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Clifford Analysis on Super-Space

F. Sommen∗
University of Gent,
Department of Mathematical Analysis
Galglaan 2, B-9000 Gent,
Belgium

ABSTRACT In this paper we further elaborate an extension of Clifford
analysis towards super-symmetry, started in our paper [So1]. We discuss the
generalized spingroup, the Fischer decomposition and give several examples
of canonically defined super-manifolds.

Introduction

Many of the fundamental special functions in Clifford analysis are functions
of zonal type i.e. functions depending of several Clifford vector variables like
x =

∑
ejxj , u =

∑
ejuj, . . ., and their inner products x2, xu + ux, u2, . . .

whereby e1, . . . , em satisfy the Clifford algebra defining relations ei ej +
ej ei = −2δij . Moreover these functions are in principle the same in all
dimensions m, whereby the dimension m is given by ∂x[x] = −m, ∂x =∑

ej∂xj
being the Dirac operator. This lead to the idea to define an alge-

bra R(S) of abstract vector variables which is the free associative algebra
generated by a set S of “abstract vector variables” x, y, z, . . . together with
the axiom: {x, y}z = z{x, y}, and to redefine Dirac operators as endomor-
phisms on R(S), i.e. as vector derivatives denoted by ∂x, x ∈ S. This theory

∗Senior Research Associate, FWO, Belgium

Advances in Applied Clifford Algebras 11 (S1) 291-304, 2001
c©2001 Universidad Nacional Autónoma de México. Printed in Mexico
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was inspired by “geometric calculus” as presented in [HS] and developed
to some extent in our papers [So2], [So3].
Important are the facts that

(i) R(S) does not depend on any particular dimension m

(ii) using the assignment x → x =
∑

ejxj , x ∈ S, the algebra R(S) is
represented by an algebra R(S) of Clifford polynomials and this map
is injective provided S is finite and M ≥ Card S,

(iii) the vector derivative ∂x leads to the introduction of the abstract
scalar parameter ∂x[x] = M , called abstract dimension; using the
representation x → x of abstract vectors by m-dimensional Clifford
vectors, after identification M = m, ∂x is mapped on the operator
−∂x

(iv) the algebra R(S) is in fact independent of the choice of a quadratic
form.

Moreover, in our paper [So1] we have already shown that the algebra R(S)
leads to an extension of Clifford analysis to super-symmetry. Hereby one
uses an assignment of the form x → x̀ + x, whereby x =

∑
xj ej is a

usual Clifford vector as before and x̀ =
∑

ej̀ xj̀ is a so called “fermionic
Clifford vector”, i.e. the coordinates xj̀ are anti-commuting and the ele-
ments ej̀ are such that the abstract axioms for R(S) remain satisfied in the
representation. It turns out that then e1̀, . . . , e2ǹ are generators of a Weyl
algebra or symplectic Clifford algebra (see [Cr][Ha]). One hence obtains a
canonical extension of Clifford analysis to the super-space as introduced
in e.g. [Be], [VV] and our approach is also related to abstract approaches
to super-symmetry as developed in [CRS]. In our paper [So1] we also pre-
sented a treatment of abstract super-forms which may be of importance in
connection with Stokes theorem in super-symmetry (see also [Pa]).
In section one we study more in detail the extension of the spingroup to
super-space, in which the super-sphere plays an essential role. Hereby the
super-sphere is the solution set in super-space of the equation x2 = −1
which exists on the abstract level of radial algebra R(S). One also obtains
an extension of the symplectic spingroups introduced in [Cr].
In section two we study in detail the Fischer decomposition for polynomials
on super space, leading to a theory of spherical monogenics on super-space.
Also this can be done to some extent on the abstract vector variable level.
Finally we introduce spaces of super-multivectors, super-Grassmannians
etc. based upon the notion of k-vectors which already exists once again on
the level of abstract vector variables.
For further information on Clifford analysis we refer to [DSS]

