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Purpose: The purpose of this study was to investigate if in vivo micro-CT is a reliable 
alternative to micro-CT scanning of a vascular corrosion cast. This would allow to study the 
early development of cardiovascular diseases. 
Procedures: Datasets using both modalities were acquired, segmented and used to generate a 
3D geometrical model from 9 mice. As blood-pool contrast agent Fenestra VC-131 was used. 
Batson’s No. 17 was used as casting agent. CFD simulations were performed on both 
datasets to quantify the difference in wall shear stress (WSS). 
Results: Aortic arch diameters show 30 to 40% difference between the Fenestra VC-131 and 
the casted dataset. The aortic arch bifurcation angles show less than 20% difference between 
both datasets. Numerically computed WSS showed a 28% difference between both datasets. 
Conclusions: Our results indicate that in vivo micro-CT imaging can provide an excellent 
alternative for vascular corrosion casting. This enables follow-up studies. 
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Introduction 
 
Mouse models are often used for medical research in the cardiovascular field, since they 

can provide valuable information on the development and progression of cardiovascular 

pathologies within a reasonable timeframe. Genetically modified mice have been used to 

study e.g. abdominal aortic aneurysm formation [1] or atherosclerosis [2, 3], but also to 

study more specific genetic disorders such as the Marfan and Loeys-Dietz syndrome [4, 

5, 6]. 

Hemodynamic factors and blood flow patterns have been linked to the genesis and 

development of atherosclerotic cardiovascular disease [7, 8] and to the growth and 

progression of aneurysms [9]. Computational Fluid Dynamics (CFD) are often used to 

simulate the flow patterns inside the aorta, both in animal and in human models, in an 

attempt to elucidate the role of these biomechanical actors/stimuli in the early disease 

stages. An important parameter in this respect is the tangential shear force exerted by 

moving blood along the axis of flow (wall shear stress or WSS). It would be very useful 

to be able to perform realistic CFD simulations on (genetically modified) animal models.  

In order to perform such CFD simulations, reliable 3D computer models of the 

arterial system are needed. Most studies that performed CFD simulations in mouse 

models in the past created a geometrical model by in vitro micro-CT scanning of a plastic 

replica of the arterial system obtained by vascular corrosion casting [10, 11, 12]. 

However, this technique requires sacrificing the animals and thus excludes follow-up 

studies. If one wants to study the influence of local hemodynamics on disease 

development, it is mandatory to perform follow-up studies in which the hemodynamic 

situation pre and post disease development can be compared. To perform such studies, 
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alternative in vivo imaging techniques permitting scans of the same animal at multiple 

time points are indispensable. In vivo imaging with micro-CT could be such an 

alternative, but traditional iodine-based contrast agents used in human medicine (needed 

to differentiate the aorta from surrounding tissues) cannot be used for mice since they are 

cleared through the murine renal system within one minute, whereas micro-CT scanners 

typically have a total acquisition time of at least 5 to 10 minutes for an acceptable level of 

image quality. Fenestra VC-131® (Advanced Research Technologies Inc., Saint Laurent, 

Canada) is a new contrast agent developed for cardiovascular imaging in mice that has a 

slow uptake in the liver, enabling a sufficient time period of contrast-enhanced imaging.  

The goal of our study was to investigate whether reliable and accurate 3D 

geometrical models of the murine aortic arch could be reconstructed using in vivo micro-

CT with this contrast agent, Fenestra VC-131®. We compared geometrical models 

obtained using a contrast injection followed by an in vivo micro-CT scan with models 

obtained afterwards from the same animals using vascular corrosion casting followed by 

an in vitro micro-CT scan.  
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Material and methods 
 
A total of 9 wild-type mice were used in the experiments, with body weights ranging 

from 14 to 35 gram (tables 1 and 2). The animals were anesthetized and scanned in vivo 

after administration of the contrast agent. They were subsequently casted via the 

abdominal aorta with 2 ml of Batson’s No. 17 casting solution. The resulting plastic 

replicas of the arterial system were scanned in vitro using micro-CT. Both data sets were 

segmented and compared. The Ghent University ethical committee approved all animal 

experiments (ECD 07/20). 

