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Abstract—Employing Lorentz reciprocity and the Stratton-Chu
formalism it is shown that the Poincaré-Steklov or admittance operator
can be interpreted as a complex symmetric operator mapping the
tangential electric field (instead of the equivalent magnetic current)
onto the equivalent electric current. We show that the pertinent
block Calderón projectors can be reformulated as operators with a
block Hamiltonian structure. This leads to an explicitly complex
symmetric Schur complement expression for both the interior and
exterior admittance operators.

1. INTRODUCTION

It is well-known that the Stratton-Chu formalism [1–3] allows a
complete reconstruction of the interior and exterior electromagnetic
fields (E,H) inside and outside a simply connected isotropic domain
Ω with smooth boundary ∂Ω merely by knowledge of the tangential
field components (Et,Ht) [4] or the equivalent magnetic and electric
currents [5] on the boundary ∂Ω in the absence of sources. A
still stronger statement, resulting from the inherent duality of both
Maxwell’s equations and the Stratton-Chu formalism [1], is that only
one tangential field component Et or Ht (in other words only one
equivalent magnetic or electric current), or even in more involved
cases a non-overlapping mixture of both tangential field components
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prescribed on the boundary ∂Ω [6, p. 102], is needed in order to describe
the complete field configuration in the absence of source terms, except
notably under resonance conditions. It follows that there exists a linear
operator relationship between the equivalent magnetic and electric
currents, called the Poincaré-Steklov or Dirichlet-to-Neumann operator
[4, 7–10]. In [11] it is indicated how the Poincaré-Steklov operator can
be extracted from the block Calderón projectors [2] by means of a
Schur complement method [12–14].
In this contribution we show, by invoking Lorentz reciprocity [15, 16],
that the Poincaré-Steklov operator can be interpreted as a complex
symmetric (C-symmetric) [17] operator mapping the tangential electric
field (instead of the equivalent magnetic current) onto the equivalent
electric current. The Poincaré-Steklov operator in the Lorentz
reciprocity context is therefore a genuine admittance operator. We
show that the block Calderón projectors can be reformulated as
operators with a block Hamiltonian structure, well-known from
Hamiltonian dynamical systems [18], Lagrangian subspace techniques
[19] and algebraic Riccati equations [20]. This leads to a novel, easily
understood, explicitly C-symmetric Schur complement expression for
both the interior and exterior admittance operators. Finally, two
analytic examples, one in connection with the magnetic eigenvector
field expansion and another related to the dielectric sphere confirm
the explicit C-symmetric property of the admittance operator.

2. MAIN RESULTS

We start with Lorentz reciprocity. Let the fields E1, H1 and E2, H2

both satisfy the source-free time-harmonic (eiωt time dependence)
Maxwell equations in the simply connected domain Ω ⊂ R3:

∇× E = −iωµH (1)
∇× H = iωεE (2)

It is easily proved that

∇ · (E1 × H2 − E2 × H1) = 0 (3)

implying the Lorentz reciprocity law [15, 16]
∫

∂Ω
[E1 × H2 − E2 × H1] · n dS = 0 (4)

where n is the outward pointing normal. The Lorentz reciprocity law
(4) can easily be reformulated in terms of the tangential components



Progress In Electromagnetics Research B, Vol. 7, 2008 147

Et and Ht of the fields as∫
∂Ω

[
Et

1 × Ht
2 − Et

2 × Ht
1

]
· n dS = 0 (5)

or ∫
∂Ω

[
Et

1 · (n × Ht
2) − Et

2 · (n × Ht
1)

]
dS = 0 (6)

Since this is true for all possible tangential fields, this implies there
is a complex symmetric operator (the admittance or Poincaré-Steklov
operator) Y = Y ′ mapping Et = −n × (n × E) onto n × Ht = n × H.
It is important to note that the transpose operator Y ′ is defined with
respect to the ’pseudo’ inner product [21, p. 113] or bilinear [17] inner
product†

〈X|Y〉 =
∫

∂Ω
X · Y dS (7)

In other words, the Lorentz reciprocity relationship (6) implies that

n × H = Y[−n × (n × E)] (8)

where Y is a C-symmetric operator. If N denotes the local operator
n× , the non-C-symmetric operator mapping the equivalent magnetic
current M = n × E onto the equivalent electric current J = n × H
[1, 5] is S = −YN .‡ Although it is not C-symmetric, the operator S
has, somewhat misleadingly, been coined admittance operator in [4]
and [11]. Also, interestingly, formula (8) can simply be written as