1 Super-Vector Variables

The notion of super-space and super-analysis is well established (see e.g.
[Be], [VV]). To define it we start from a number of commuting variables
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x1, . . . , xm and a number of anti-commuting variables x1̀, . . . , xp̀ and these
coordinates vary over a super-algebra an example of which is provided by
any Grassmann algebra LN = Alg{f1, . . . , fN} whereby fi fj + fj fi = 0.
For this algebra one has the splitting LN = LN+ + LN− and it is under-
stood that commuting variables like x1, . . . , xm take their values in LN+

while x1̀, . . . , xp̀ take their values in LN−. Hereby the elements f1, . . . , fN

are interpreted as fixed anti-commutative numbers or, what is the same,
anti-commutative variables for which there is only one value. In particu-
lar one could indeed take N = p and x1̀ = f1, . . . , xp̀ = fp which would
mean that the whole space with coordinates (x1̀, . . . , xp̀) contains a canon-
ical point namely (f1, . . . , fp). In other words, there are many possibilities
to assign values to anti-commuting variables and also infinite dimensional
“super algebras” are used in the literature. But to develop the basic ideas
it suffices to consider LN and to consider completions later on.

To set up the language of Clifford analysis on super-space we need to go over
from a vector like (x1, . . . , xm) to a Clifford vector x =

∑
xj ej whereby

for example ej ek + ek ej = −2δjk.
As we already pointed out in [So2], Clifford vector variables may be seen as
representations of the radial algebra R(S)generated by a set S of abstract
vector variables x, y, using the assignment

x → x =
∑

xj ej

and the fact that xy + yx is scalar readily leads to the statement that
ej ek + ek ej = −2gjk is scalar, i.e. the definition of Clifford algebras.
Moreover in [So] we also saw how this procedure may be generalized to
produce super-vector variables like x̀ + x =

∑
xj̀ ej̀ +

∑
xj ej whereby we

used the “canonical defining relations” valid for p = 2n

ei ej + ej ei = −2δij ,

ei ej̀ = −ej̀ ei

eì ej̀ − ej̀ eì = hij , h2i−1,2j = δij , h2i−1,2j−1 = h2i,2j = 0,

i.e. Alg{e1̀, . . . , e2ǹ} is the Crumeyrolle Clifford algebra (see [Cr]) or Weyl
algebra. An explicit realization may be obtained starting from the Clifford
algebra Rm+1 generated by putting

e2j−1̀ = em+1 ∂aj
, e2j̀ = −em+1 aj .

In general the radial algebra assumption xy +yx =scalar together with the
relations xi xj = xj xi, xi xj̀ = xj̀ xi, xì xj̀ = −xj̀ xì lead to Clifford
algebra defining relations of the form

ei ej + ej ei = −2gij = −2gji = fixed commutative (scalar)
eì ej̀ − ej̀ eì = hij = −hji = scalar
ei ej̀ + ej̀ ei = aij̀ = fixed anti-commutative object.



294 Clifford Analysis on Super-Space

Formally one can quite well work with but to fix the ideas we’ll stick to the
canonical case gij = δij , hij = simplectic form , aij̀ = 0. Moreover we stick
to the notation ei, ej̀ rather than represent ej̀ by Weyl algebra because
we’ll use Clifford algebra nomenclature during the process of building up
the super-extension of Clifford analysis.
The next thing we need is a proper replacement for the action of the sp-
ingroup Spin(m) on Rm. In our previous paper [So1] we pointed out that
the infinitesimal elements of this “super-spin-group” are of the form

s = exp εB, B =
∑

Bij eij , Bij = −Bij = commutative

s′ = exp εB′, B′ =
∑

B′
ij eì ej̀ , B′

ij = B′
ji = commutative

s̀ = exp εB ,̀ B`=
∑

Bij̀ ei ej̀ , Bij̀ = anti-commutative

whereby ε is infinitesimal, and one also has to consider compositions leading
to a definition of a super-spingroup which also depends on the algebra
LN = LN+ + LN− in which commuting and anti-commuting objects take
their values. Note that in case where Bij and B′

ij are real valued, the group
of elements s leads to the spingroup Spin(m) while the group of elements
s′ leads to the Crumeyrolle spingroup Spin’(2n) which is a double covering
of the symplectic group (see also [Cr]). In all these cases, the action of a
super-spingroup element S on a super-vector variable x̀ + x is given by the
mapping

