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Solving Sturm-Liouville problems by piecewise

perturbation methods, revisited

V. Ledoux 1,∗, M. Van Daele

Vakgroep Toegepaste Wiskunde en Informatica, Ghent University, Krijgslaan

281-S9, B-9000 Gent, Belgium

Abstract

We present the extension of the successful Constant Perturbation Method (CPM)
for Schrödinger problems to the more general class of Sturm-Liouville eigenvalue
problems. Whereas the orginal CPM can only be applied to Sturm-Liouville prob-
lems after a Liouville transformation, the more general CPM presented here solves
the Sturm-Liouville problem directly. This enlarges the range of applicability of the
CPM to a wider variety of problems and allows a more efficient solution of many
problems. The CPMs are closely related to the second-order coefficient approxima-
tion method underlying the SLEDGE software package, but provide for higher order
approximations. These higher order approximations can also be obtained by apply-
ing a modified Neumann method. The CPM approach, however, leads to simpler
formulae in a more convenient form.

Key words: Sturm-Liouville, CPM, eigenvalue, shooting

1 Introduction

In this paper we are concerned with differential equation eigenvalue problems
that can be put in the general form of the classical Sturm-Liouville (SL)
problem

−(p(x)y′(x))′ + q(x)y(x) = Ew(x)y(x) (1)

defined on an interval a < x < b with boundary conditions at the ends as
appropriate. A value of the eigenparameter E for which there is a non-trivial
solution subject to the boundary conditions, is called an eigenvalue, and the
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solution y is the corresponding eigenfunction. For regular problems the eigen-
values can be ordered as an increasing sequence tending to infinity

E0 < E1 < E2 < . . . (2)

and with this labelling the eigenfunction yk, corresponding to Ek and unique
up to a normalizing constant, has exactly k zeros on the open interval (a, b).
The calculation of the eigenvalues E and eigenfunctions y of (1) is of great
importance both in classical physics and in quantum physics. Since most of
the eigenvalue problems can not be solved analytically, good numerical ap-
proximation methods are essential. Finding the eigenvalues of a SL problem
can, however, be a computationally challenging task. It is well known that
as E grows, the solutions of (1) become increasingly oscillatory. In fact, as
E → +∞ the solution “wave length” approaches 2π/

√
E. This highly oscilla-

tory character of the solution is the reason why standard numerical methods
for ODEs encounter difficulties in efficiently estimating the higher eigenvalues:
naive integrators will be forced to take increasingly smaller steps, thereby ren-
dering them exceedingly expensive. By taking into account the characteristic
features of the SL problem, one can however construct specialized numerical
algorithms having some crucial advantages over general-purpose codes.

An important class of methods for the numerical solution of SL problems is
based on coefficient approximation (CA). The basic idea here is to replace the
coefficient functions p(x), q(x), w(x) of the SL equation piecewisely by low
degree polynomials so that the resulting equation can be solved analytically.
The idea dates back at least to Gordon [1] and Canosa and De Oliveira [2] and
was studied also by Ixaru [3], Paine and de Hoog [4] and Smooke [5], but the
standard reference is due to Pruess [6,7]. He constructed a convergence and
error analysis of methods based on piecewise polynomial CA. The simplest
CA method (often called the Pruess method, e.g. by Pryce in [8]) is based
on piecewise constant (midpoint) approximation. With a = x0 < x1 < x2 <
· · · < xn = b the partition of the integration interval, the functions p, q and
w then have constant values p̄, q̄, w̄ in the ith interval (xi−1, xi), i = 1, . . . , n
with step size h = xi − xi−1 :

−(p̄y′(x))′ + q̄y(x) = Ew̄y(x). (3)

The solution y of this approximating problem over [xi−1, xi] is then advanced
by the relation




y(xi)

p(xi)y
′(xi)


 =




ξ(Z) hη0(Z)/p̄

p̄Zη0(Z)/h ξ(Z)







y(xi−1)

p(xi−1)y
′(xi−1)


 (4)
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with Z = h2(q̄ − λw̄)/p̄ and the functions ξ and η0 as introduced in [9]:

ξ(Z) =





cos(|Z|1/2) if Z ≤ 0 ,

cosh(Z1/2) if Z > 0 ,

η0(Z) =





sin(|Z|1/2)/|Z|1/2 if Z < 0 ,

1 if Z = 0 ,

sinh(Z1/2)/Z1/2 if Z > 0 ,

One can also propagate the solution from xi to xi−1, by taking the inverse of
the transfer matrix in (4), which is just the result of replacing h by −h in
this matrix. This gives us a method for explicitly integrating (y, py′) over the
x range, and to use a shooting method. This is done e.g. in the Fortran SL
solver Sledge and combined with the ideas based on the Prüfer substitution
to be able to home in on a particular eigenvalue (see [10]). An important
advantage of the Pruess method, is that the step size is not restricted by the
oscillations in the solution. A drawback of this simple CA method based on
piecewise constant approximation is the difficulty in obtaining higher order
methods. It is clear that the step sizes must be sufficiently small such that
the error introduced by the approximation by piecewise constants is not too
large. This means that for problems with strongly varying coefficient functions
the number of intervals in a mesh can be quite large. To obtain higher order
CA methods, piecewise polynomial approximations of higher degree should
be used. However only piecewise constant polynomials were used in practical
software packages as Sledge for a long time, because for these eq. (1) is easily
integrated analytically.