J = Y Et (9)

which has a distinctively nice reciprocal electrical network flavor: an
infinity of ports on the boundary ∂Ω with ’voltages’ Et (in V/m) and
currents J (in A/m) which are related by means of a C-symmetric
admittance operator Y.
Next define the wavenumber, characteristic impedance and admittance
as

k = ω
√
εµ z0 =

ωµ

k
y0 =

1
z0

=
ωε

k
(10)

the scalar Green’s function as

g0(r) =
e−ikr

4πr
(11)

† In contradistinction with the sesquilinear Hermitian inner product [X|Y] = 〈X|Y∗〉.
Note that the bilinear inner product 〈X|Y〉 can also be interpreted as an electromagnetic
’reaction’ [22].
‡ There is no uniformity in the definitions and signs of J and M in the literature. E.g. in
[1] one uses M = n × E, J = −n × H and in [5] one finds M = −n × E, J = n × H. Here
we adopt the ’default’ convention M = n × E and J = n × H.
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the operator T [2] operating on a tangential field X as

T X = n ×
{
−ik

∫
∂Ω
g0(R)X(y) dSy +

i

k

∮
∂Ω

∇yg0(R)∇t
y · X(y) dSy

}

= −ikn ×
∮

∂Ω
G(x,y) · X(y) dSy (12)

and similarly the operator K [2] as

KX = n ×
∫

∂Ω
∇yg0(R) × X(y) dSy

= −n ×∇x ×
∫

∂Ω
G(x,y) · X(y) dSy (13)

In the defining equations (12)–(13) R is the Euclidean distance ‖x−y‖
and

∮
denotes the Cauchy principal value integral. G(x,y) is the

dyadic Green’s function

G(x,y) =
(
I +

∇x∇x

k2

)
g0(R) (14)

Note that K is a compact operator [23]§, while T contains a hyper-
singular component necessitating the Cauchy principal value operation.
Some other salient features of the operator T are described in Lemma
2 of [11]. The equations for the equivalent currents M = n × E and
J = n × H are [2]

P
(

M
z0J

)
=

(
M
z0J

)
(15)

where P is the block Calderón operator

P =
( 1

2 I + K −T
T 1

2 I + K

)
(16)

The operator P is an idempotent (or oblique projector), i.e., P2 = P.
This implies the well-known Calderón identities:

T K + KT = 0, K2 − T 2 =
1
4
I (17)

Note that the identities (17) can be written in shorthand notation as

(K ± iT )2 =
1
4
I (18)

§ More precisely, K and K′ are compact only on C2−smooth surfaces.
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The complementary idempotent I − P, of importance for the exterior
problem, is obtained by replacing K with −K and T with −T .
Equation (15) can be written as

( 1
2 I + K −T

T 1
2 I + K

) (
NEt

z0J

)
=

(
NEt

z0J

)
(19)

It is easily observed that T = NU , where U is the C-symmetric
operator (U = U ′) defined as

UX = −ik
∫

∂Ω
g0(R)X(y) dSy +

i

k

∮
∂Ω

∇t
yg0(R)∇t

y · X(y) dSy (20)

Since N ′ = −N and N 2 = −I, equation (19) can be reformulated as

H
(

Et

z0J

)
=

1
2

(
Et

z0J

)
(21)

where

H =
( −N 0

0 I
) ( K −T

T K
) ( N 0

0 I
)

=
( −NKN −U

NUN K
)

(22)
We prove in Appendix A that NKN = K′, and hence the block
operator H can be written as

H =
( −K′ −U

NUN K
)

(23)

Now, a block operator of the form( A B
C −A′

)
(24)

is called Hamiltonian [18, 19] provided B and C are C-symmetric, i.e.,
B′ = B and C′ = C. Since U ′ = U and (NUN )′ = NUN , it is clearly
seen from equation (23) that H has a Hamiltonian structure. Moreover,
utilizing the Calderón identities (17) it is easily proved that

H2 =
1
4
I (25)

Inserting J = YEt in formula (21), it is seen that the admittance
operator Y satisfies the two operator equations

−K′ − z0UY =
1
2
I (26)

NUN + z0KY =
1
2
z0Y (27)
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Solving (26) for z0Y yields

z0Y = −U−1
(

1
2
I + K′

)
(28)

provided the operator U is invertible, which we assume (see also
[11, 10]). Rewriting operator equation (27) as

z0Y = NUN + z0
(

1
2
I + K

)
Y (29)

and inserting the solution (28) in the r.h.s. of (29) results in the
explicitly C-symmetric Schur complement form of the admittance
operator

Y = y0
[
NUN −

(
1
2
I + K

)
U−1

(
1
2
I + K′

)]
(30)

Similarly, the exterior problem with Calderón projector I − P
and Hamiltonian −H results in the explicitly C-symmetric Schur
complement form of the exterior admittance operator