 

In vivo : Fenestra VC-131® 
Fenestra VC-131® binds iodine particles (50 mg/ml) on lipids, which ensures clearance in 

the liver, leading to 4 hours of contrast enhanced visualisation time. Previous research by 

Mukundan et al. [13] has shown that Fenestra VC-131® induces no significant risk on 

renal toxicity. Nine 5 to 27 week-old animals were put on a diet of cooked yam 24 hours 

before the experiment and received an intraperitoneal injection of 100 !L physiological 

fluid one hour before the start of the experiment. Anecdotal evidence gathered from small 

experiments (not depicted here) has shown that these measures help to prevent 

dehydration, which can be caused by the use of Fenestra VC-131®. Fifteen minutes after 

the administration of 0.015 ml/gram Fenestra VC-131® through the tail vein with a bolus 

injection, the animals were anesthetized with an 8 !L/gram IP injection of a mixture of 

1.05 ml ketamine (Ketamine 1000, CEVA Santé Animale, Brussel, Belgium), 0.3 ml 

xylazine (Xyl-M 2 %, VMD, Arendonk, Belgium) and 3.4 ml physiological fluid. The 

animals were scanned after 10 minutes of anaesthesia, as optimal contrast is achieved 25 
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minutes after administering Fenestra® [14]. The 25 minute total waiting time also reduced 

the chances on spasms and other irregularities affecting imaging quality. The mice were 

then placed on a heated pad (30°C).  

micro-CT 
The animals were scanned in a GE FLEX Triumph CT scanner (Gamma Medica-Ideas, 

Northridge, USA) with the following acquisition parameters: 50 !m focal spot, 2x2 

detector binning, 2048 projections over 360 degrees, 3.5 times magnification and 70 kVp 

tube voltage. Using a blank air scan, the ideal tube current was determined by increasing 

the current until the detector response saturated. This ideal tube current was determined at 

180 !A for a 70 kVp tube voltage. The gantry rotated continuously, providing faster 

acquisition compared to step-and-shoot mode. This results in a 33.81 mm transverse field 

of view, a theoretical spatial resolution of 46 !m and a scanning time of 8.53 minutes. 

The projections were reconstructed with proprietary software (Cobra EXXIM, EXXIM 

Computing corp., Livermore, USA) using a Feldkamp-type algorithm with Parker’s 

weighting function [15] in a 512x512x512 matrix with a 50 !m voxel size.  

Gating 
In addition to standard reconstruction, we also employed a retrospective respiratory 

gating method. The idea was first proposed by Ford et al. [16, 17]. A region of interest 

(ROI) was selected on the projection images containing both the diaphragm and the lungs 

of the animal. This allows us to compute the centre of mass (CM) of the ROI in one 

projection. Now the projection can be classified as in peak expiration or peak inspiration 

phase according to the location of the CM. After classification of all projections, 820 
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minimal lung volume projections (70 kVp, 180 !A) were selected and reconstructed 

while the ungated images were reconstructed from a 2048 projections dataset. 

Reconstruction of the reduced dataset requires modification of the Feldkamp 

reconstruction algorithm by incorporating Parker’s weighting function, to account for the 

non-uniform angles of the projections.  

In vitro: Vascular corrosion casting 
For each of the 9 animals scanned in vivo, a corrosion cast was created 1 week after 

acquiring the micro-CT images. When the health of the animal did not permit waiting one 

week, the animal was casted as soon as possible. Batson’s No. 17 (Polysciences, Inc., 

Warrington, USA) was used as casting agent. This agent causes little shrinkage, can still 

fill the smallest vessels and delivers mechanically stable casts. 

First, the mice were euthanized by an inhaled CO2 overdose. After making an 

abdominal incision, the abdominal aorta was located. Special care was taken to prevent 

rupture to vessels or organs, as this would greatly reduce the quality of the cast. A 

catheter was then placed in the abdominal aorta in retrograde direction and the arterial 

system was perfused with a ready-made mixture of Batson’s No. 17. Complete filling of 

the vascular system was indicated by the appearance of red intravascular polymer shining 

through the skin of the toes and nose [18]. After this perfusion the animal was placed in a 

cold water bath to avoid tissue damage that might occur during the exothermic curing 

process. 