x̀ + x → S(x̀ + x)S−1

whereby in the infinitesimal cases,

s−1 = 1− εB, s
′−1 = 1− εB′, s̀−1 = 1− εB .̀

This generalized group action preserves the anti commutator xy + yx.
In our treatment we only considered the infinitesimal group elements be-
cause for many applications in Clifford analysis this is sufficient. One can
also consider the super groups themselves but, as pointed out in [Cr] this
cannot be done in the infinite dimensional algebra
Alg{e1̀, . . . , e2ǹ, e1, . . . , em} which is only the freely generated associative
algebra with these generators. One also has to consider formal series, com-
pletions and more general functions but we think it is good politics to
postpone this till later on.
Next in Clifford algebra the spingroup is also defined as the set of even
products of the form

s = w1 . . . w2h whereby wj ∈ Sm−1, i.e. w2
j = −1.

To prove this it is in fact sufficient to consider the infinitesimal case of
products of the form s = w1 w2 whereby w2 ∈ Sm−1 is infinitesimally
close to −w1 ∈ Sm−1 and to prove that they generate the exponentials
of infinitesimal bivectors. We’ll investigate the same here for the super-
spingroup but it turns out that one obtains only a proper subgroup. To
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that end we first define the unit super-sphere to be the super-surface with
equation

(x̀ + x)2 = −1.

Examples of points on this object are:

(i) the basis elements e1, . . . , em,

(ii) if f is an anti-commutative fixed object, then also ei + fej̀ satisfies
(ei + ej̀f)2 = e2

i + f2ej̀
2 = e2

i = −1,

(iii) suppose that f1, f2 are two anti-commuting fixeds and recall that
e2j−1̀ e2j̀−e2j̀ e2j−1̀ = 1 are the only nonzero products and the square
(f1 e2j−1̀ + f2 e2j̀)2 = f1 f2 while also the square ((1+ 1

2f1 f2)e1)2 =
−1 − f1 f2 so that f1 e2j−1̀ + f2 e2j̀ + (1 + 1

2f1f2)e1 lies on the
super-sphere,

(iv) similarly, if f1, f2, . . . , f2n are anti-commuting fixeds, then the ele-
ment

f1e1̀ + f2 e2̀ + . . . + f2ne2ǹ+

+n−1/2(1 +
n

2
f1f2)e1 + . . . + n−1/2(1 +

n

2
f2n−1f2n)en,

is a canonical element of the super-sphere, canonical because
(f1, . . . f2n) are thought of as anti-commuting variables with only one
value. In other words, the above element is in fact a super-surface
inside the super-sphere which consists of just one point.

(v) the above example raises the question whether purely fermionic unit
vectors like the canonical vector f1e1̀ + . . . + f2ne2ǹ exist; the answer
is negative for that would lead to an identity of the form

f1f2 + . . . + f2n−1f2n = −1,

while f1f2 + . . . + f2n−1f2n is nilpotent. This also has to do with
the fact that no finite dimensional fermionic representation of R(S)
is isomorphic.

Now putting w1 = ei, w2 = −ei + ε ej , j 6= i, ε infinitesimal, then s =
w1 w2 = 1 + ε eij which shows that eij is in the Lie algebra of the group
generated by the super-sphere.
One can also take w2 = −ei+εf ej̀ leading to the product s = 1+ε(f ei ej̀)
showing that also f ei ej̀ is in the Lie algebra of the super-sphere.
But there seems to be no way to arrive at the products eì ej̀ + ej̀ eì as
elements of this Lie algebra. This seems disappointing at first and raises
the question for a more complete super-space. But the anti-commutator
f1 e1 ej̀ f2 e1 ek̀ − f2 e1 ek̀ f1 e1 ej̀ = f1 f2(ej̀ ek̀ + ek̀ ej̀) does belong to
the Lie algebra and hence so does the element (for N even)

(f1 f2 + . . . + fN−1 fN ) (ej̀ ek̀ + ek̀ ej̀)
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which in some sense a “surrogate” for −(ej̀ ek̀ + ek̀ ej̀) and again brings us
to make the forbidden identification

f1 f2 + . . . + fN−1 fN + 1 = 0.