More recently some approaches were suggested to construct higher-order CA
methods and thus to realize the approximation of the coefficient functions by
higher order polynomials while still retaining the nice property of the Pruess
method that the solution of the approximating problem is integrated explic-
itly in terms of trigonometric/hyperbolic functions. The so-called Constant
(reference potential) Perturbation Methods (CPM) were specially devised for
the solution of Schrödinger problems of the form

y′′ = (q(x) − E)y. (5)

These methods use a perturbation technique to construct some correction
terms that are added to the known solution of the approximating problem
with a piecewise-constant potential q. In this way methods up to order 16
were constructed (see [11,12]) which can efficiently compute the eigenvalues of
regular Schrödinger problems. The CPM were extended to the more general SL
problem (1) using the Liouville transformation and were implemented in the
Fortran code SLCPM12 [13] and the Matlab package Matslise [14]. The Li-
ouville transformation converts a SL problem in a Schrödinger problem with
the same eigenvalues. However, this transformation is rather expensive due
to the quadrature which is needed for the conversion between old and new
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variables. Moreover the transformation can only be realized for sufficiently
well-behaved (and non-singular) p, q and w functions (see [8]): q must be con-
tinuous and p and w should have a continuous second order derivative (users
of the SLCPM12 package even have to give the expressions of the derivatives
as input). As a consequence the software packages based on CPM still have a
smaller range of applicability in comparison with e.g. Sledge, which applies
the Pruess method directly to a SL problem. In order to really outperform the
software packages based on the second-order Pruess method, higher order CA
methods must be constructed for general SL problems.

In [15] it was shown that the piecewise perturbation approach for regular
Schrödinger problems may be viewed as the application of a modified Neu-
mann method where in fact each extra CPM correction term is an extra term
in the Neumann series. In [16] we described how a modified Neumann series
method can be applied directly to the general SL problem (1). This modified
Neumann method forms the first higher-order CA method for SL equations
which are not necessarily in the Schrödinger form. In the present paper we
will reconsider this construction of higher-order CA methods for SL problems,
and use now a piecewise perturbation approach. This will lead to formulae
which are less sensitive to near-cancellation effects and which directly reduce
to the CPM schemes for the Schrödinger problem. In this way, we realize the
generalization of the CPM to a broad class of SL problems. In section 2 we
briefly discuss the CPM for Schrödinger problems as they were presented in
[9,17]. In section 3, we show that a very similar procedure can be used to
construct formulae for general SL problems. We show in section 4 that the
obtained formulae are equivalent with the application of a modified Neumann
method.

2 CPM for Schrödinger problems

The Piecewise Perturbation Methods (PPM) are based on an idea from math-
ematical physics: the perturbation approximation. These PPM are CA meth-
ods, in the sense that the original differential equation is replaced piecewisely
by another differential equation, called the reference equation by Ixaru in [9],
which can be solved exactly. Some perturbation corrections are then added
to the solution of the reference equation, which gives a more accurate ap-
proximation to the solution of the original equation. The PPM are identified
by the type of piecewise approximation: if the coefficients are approximated
by piecewise constants the method is referred to as a constant perturbation
method (CPM) while if piecewise lines are used the method is called a line
perturbation method (LPM) (see [18,19]). The first systematic description of
both the CPM and LPM technique is due to Ixaru in [9]. The CPM are gen-
erally considered to be more convenient for applications than the LPM. We
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will discuss here this CPM algorithm in short. For the full details we refer the
reader to [17,11].

Consider the initial value problem for the Schrödinger equation,

y′′ = (q(x) − E)y , x ∈ [a, b] , y(a) = α, y′(a) = β , (6)

where q(x) is supposed to be a well behaved function. On the current mesh
interval [xi−1, xi] the solution is advanced by the algorithm




y(xi)

y′(xi)


 =




u(h) v(h)

u′(h) v′(h)







y(xi−1)

y′(xi−1)


 , h = xi − xi−1. (7)

The functions u(δ) and v(δ) are two linear independent solutions of the local
problem

y′′(δ) = (q(xi−1 + δ) − E)y(δ) , δ ∈ [0, h] (8)

with the initial values y(0) = 1, y′(0) = 0, for u and y(0) = 0, y′(0) = 1 for v.
The inverse propagation algorithm reads




y(xi−1)

y′(xi−1)


 =




v′(h) −v(h)

−u′(h) u(h)







y(xi)

y′(xi)


 . (9)