After 30 minutes, the preparation was placed for 3 days in a bath containing a 

macerating solution of 20% KOH at room temperature. Subsequently, the cast was 

cleaned in distilled water and dried.  
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Scans were generated from these casts by the same micro-CT scanner as used in 

the in vivo experiments, with parameters: 2x2 binning, 2048 projections, 70 kVp (180 

!A) and magnification 3x. The casts were placed in an acrylic tube to prevent the cast 

from motion due to airflow. 

Segmentation 
Each dataset (one from in vivo experiments, one from casting the same animal) was 

segmented manually in Mimics software (Materialise, Leuven, Belgium). Each part of the 

aortic arch (ascending aorta, aortic arch with its branches and the descending aorta) was 

manually thresholded in a first segmentation step, using different threshold levels for 

each part. This allows a more accurate segmentation, as every part has a distinct grey 

value on the images. 

When the resulting segmentation was judged sufficiently accurate, a 3D 

geometric model was built according to this segmentation mask. This 3D model was 

smoothed in Mimics Remesher (Materialise, Leuven, Belgium), to remove 

unphysiological bulges and dents while care was being taken that no artificial shrinking 

of the model occurred. This resulted in a sufficiently smooth and simple 3D model usable 

for CFD simulations. 

Comparison 
The actual comparison between both modalities was computed in 4 different ways: 

1) We determined the diameter of the 3D models on 6 different locations: ascending 

aorta, descending aorta, left subclavian artery, left common carotid artery, 

brachiocephalic trunk and the middle of the aortic arch between the left common 



 8 

carotid artery and the brachiocephalic trunk. Each diameter was then calculated as the 

mean over a sufficiently large area. 

2) As second metric we considered the bifurcation angles. These were measured in the 

plane of the bifurcation as the angle between the centerline of the side branch and the 

centerline of the aortic arch. This provides insight in the angle and resistance 

encountered by the blood flow in moving from the aortic arch to a side branch. 

3) As a third metric we considered a general distance metric between co-registered 

voxels on the models. First we co-registered every casting model with the in vivo data 

from the same animal, and then we used a colour code dependent on the distance 

between both 3D models. 

4) Finally we performed CFD simulations on all 3D models to compare the influence of 

the imaging techniques on the resulting computed wall shear stresses (WSS) levels. 

All CFD simulations were performed as described in our earlier work [10]. In order to 

quantify the difference in WSS between the models, spatially averaged WSS (WSSav) 

was computed for each time-averaged model as well as the 95% WSS value (WSS95%) 

as a marker of highest WSS values. 
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Results 
High-quality casts were obtained for 4 animals, which were scanned using 0.015 

ml/gram Fenestra (mice 5, 6, 7 and 8 in table 1). A small proof of concept study has 

shown that the contrast increase by administering 0.015 ml/gram Fenestra VC-131® 

(figures 1c and 1d) leads to an increase of 118±2 gray values in the aortic arch, compared 

to a baseline image (figures 1a and 1b). The mean image noise in the baseline image was 

determined at 24.7 gray values. Casts from mice 1, 2, 3, 4 and 9 were not filled 

completely and contained air bubbles; these were thus not further used in the 

measurements. The time between casting and acquisition differed greatly between mice 7 

and 8 and the other mice. Five out of 9 animals were sacrificed prematurely due to 

declining health of the animals and to limit animal suffering.  

While casting the animals, some small effects were noticed: the liver was 

coloured more white than usual, some lymph nodes were opaque white and we noticed 

some mice had cornea oedema. 

Measurements obtained from the 3D models generated from the scanned casts and 

in vivo images are shown in tables 2 and 3, showing aortic arch diameters and bifurcation 

angles. The diameters show a significant difference between in vivo and cast models. 

Using Fenestra VC-131® this difference amounts from 30% up to 40% increase in 

diameter. The aortic arch diameters show an overall 31% difference (31.9±1.8%), while 

the three bifurcation diameters show a larger difference variation (35.7±7.4%). The 

bifurcation angles show a relatively small difference (less than 20%) between the casts 

and the in vivo models. 