Ỹ = −y0
[
NUN −

(
1
2
I − K

)
U−1

(
1
2
I − K′

)]
(31)

It is also easily proved that both Y and Ỹ are C-symmetric solutions
of the operator Riccati equation

NUN + z0KY + z0YK′ + z20YUY = 0 (32)

2.1. Remark: Galerkin Approximation

The formula (21) forms an excellent starting point to obtain a projected
Galerkin approximation for the admittance operator with preservation
of symmetry. The pertinent equations are:

−K′ Et − z0UJ =
1
2
Et (33)

NUN Et + z0KJ =
1
2
z0J (34)

J = YEt (35)

We expand Et and J as

Et =
N∑

l=1

αlbl(x) (36)

J =
N∑

l=1

βlbl(x) (37)
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where the basis functions {bl(x)} are supposed real-valued. Inserting
the expansions (36)–(37) in the formulas (33)–(35) and testing the
resulting equations with the same set of basis functions yields the
system of linear equations

−ATα− z0Bβ =
1
2
Dα (38)

Cα+ z0Aβ =
1
2
z0Dβ (39)

Dβ = Yα (40)

where the N ×N matrices A, B, C, D, Y are defined as

Ak,l = 〈bk|Kbl〉 Bk,l = 〈bk|U bl〉 Dk,l = 〈bk|bl〉 (41)
Ck,l = 〈bk|NUN bl〉 Yk,l = 〈bk|Ybl〉 (42)

The matrices B,C and D are all complex symmetric, and it easily shown
that the Galerkin projected admittance matrix Y can be written in the
explicitly complex symmetric Schur complement form as

Y = y0
[
C −

(
1
2
D + A

)
B−1

(
1
2
D + AT

)]
(43)

which has a similar explicitly complex symmetric Schur structure as
the operator equation (30).

3. EXAMPLES

In this section we give two validating examples of the C-symmetry
property of the admittance operator. The first example involves the
general description of the interior admittance operator in terms of
the magnetic eigenvectors for the domain Ω and the second example
derives the admittance operator of a dielectric sphere in terms of vector
spherical harmonics.

3.1. Magnetic Eigenvector Expansion

Consider the expansion of the magnetic field in terms of the magnetic
eigenvectors pertaining to the domain Ω. It has been shown in [15,
p. 299] and [16, p. 516] that the magnetic field inside Ω can be written
in terms of the tangential electric field as

H(x) = − 1
iωµ

∑
m

gm(x)
∫

∂Ω
(ny × Et(y)) · gm(y) dSy

+
∑
m

iωε

k2 − k2
m

hm(x)
∫

∂Ω
(ny × Et(y)) · hm(y) dSy (44)
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where gm(x) and hm(x) are respectively the orthonormalized
irrotational and solenoidal magnetic eigenvectors [16] pertaining to
Ω and the k2

m are the solenoidal magnetic eigenvalues. Defining the
rotated eigenvectors over ∂Ω as

g̃m(x) = nx × gm(x) h̃m(x) = nx × hm(x) (45)

it is easily seen that we can write

J(x) =
1
iωµ

∑
m

g̃m(x)
∫

∂Ω
g̃m(y) · Et(y) dSy

+
∑
m

iωε

k2
m − k2

h̃m(x)
∫

∂Ω
h̃m(y) · Et(y) dSy (46)

Defining the matrix kernel of Y as Y(x,y), we find that

Y(x,y) =
1
iωµ

∑
m

g̃m(x) ⊗ g̃m(y) +
∑
m

iωε

k2
m − k2

h̃m(x) ⊗ h̃m(y) (47)

where ⊗ is the dyadic or outer product. It is clear that Y(x,y) =
YT (y,x) (T being the matrix transpose), implying that Y is C-
symmetric.

3.2. The Dielectric Sphere

We start with the general vector spherical harmonics decomposition of
the electromagnetic fields [24, p. 444]:

E(x) =
∞∑

n=0

n∑
m=−n

[amnqmn(x) + bmnpmn(x)] (48)

H(x) = iy0

∞∑
n=0

n∑
m=−n

[amnpmn(x) + bmnqmn(x)] (49)

where the vector spherical harmonics in spherical coordinates are:

pmn(x) =
[
im

sin θ
P|m|

n (cos θ)uθ −
d

dθ
P|m|

n (cos θ)uφ

]
jn(kr)eimφ (50)

and

qmn(x)=
[
n(n+1)
kr

jn(kr)P|m|
n (cos θ)ur+

1
kr

d

dr
{rjn(kr)} d

dθ
P|m|

n (cosθ)uθ

+
im

kr sin θ
d

dr
{rjn(kr)}P|m|

n (cos θ)uφ

]
eimφ (51)
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The tangential fields are