Now in the ideal case where N could be infinite, the canonical element
f1 f2 + . . . + fN−1 fN whould no longer be a zero-devisor and the above
identification would be no longer forbidden. We think of f1 f2 + . . . +
fN−1 fN as an approximation for -1. In this sense the group generated
by the super-sphere remains different from the super-spingroup, but in
any case the super-spingroup itself is also dependent upon the number N
and in some sense all these groups are approximations of an ideal infinite
dimensional group.
Note also that the symplectic group, generated by ej̀ ek̀ + ek̀ ej̀ is the
“most far away” from the group of the super-sphere. The representation of
elements of the spingroup as products of an even number of unit vectors
has to do with the Hamilton principle for rotations: any rotation is the
composition of an even number of reflections.

2 The Dirac Operator on Super-Space

Also the definition of a Dirac operator on super space was already provided
in [So]. What we need is a good representation for the endomorphism ∂x

on R(S), called vector derivative and in [So] we came up with a solution
assuming the canonical identities ei ej + ej ei = −2δij , ei ej̀ = −ej̀ ei and
e2j−1̀ = ∂aj

em+1, e2j̀ = −aj em+1.
First denote by ∂xj̀

the derivative with respect to the anti-commuting vari-
able xj̀ determined by

∂xj̀ [F ] = 0, ∂xj̀ [xj̀F ] = F

in case xj̀ doesn’t occur in F .
Next we define the fermionic Dirac operator

∂x̀ = 2
∑

∂x2j−1̀ e2j̀ − 2
∑

∂x2j̀ e2j−1̀

and if we define for F ∈ R(S), the left and right action of ∂x by the
assignment

x → x̀, ∂x[F ] → ∂x̀[F̀ ], [F ]∂x → −[F̀ ]∂x̀,

whereby F̀ is the element corresponding to F under x → x̀, then the
operator ∂x satisfies the correct axioms for an abstract vector derivative
given in [So2] (see also [HS]).
The same is true for the standard Dirac operator ∂x =

∑
ej∂xj

if we make
the assignments

x → x, ∂x[F ] → −∂x[F ], [F ]∂x → −[F ]∂x.
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Moreover, in the standard case we have the dimension formula

∂x[x] = −∂x[x] = m

whereas in the anti-commutative (fermionic) case we obtain negative di-
mension

∂x[x] = ∂x̀[x̀] = −2n.

Hence on the super-space we make the assignments

x → x̀ + x, F → F

∂x[F ] → (∂x̀ − ∂x)[F ],
[F ]∂x → [F ](−∂x̀ − ∂x)

leading to the correct axioms and dimension formula

∂x[x] = (∂x̀ − ∂x)[x̀ + x] = −2n + m.

One may now start to produce generalizations to super-space of classical
results in Clifford analysis. We only discuss here the Fischer decomposition
for elements in the algebra generated by the set

x1̀, . . . , x2ǹ, x1, . . . , xm; e1̀, . . . , e2ǹ, e1, . . . , em,

called Clifford polynomials.
This is a small class of functions defined on super-space; normally one may
consider general functions in the coordinates x1̀, . . . , x2ǹ, x1, . . . , xm and
also the infinite dimensional algebra Alg{e1̀, . . . , e2ǹ, e1, . . . , em} in which
functions take their values may be completed in many ways (see also [Cr]).
Moreover, functions may also take their values in spaces on which the
elements e1̀, . . . , e2ǹ, e1, . . . , em, e2j−1̀ = em+1∂aj

, e2j̀ = −em+1 aj act as
endomorphisms. Note that e1, . . . , em+1 act as endomorphisms on spinor
spaces while the elements aj , ∂aj of the Weyl algebra act as endomorphisms
on e.g. S′(Rn) or L2(Rn) etc. Hence there are several analysis problems
associated with monogenic function theory on super-space and in our paper
[So1] we gave the formulation a fermionic Cauchy-Kowalewski extension for
tempered distributions f(a;x1̀, . . . , x2ǹ) ∈ S′(Rn; Alg{x1̀, . . . , x2ǹ}) with
“values in” the Grassmann algebra Alg{x1̀, . . . , x2ǹ}.