Figure 2 shows a comparison between ungated slices (figures 2a and 2c) and 

retrospective respiratory-gated slices (figures 2b and 2d) for mouse 5 (table 1). All 4 
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slices are shown in the same window level and size. The gated images show better 

delineation of the diaphragm and the ribs. The cardiovascular system was visualised by 

0.015 ml/gram Fenestra VC-131® and showed no significant image quality increase due 

to respiratory gating. The increase in image noise due to the low angular sampling 

decreased the segmentation accuracy. 

Figures 3 and 4 show the regression and Bland-Altman plots of the (pooled) aortic 

diameters and the aortic angles. The Pearson correlation coefficient equals 0.91 for the 

diameters (Standard Error of the Estimate 0.12 mm) and 0.97 for the angles (SEE 11.13 

degrees).  

Figure 5 compares the general geometry in 3 different view angles of the 3D 

model built from mouse 6 using both modalities. Figure 6 shows the co-registered models 

from Fenestra® and the casts coloured with a green-red colouring scheme. Green was 

used to mark voxels with little distance; red was used when a large distance was 

measured. These colours were normalised and the different models can thus be compared. 

The measurements were obtained using a voxel to voxel comparison. These results show 

that the general geometry (aortic arch) of both the 3D cast and the 3D in vivo model are 

highly comparable. The descending aorta region shows the highest difference. 

Figure 7 shows a comparison of the time-averaged WSS distribution for mouse 6 

for both a casting and an in vivo model. The distribution of time-averaged WSS over the 

model surface is very similar: zones with high or low absolute values occur in the same 

region for both models. However, the in vivo models on average show lower absolute 

WSS values: the spatially- and time-averaged WSSav is 8.20 ± 0.79 Pa for in vivo models 

and 10.52 ± 2.52 Pa for the cast models. The time-averaged 95% percentile WSS95% was 
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16.55 ± 1.60 Pa for the in vivo models and 19.35 ± 3.72 Pa for the cast models. 
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Discussion 

In this work, we proposed a method to visualise the aortic arch and the aortic arch 

bifurcations using micro-CT, providing an alternative for vascular corrosion casting. The 

resulting 3D geometry models from in vivo scans were compared to models of vascular 

corrosion casts and were found to be an accurate representation, although the diameters 

showed a significant difference.  

Schambach et al. [19] have already used both a blood pool contrast agent 

(Fenestra®) and a bolus technique with a conventional contrast agent (Imeron®). Their 

setup was different from ours, with the probe (and the animal) rotating horizontally in the 

course of the beam. This results in a shorter acquisition time, but also introduces 

movement artefacts and higher radiation doses (due to the larger magnification). This 

study clearly shows the need to address technical challenges still involved with in vivo 

micro-CT imaging of the cardiovascular system in mice. Willekens et al. [14] used 

Fenestra® and eXIA 160® to enhance liver and spleen contrast in mice, but did not study 

the effects on the arterial system or the difference between in vivo and ex vivo models. 

The difference between in vivo and in vitro methods to obtain 3D models of 

murine vasculature has not been studied extensively in literature. Kratky et al. [20] have 

demonstrated Batson’s No. 17 to induce a shrinking factor of 16-20 %, but did not 

compare in vitro with in vivo models. Casteleyn et al. [21] showed that the morphology 

of 3D models of the murine aortic arch (obtained using vascular corrosion casting) is very 

similar to the one of the human aortic arch (obtained in vivo). An alternative method to 

obtain 3D models of the murine arterial geometry in vivo is MRI imaging. Moore et al. 

[22] compared this technique to vascular corrosion casting and also found casts to have 
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smaller diameters and bifurcation angles. However, small animal MRI is an expensive 

technique that is not widely available yet.  

We found that retrospective respiratory gating is not necessary to get a high 3D 

model quality. The ribs and diaphragm are more clearly delineated, but the difference is 

not noticeable in the aorta or the aortic arch. Cardiac gating can be done prospectively, 

where the ECG signal is used to determine if a projection should be acquired at that 

specific moment. This requires a very short integration time on the detector, and an X-ray 

tube which can be switched on and off in the order of milliseconds. Leaving the X-ray 

tube on for the duration of the whole gated scan would deliver a radiation overdose to the 

small animal. This hardware was unavailable to us. The influence of cardiac gating was 

thus not studied in this work, but may be presented in future work.  

