (qp(h) + qp(Mh))

qp(Mγ~af) ≤ n2

[
(1 + n)|~a|√

1 + ~a2
+
√
K(~a)

]2
(qp(f) + qp(Mf)).

This finally leads to

Theorem 6.4 The following invariance relations hold:

1. The spaces B, D and Qp are invariant under Möbius transforma-
tions of the unit ball for the representation κ. Moreover each κ~a is a
bounded operator on each of these spaces.

2. The spaces MB, MD and MQp are invariant under Möbius trans-
formations of the unit ball for the representation γ, and each γ~a is a
bounded operator on each of these spaces.

Proof.
Consider e.g. the harmonic case, and let f be in Qp (0 ≤ p ≤ ∞, where
Q∞ is identified with B). Take an arbitrary ~a ∈ B1(0). Since Qp is a
subspace of Kp, we know that κ~af is in Kp, and qp(f) < +∞. From the
preceding calculations it follows that Mκ~af is majorated by two functions
both having finite qp norm, and so qp(Mκ~af) < +∞. Therefore κ~af is in
Qp. Since the estimates on Mκ~af show constants independent of f , κ~a is
a continuous operator on Qp. �
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