2.1 The bosonic and fermionic Fischer decompositions

Let R(x) and S(x) be homogeneous polynomials of degree k in Rm with
values in the Clifford algebra Rm; then the Fischer inner product is defined
by

(R(x), S(x)) = [R̄(∂x)S(x)]o

whereby R(∂x) means replacing xj by ∂xj
, a → ā is the main anti-involution

and [a]o is the scalar part of a ∈ Rm. This inner product is positive def-
inite on the space Pk of all homogeneous Clifford polynomials of degree
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k and the orthogonal complement of the subspace x Pk inside Pk is the
space Mk of spherical monogenics of degree k, i.e. homogeneous solutions
of ∂xPk(x) = 0. One thus arrives at a unique orthogonal Fischer decompo-
sition

Rk(x) = M(Rk)(x) + xRk−1(x)

with ∂xM(Rk)(x) = 0 and recursive application of this result leads to the
complete Fischer decomposition.
Hence in the Bosonic setting there is a Fischer decomposition like this and
it is the question to what extent does this result extend to the super space.
Already now we can say that the result is negative because in the case
where m = 2n, we have the identity ∂x[x] = 0 which means that x is itself
monogenic and the Fischer decomposition fails to exist or to be unique for
linear functions. Indeed, if R(x) would be a linear function admitting a
Fischer decomposition, then it has the form R(x) = P (x) + x a whereby
both P (x) and x a would be monogenic. Therefore also R(x) would have
to be monogenic, which is not true in general.
Hence things are not so straightforward and first question is: how about the
validity of Fischer decomposition in the purely fermionic case. In that case
we have to define a proper Fischer inner product which is positive definite
and for which the adjoint of the multiplyer

x̀ =
∑

e2j−1̀ x2j−1̀ +
∑

e2j̀ x2j̀

is the operator

−∂x̀ = 2
∑

e2j−1̀ ∂x2j̀
− 2

∑
e2j̀ ∂x2j−1̀

so that already (x̀, x̀) = 2n > 0.
Hereby one may use the Weyl algebra representation e2j−1̀ = ∂aj , e2j̀ = aj .
To arrive at this inner product we introduce certain operations on the Weyl
algebra inspired by similar operations for the Clifford algebra.

First of all we need a fermionic analogue of the anti involution a → ā on
Rm. This can be done by defining on this algebra the “adjoint mapping”

a+
j = ∂aj , ∂+

aj
= −aj , (ab)+ = b+ a+

and to prove that these axioms are consistent (see section 3).
Next we need the analogue of the scalar part projection a → [a]o, a ∈ Rm.
To define this we first define the analogue of k-vectors for this algebra. This
can be done by using the definition of the wedge product

x1̀ ∧ . . . ∧ xk̀ =
1
k!

∑
sgn π xπ(1)̀ . . . xπ(k)̀,

which comes from the wedge product on the radial algebra (see [So]). By
deriving this relation with respect to the coordinates xij̀ of xì one auto-
matically arrives at the correct definition of the wedge product for the



F. Sommen 299

generators ∂aj
, aj of the Weyl algebra and to the definition of k-vectors.

Moreover, it is possible to write any element in the Weyl algebra in a
unique way as a = [a]o + [a]1 + [a]2 + . . . whereby [a]o is a real number and
[a]k is a k-vector (see section 3.). In this way also the scalar part [a]o is
well defined and one may consider the inner product on the Weyl algebra
(a, b) = [a+ b]o. We haven’t obtained the full proof that this inner product
is positive definite but checked this in several special cases.
Next one extends the definition of the adjoint to elements belonging to
Alg{x1̀, . . . , x2ǹ, ∂aj , aj} (which is the fermionic analogue of the algebra of
Clifford polynomials) by putting

(xj̀)+ = ∂xj̀
, (ab)+ = b+ a+

and one may introduce a positive definite Fischer inner product by putting

(Rk(x̀), Sk(x̀)) = [Rk(x̀)+Sk(x̀)]o

whereby both Rk and Sk are assumed to be homogeneous of degree k
in the anti-commuting variables xj̀ . Then it follows that every fermionic
homogeneous polynomial of degree k, Rk(x̀) admits a unique orthogonal
decomposition of the form

Rk(x̀) = M(Rk)(x̀) + x̀Rk−1(x̀)

called Fischer decomposition, which after iteration leads to a complete
Fischer decomposition.