Et(x) =
∞∑

n=0

n∑
m=−n

[
amnqt

mn(x) + bmnpmn(x)
]

(52)

Ht(x) = iy0

∞∑
n=0

n∑
m=−n

[
amnpmn(x) + bmnqt

mn(x)
]

(53)

where

qt
mn(x)=

[
d

dθ
P|m|

n (cos θ)uθ +
im

sin θ
P|m|

n (cos θ)uφ

]
1
kr

d

dr
{rjn(kr)} eimφ

(54)
It is straightforward to show that

ur × qt
mn = −αnpmn (55)

ur × pmn =
1
αn

qt
mn (56)

where

αn =

d

dr
{rjn(kr)}
krjn(kr)

(57)

Hence J(x) = ur × Ht(x) can be written as

J(x) = iy0
∞∑

n=0

n∑
m=−n

[
amn

αn
qt

mn(x) − αn bmnpmn(x)
]

(58)

Due to the solid angle orthogonality relations (dσ = sin θ dθ dφ)
∫

pmn · p−r,s dσ = δmrδnsPmn (59)
∫

qt
mn · qt

−r,s dσ = δmrδnsQmn (60)
∫

pmn · qt
r,s dσ = 0 (61)

where

Pmn =
(n+ |m|)!
(n− |m|)!

4πn(n+ 1)
2n+ 1

[jn(kr)]2 (62)

Qmn =
(n+ |m|)!
(n− |m|)!

4πn(n+ 1)
2n+ 1

[
1
kr

d

dr
{rjn(kr)}

]2

(63)
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we find the coefficients am,n and bm,n as

amn =
1
Qmn

∫
Et · qt

−m,n dσ (64)

bmn =
1
Pmn

∫
Et · p−m,n dσ (65)

Therefore it follows from equation (58) that the matrix kernel of the
admittance operator Y for a sphere of radius r can be written as

Y(x,y) = iy0

∞∑
n=0

n∑
m=−n

[
1

αnQmn
qt

mn(x) ⊗ qt
−m,n(y)

− αn

Pmn
pmn(x) ⊗ p−m,n(y)

]
(66)

Due to the fact that the parameters Pmn and Qmn are even in m, and
since the sum in (66) extends over both positive and negative m, it is
easily shown that Y(x,y) = YT (y,x), implying that Y is C-symmetric.
Note that the exterior admittance operator can easily be obtained by
replacing the spherical Bessel functions jn(·) with the spherical Hankel
functions h(2)

n (·) in the formulas where they appear.

4. CONCLUDING REMARKS

Employing Lorentz reciprocity and the Stratton-Chu formalism it has
been shown that the admittance operator is a C-symmetric operator
mapping the tangential electric field onto the equivalent electric
current. This is a consequence of the fact that the block Calderón
projectors can be reformulated as operators with a block Hamiltonian
structure, resulting in C-symmetric Schur complement expressions for
both the interior and exterior admittance operators. As a final remark,
we will briefly discuss the domain and range of the operator Y. It
has been shown in [11] that the operator S = −YN , mapping the
equivalent magnetic current onto the equivalent electric current, has
dom(S) = ran(S) = H

−1/2

div (∂Ω). Hence the admittance operator

Y itself has domain dom(Y) = H
−1/2

curl (∂Ω) and range ran(Y) =

H
−1/2

div (∂Ω). This implies that the Galerkin expansion functions bk(x)
must reside in

H
−1/2

div, curl(∂Ω) = H−1/2

div (∂Ω) ∩H−1/2

curl (∂Ω) (67)
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which is the fundamental function space [2] for tangential components
of electromagnetic fields on smooth boundary surfaces ∂Ω. However,
notwithstanding the theoretical importance of the function space
H

−1/2

div, curl(∂Ω), it should be noted that the basis functions most widely

used in practice are simply the well-known surface edge elements [5]
and/or rotated surface edge elements [10].

APPENDIX A. PROOF THAT NKN = K′

Defining the dyadic (or matrix) kernel of K as K(x,y), it is easily
understood that the kernel of K′ needs to be KT (y,x). Hence, since

K(x,y) = nx ×∇yg0(R)× (A1)

we obtain

KT (y,x) = ∇xg0(R) × ny × (A2)
= −∇yg0(R) × ny × (A3)

= (nx×)2∇yg0(R) × ny × (A4)
= nx × (nx ×∇yg0(R)×)ny× (A5)

as required. This result indirectly implies that the spectrum of the
operator K is symmetric with respect to the origin (see also to that
effect the Appendix of [2]).
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