The radiation dose for a one-minute fly-scan at 2x2 binning, 80 kVp and 1.3x 

magnification was reported at 20-25 mGy. As the dose is proportional to the effective 

tube current-time product, we can suspect the dose for our protocol to be in the order of 

100-150 mGy, low enough to allow for follow-up studies. 

For Fenestra VC-131® the minimal contrast dose needed to obtain sufficient 

contrast was determined beforehand in a small proof of concept study. A 0.015 ml/gram 

contrast dose induces a relatively high strain on the animals, as this accounts for 25% 

extra blood volume. The small health effects noticed in the liver and lymph nodes can 

with high probability be amounted to the use of Fenestra® and this high contrast volume, 

causing the high mortality rate.  

When comparing the diameters (table 2), a general difference of 30 to 40% was 

measured. However, the correlation plot in figure 3 (right panel) and the Bland-Altman 
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plot in figure 4 (right panel) show that the diameters of both modalities are well 

correlated (r=0.91) and there is no bias for low or high absolute values of the diameter. In 

literature vascular corrosion casts have been reported to shrink 16-20 % [20]. One might 

hypothesize that our casts have shrunk more, since the Batson’s solution was injected by 

free-hand without manometric control of the injection pressure. However, according to 

Hodde [23] this technique gives consistently better results than injection with an injection 

apparatus. We therefore hypothesize that the extra 10 to 20% difference can be attributed 

to the increase in arterial pressure due to overfilling the animal during the in vivo scans, 

given the high contrast volume administered. One should also keep in mind that no true 

single value for the aortic diameter exists, since the aorta is constantly expanding and 

relaxing. As we applied no cardiac gating, we could not determine diastolic dimensions. 

It makes sense to state that the diameters obtained in vivo will probably be more 

representative of the systolic state whereas in vitro (casting) diameters will be a better 

estimate for the diastolic state. The true time-averaged diameter is most probably a value 

in the middle between those two. Segmentation errors also have to be taken into account, 

as the aortic arch is influenced by cardiac motion and is thus blurred, leading to small 

errors in the segmentation and the resulting 3D model. 

When comparing the bifurcation angles (table 3) the difference between in vivo 

and in vitro angles is much smaller compared to the difference in diameters: only 5-20%. 

This small difference indicates that the representation of morphological characteristics of 

the arterial geometry does not differ much between both imaging techniques. This can 

also be observed from the good colour-coded agreement between in vivo and in vitro 

models in figure 6, and from the correlation plot in figure 3 (left panel) and the Bland-
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Altman plot in figure 4 (left panel). The angle between the ascending and descending 

aorta (AA-DA in table 4) is in good agreement with previously reported measurements 

[21]. 

 When comparing CFD results both spatially averaged WSSav and 95 percentile 

WSS95% are lower for in vivo models. According to Poiseuille’s law theoretical WSS 

values (in an infinitely long straight tube) are proportional to blood velocity and inversely 

proportional to diameter. Since the in vivo models are larger than the cast models but the 

same velocity is imposed at the inlet, it makes sense that in vivo models result in lower 

shear stresses. This is an important aspect that should be kept in mind when performing 

CFD simulations of the blood flow in murine vasculature: even when exactly the same 

measured velocity profile is imposed at the inlet of the model, results can be different 

depending on the imaging technique used to build the 3D model. With the casting 

technique, diameters will be underestimated and WSS will be overestimated. Using in 

vivo micro-CT, diameters will be overestimated and WSS values will be underestimated. 

Keeping these remarks in mind, our results show that contrast-enhanced micro-

CT visualisation can be used to build 3D geometrical models of the aortic arch and the 

aortic arch bifurcations. Because of the high mortality due to the use of Fenestra VC-

131®, we are now using a different contrast-agent, eXIA 160 XL® (Binitio Biomedical, 

Inc., Ottawa, Canada). eXIA 160® is a blood pool contrast agent that contains 160 mg 

iodine / ml, a 3.2 times higher dose than Fenestra VC-131®. Preliminary results show that 

the mortality is much lower than when using Fenestra VC-131® while preserving image 

quality. The decreased death rate may be due to the lower volume needed (0.0075 

ml/gram) being half the dose needed when using Fenestra®. The results of both contrast 
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agents (using their minimal dose) are similar: both can be used to reconstruct reliable 3D 

models of the cardiovascular system. 