2.2 Fischer decomposition on the level of radial algebra

Let S be a finite set of vector variables S = {u1, . . . , ul} then for m ≥ l
the vector variable representation x → x =

∑
ej xj leads to an isomorphic

embedding of the radial algebra R(S) into the Clifford polynomial alge-
bra (of several vector variables) in m dimensions. Hence the Fischer inner
product on R(S) may be inherited from this embedding and it is positive
definite. Hence if we put x = u1, any element F ∈ R(S) may be written in a
unique way as F = M(F )+x G for some G ∈ R(S) whereby M(F ) ∈ R(S)
is monogenic in the sense that ∂x[M(F )] = 0 with ∂x the abstract vector
derivative. Indeed, under the application x → x, the abstract vector deriva-
tive ∂x with ∂x[x] = m corresponds to the Dirac operator −

∑
ej∂xj

which
is the adjoint with respect to the Fischer inner product of the vector vari-
able x. Now for a given fixed F ∈ R(S) not depending on the extra scalar
parameter m, both M(F ) and F will be available for any m ≥ l and they
will be in fact functions of the dimension m, defined for integer values of m
not less than l. Using the standard way to compute Fischer decomposition
(using the action of powers of ∂x on the identity F = M(F ) + x F ′) it is
not hard to see that, as function of the parameter m, M(F ) is extendable
to a meromorphic function. This means that the Fischer decomposition on
the level of radial algebra exists for almost all complex values of m but
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as we already know, there may be isolated poles which may belong to the
set Z of integers. Hence the Fischer decomposition on the level of radial
algebra may provide an answer for the Fischer decomposition on super-
space, where in general the dimension m ∈ Z. Moreover in case a given
dimension mo ∈ Z is a pole of M(F ) one may always take the average
value of M(F ) and F ′ in the point m = mo to arrive at a decomposition
F = M(F )(m = mo) + x F ′(m = mo) but the problem is that this average
is no longer monogenic in x.
Finally, by adding sufficiently many parameters it is always possible to
represent any Clifford polynomial on super-space by an element in some
sufficiently large radial algebra (exercise). Note that one may also define
the adjoint mapping on R(S) directly by (a b)+ = b+ a+, x+ = ∂x, x ∈ S
and consider the Fischer inner product (F,G)J = J F+G J , with J the
endomorphism which projects F ∈ R(S) on its constant part (see also [So]).
But this inner product is only positive definite for m ≥ l, m ∈ N .

3 Super-Multivector Space, More Canonical
Super-Manifolds.

In this section we’ll treat more systematically the generalization of the con-
jugation a → ā and the notion of k-vector in Rm to the free associative
algebra Alg{e1̀, . . . , e2ǹ, e1, . . . , em} generated by the basis elements used
in our Clifford algebra administration. We also use the same notation on
the extended Clifford algebra as for Rm, because for elements of the Weyl
algebra ā = −a+ rather that ā = a+.
We first define the conjugate on the space V = Span{e1̀, . . . , e2ǹ; e1, . . . , em}
simply by putting:

ē2j−1̀ = e2j̀ , ē2j̀ = −e2j−1̀, ēj = −ej .

Next this mapping may be extended in a unique way to an anti-morphism
on the tensor algebra TV which is the free associative algebra generated
by V together with 1 with no additional relations. Now the generalized
Clifford algebra Alg{e1̀, . . . , e2ǹ, e1, . . . , em} is simply the quotient of the
tensor algebra with respect to the two sided ideal generated by the elements

Aj = e2j−1̀ e2j̀ − e2j̀ e2j−1̀ − 1
Bjk = ek̀ el̀ − el̀ ek̀ for {k, l} 6= {2j − 1, 2j} some j,

Cjk = ek̀ el + el ek̀

Djk = ek el + el ek + 2δkl.

Hence the mapping a → ā will be well defined as an anti-morphism Alg{e1̀,
. . . , e2ǹ, e1, . . . , em}, i.e. a b = b̄ ā , provided that the generators of the two
sided ideal are mapped on generators in a bijective way.
As 1̄ = 1 the elements aj and Djk are invariant under conjugation while
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the elements Bjk are permuted and Cjk are (up to the sign) permuted.
Hence we have a well defined conjugation.
To define the notion of a k-vector we use the canonical notion of a k-vector
defined for the radial algebra R(S) by (see [So2]):

x1 ∧ . . . ∧ xk =
1
k!

∑
sgn π xπ(1) . . . xπ(k)

and simply replace abstract vector variables by vector variables on super-
space using the assignment

xj → xj̀ + xj =
∑

ek̀ xjk̀ +
∑

ek xjk.

Next one may derive the obtained formula for the wedge product

(x1̀ + x1) ∧ . . . ∧ (xk̀ + xk) =
1
k!

∑
. . .

left and with respect to all the present super coordinates xjk̀, xjk to end
up with the definition of an associative wedge product for all the basis
elements ej̀ , j = 1, . . . , 2n, ej , j = 1, . . . ,m.
Note that in particular ej ∧ ek = −ek ∧ ej as usual, ej ∧ ek̀ = −ek̀ ∧ ej and
ej̀ ∧ ek̀ = ek̀ ∧ ej̀ and that

ea1 ∧ . . . ∧ eak
=

1
k!

∑
sgn πeaπ(1) . . . eaπ(k)

eb1̀ ∧ . . . ∧ ebl̀
=

1
k!

∑
ebπ(1)̀ . . . ebπ(l)̀ .

Moreover any product of vector variables may be decomposed as

x1 . . . xk = x1 ∧ . . . ∧ xk +
∑

scalars l.o.t,

whereby l.o.t. means lower order terms and similar decompositions remain
valid for vector variables on super-space and also after derivation with
respect to super-coordinates. It follows that every product of basis elements

eb1̀ . . . ebl̀
ea1 . . . eak

= eb1̀ ∧ . . . ∧ ebl̀
∧ ea1 ∧ . . . ∧ eak

+ l.o.m

whereby l.o.m. means lower order multivectors (k′-vectors of order k′ < k+
l). It is also clear that the algebra Alg{e1̀, . . . , e2ǹ, e1, . . . , em} decomposes
as infinite direct sum of spaces Algl,k of generalized l-vectors in the basis
elements e1̀, . . . , e2ǹ and k-vectors in the basis elements e1, . . . , em , and
by [a]l,k we denote the projection of a general element of the real algebra
Alg{e1̀, . . . , e2ǹ, e1, . . . , em} onto Algl,k and the projection onto the scalar
part is denoted by [a]o = [a]o,o.
Next a non-degenerate bilinear form on the whole algebra is given by
(a, b) = [ā b]o as for the Clifford algebra Rm, but it is not positive definite.
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Note however that the vector variable is denoted by x̀ + x while the Dirac
operator acting on super-space R2n,m is given by

∂x̀ − ∂x =
∑

ēj̀∂xj̀
+
∑

ēj∂xj
,

i.e. one replaces the basis elements by their conjugate and the variables by
the corresponding derivatives. One could extend this to a Fischer adjoint
by considering the map R(xj̀ , xj) → R̄(∂xj̀ , ∂xj ) and consider the corre-
sponding Fischer inner product. But it is no positive definite inner product
so that one has to be careful with orthogonality arguments.
We haven’t defined super-multivector space yet; to define it we first intro-
duce the super-space of (l, k)-vectors R2n,m;l,k by stating that a variable of
that space has the form

x = x〈l,k〉 =
∑

xb1 . . .bl;a1 . . .ak
eb1̀ ∧ . . . ∧ ebl̀

∧ ea1 ∧ . . . ∧ eak

whereby for l even, xb1 . . . bl; a1 . . . ak is a commuting variable while for l
odd it is an anti-commuting variable. The super-space R2n,m;K of super
K-vectors is then formally given by R2n,m;K =