Conclusion 
In conclusion, with Fenestra VC-131® it is possible to build reliable 3D geometrical 

models of the cardiovascular system in mice and to base CFD simulations on these 

models. These in vivo models have significantly larger dimensions than in vitro models 

based on the same geometry, also resulting in lower WSS values. However, the total 

morphology and bifurcation angles show only small differences, and the WSS 

distribution over the model surface is also very similar.  In vivo micro-CT imaging thus 

provides a valuable alternative for vascular corrosion casting. 
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Table 1 Mouse specifics for 9 mice injected with Fenestra VC-131 ("Ts = Time between 
scan and contrast injection, "Tc = Time between casting and scanning) 
Mouse Age (weeks) Weight (gr) Contrast Dose (ml/gr) Anesthetics (ml) "Ts (min) "Tc 
1 27.6 23.0 0.015 0.10 25 1h 
2 14 21.7 0.015 0.10 25 2h 
3 14.9 27.5 0.015 0.10 25 3h 
4 14 25.5 0.015 0.10 25 5h 
5 27.6 30.7 0.015 0.10 25 4h 
6 27.6 35.0 0.015 0.10 25 5h 
7 5 16.8 0.015 0.05 25 6d 
8 5 15.8 0.015 0.12 25 5d 
9 5 14.6 0.015 0.12 25 6h 

 
Table 2 Diameters (AA = Ascending Aorta; BT = Brachiocephalic Trunk; AoA = Aortic 
Arch; CCA = Common Carotid Artery; SA = Subclavian Artery; DA = Descending 
Aorta) 
! "#$%!&''(! )*+,),-!&''(! .)//!&0(!
1$"! 234564347! 23896434:! 9;382!
<=! 43>>6434?! 43:56434>! 8235;!
1-1! 43796434>! 23;86434:! 99399!
@@1! 4386434:! 43>264342! ;:3>4!
A1! 438>6434>! 43?;64348! 9:3:5!
B1! 435:64347! 232964347! ;7357!

 
Table 3 Bifurcation angles (BT = Brachiocephalic Trunk; CCA = Common Carotid 
Artery; SA = Subclavian Artery; AA-DA = Ascending Aorta – Descending Aorta) 
! "#$%!&C(! )*+,),-!&C(! .)//!&0(!
<=! 29?3;86?3:4! 2;:39:6>3>5! +?3>2!
@@1! 2273>?623?8! 24?3:?6;38:! +243:4!
A1! 24934:6>39?! 5:3;76;354! +2534:!
11+B1! ;:37568355! 983:76;3?9! ;839>!
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Fig. 1 Four micro-CT slices showing the difference between baseline (a and c) and 
contrast-enhanced imaging (b and d) after administration of 0.015 ml/gram Fenestra VC-
131. This leads to an increase of 118±2 gray values in the aortic arch (arrow).  
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Fig. 2 Comparison between ungated slices (a and c) and retrospective respiratory-gated 
slices (b and d) for mouse 5 (table 1). All slices are shown in the same window level and 
size; The gated images show better delineation of the diaphragm and the ribs, but no 
significant image quality increase in the cardiovascular system 
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Fig. 3 Regression plots for the aortic arch angles (left) and the aortic arch diameters (right). Diameter Standard Error of the Estimate 
(SEE) equals 0.125 mm, angle SEE equals 11.130 degrees.  
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Fig. 4 Bland-Altman plots for the aortic arch angles (left) and the aortic arch diameters (right). Both plots contain the limits of 
agreement (average ± 1.96 standard deviation of the difference). 
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Fig. 5 General geometry of a 3D model generated from the in vivo dataset for mouse 6: 
cast model (a) and in vivo model (b). 
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Fig. 6 Comparison between co-registered models from Fenestra VC-131 and the casts for 
mice 5 (a), 6 (b), 7 (c) and 8 (d). A green colour code was used to mark voxels with little 
distance; red was used when a large distance was measured. All colours were normalised. 
The descending aorta region shows the highest difference, due to the difference in AA-
DA angles. 
 



 27 

 
 
Fig. 7 Comparison of the time-averaged WSS distribution for mouse 6 for both a casting 
(left) and an in vivo model (right). 
 