∑
k+l=K

R2n,m;l,k which in

fact means that the general variable of this space is given by

x = x〈R〉 =
∑

l+k=K

x〈l,k〉

whereby the multivector variable x〈l,k〉 is as stated above.
This notion of super K-vector corresponds to the definition of an abstract
K-vector given in [So3], i.e. it is in accordance with the radial algebra.
In particular for any set of abstract vector variables, {x1, . . . , xK} ⊂ S,
the wedge product x1 ∧ . . . ∧ xK is called a K-vector in radial algebra,
but it is a K-vector of a very special type as opposed to the K-vector
variables x = x〈R〉; they are so called Grassmann K-vectors or pure K-
vectors and using the Clifford vector representation x → x, the wedge
product x1 ∧ . . . ∧ xK corresponds to a varying element of a cone inside
the space of K-vectors of which the manifold of rays is the Grassmann
manifold Gm,K(R). In other words, the equation x〈R〉 = x1 ∧ . . .∧ xK may
represent any such cone; it is called a “formal multivector manifold” which
exists on the canonical level of radial algebra in the form of an equation.
By now using the super-vector representation for R(S) : x → x̀ + x, this
formal manifold is mapped onto the set of solutions to the equation

x〈R〉 = (x1̀ + x1) ∧ . . . ∧ (xK̀ + xK),

which is a super-surface of conical type inside the super-space R2n,m;K and
the supermanifold of super-rays is the super-Grassmannian. In other words
special super manifolds may be produced as a result of applying the super-
multivector representation on radial algebra; they are in fact the image
of the formal multivector manifolds which are defined as equations on the
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abstract level of radial algebra. Hence radial algebra is also a good basis for
super-manifold theory in the sense that it produces the canonical examples.
All this is still in an early stage of development and many ideas are to be
expected. We therefore think we can suffice by listing a few examples of
formal multivector manifolds.

(i) the sphere: given by the equation x2 = −1, x being an abstract vector
variable. This abstract sphere projects down to all spheres and super-
spheres.

(ii) the nullcone: given by the equation x2 = 0, x being an abstract vector
variable.

(iii) the manifold of unit K-frames (x1, . . . , xK) (Stiefel manifold) equa-
tions: x2

1 = . . . = x2
K = −1, xi xj = −xj xi for j 6= i this leads

to a definition of super-Stiefel manifolds and the manifold of wedge
produces x1 ∧ . . .∧xK is another way to introduce formal and super-
Grassmannians.

(iv) the manifold of nullframes (x1, . . . , xK) with equations x2
1 = . . . =

x2
K = 0, xi xj = −xj xi. This leads to super-nullframes and in

particular to super-twistor-space.

(v) Let B be a formal bivector and [·]o denote the scalar part; then the
equation B2 = [B2]o or [B2]4 = 0 is another equation for the manifold
of pure bivectors x1 ∧ x2.

This shows that there is a huge class of formal and super-manifolds waiting
to be studied.
We finish this paper with the definition of the multivector derivative in the
setting of super-symmetry, thus generalizing the Dirac operator.
It is done simply by assigning to the K-vector variable x = x〈R〉 the Fischer
adjoint ∂x = ∂x〈R〉 which is obtained by replacing

(i) coordinates xb1...bl;a1...ak
by coordinate derivatives ∂xb1 ...bl;a1...ak

(ii) eb1̀ ∧ . . . ∧ ebl̀
∧ ea1 ∧ . . . ∧ eak

by ēak
∧ . . . ∧ ēa1 ∧ ēbl̀

∧ . . . ∧ ēb1̀

i.e. if we denote xB;A = xb1...bl;a1...ak
, eB;A = eb1̀ ∧ . . . ∧ ebl̀

ea1 ∧ . . . ∧ eak

for short, then we put x = x〈R〉 =
∑

|B|+|A|=K

xB;A eB;A and we have that

∂x = ∂x〈R〉 =
∑

|A|+|B|=K

∂xB;A ēB;A

In the usual case, the number ∂x[x] is the dimension of K-vector space. In
the super-symmetry case this number ∂x[x] can be an integer which is still
thought of as the formal dimension of R2n,m;K .
One can now go on developing super Clifford analysis parallell to Clifford
analysis on multivector space.
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