The knowledge of the “propagators” u and v and their first derivatives is thus
sufficient to advance the solution in both directions. However, analytic forms
of these u and v are known only for a restricted number of expressions for the
function q(x), let such functions be denoted by q̄(x). The idea is to replace q(x)
piecewisely by a q̄(x). The propagators corresponding to this approximating
problem are called the reference propagators and denoted by ū and v̄. To
further improve the accuracy, some extra correction terms, which are derived
from the perturbation ∆q = q(x) − q̄(x), are added to ū and v̄. The CPM
schemes use piecewise constant values q̄ as approximation for the potential.
As seen in section 1, problems with a piecewise constant potential function
have a nice analytic form for ū and v̄ which can be expressed in terms of the
functions ξ and η0. In [9,17] the following theorem was derived:

Theorem 2.1 CPM algorithm for the Schrödinger problem. The so-
lution of (8) with the initial conditions y(xi−1) = α and y′(xi−1) = β can be
written as 


y(xi−1 + δ)

y′(xi−1 + δ)


 =




u(δ) v(δ)

u′(δ) v′(δ)







y(xi−1)

y′(xi−1)




where u and v are written as perturbation series:

u(δ) =
∞∑

k=0

uk(δ), v(δ) =
∞∑

k=0

vk(δ). (10)
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The zeroth order propagators are exactly the reference propagators: u0(δ) =
ū(δ) = ξ(Z(δ)), v0(δ) = v̄(δ) = δη0(Z(δ)), u′

0(δ) = ū′(δ) = Z(δ)η0(Z(δ))/δ
and v′

0(δ) = v̄′(δ) = ξ(Z(δ)), with Z(δ) = (q̄ − E)δ2. The correction terms
(z = u, v, k=1,2,. . . ) are computed as follows:

z′′k = (q̄ − E)zk + ∆q(δ)zk−1 , zk(0) = z′k(0) = 0 . (11)

For the construction of the perturbation corrections, some additional functions
have to be defined first (denoted as η̄m(Z) in [9]):

η1(Z) = [ξ(Z) − η0(Z)]/Z, (12)

ηm(Z) = [ηm−2(Z) − (2m − 1)ηm−1(Z)]/Z, m = 2, 3, . . . . (13)

For negative Z the function ηm(Z) is an oscillating function whose amplitude
damps out when Z → −∞. For positive Z however, all these functions increase
exponentially with Z.

Theorem 2.2 (from [9,17]) If the potential function q(δ) is a polynomial in
δ, then the k’th correction zk for the propagator z = u, v is of the form

zk(δ) =
∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)), (14)

z′k(δ) = C0(δ)ξ(Z(δ)) +
∑

m=0

[C ′

m(δ) + δCm+1(δ)]δ
2m+1ηm(Z(δ) (15)

with a finite number of terms. This means that the product ∆qzk−1 is of the
form

∆q(δ)zk−1(δ) = G(δ)ξ(Z(δ)) +
∑

m=0

Sm(δ)δ2m+1ηm(Z(δ)), (16)

and the coefficients C0(δ), C1(δ), . . . are then polynomials in δ which are given
by quadrature

C0(δ) =
1

2

∫ δ

0
G(δ1)dδ1, (17)

Cm(δ) =
1

2
δ−m

∫ δ

0
δm−1
1 [Sm−1(δ1) − C ′′

m−1(δ1)]dδ1, m = 1, 2, . . . (18)

The starting functions in ∆qu0(δ) are G(δ) = ∆q(δ), S0(δ) = S1(δ) = · · · = 0,
while for v0 they are G(δ) = 0, S0(δ) = ∆q(δ), S1(δ) = S2(δ) = · · · = 0.

There is an intermediate stage in the procedure in which q(xi−1 +δ) is approx-
imated by a polynomial in δ. This ensures that the system (11) has an analytic
solution which can be computed by the procedure described in Theorem 2.2.
More specificially, the potential function q(x) is approximated (piecewisely)
by a series over shifted Legendre polynomials:

q(xi−1 + δ) ≈
ν−1∑

n=0

Qnh
n
i P

∗

n(δ/hi), δ = x − xi−1. (19)
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The expressions of the first shifted Legendre polynomials P ∗

s (γ), γ ∈ [0, 1] are

P ∗

0 (γ) = 1, P ∗

1 (γ) = −1 + 2γ, P ∗

2 (γ) = 1 − 6γ + 6γ2. (20)

By the method of least squares the expressions for the coefficients Qn are
obtained:

Qn =
(2n + 1)

hn+1
i

∫ h

0
q(xi−1 + δ)P ∗

n(δ/hi)dδ. (21)

We then take q̄ = Q0 and ∆q(δ) ≈ ∑ν−1
n=1 Qnhn

i P
∗

n(δ/hi). To compute the
integrals (21) Gauss-Legendre quadrature, requiring ν function evaluations of
q, is used.

Depending on the degree of the approximating polynomial and the number
of perturbation corrections included, CPM versions of different order were
constructed.

3 CPM for Sturm-Liouville problems

Let us now follow an analogous procedure for the SL problem. We focus on
the initial value problem over the current interval [xi−1, xi] with step length h

−[p(xi−1 + δ)y′(xi−1 + δ)]′ + q(xi−1 + δ)y(xi−1 + δ) = Ew(xi−1 + δ)y(xi−1 + δ),
(22)

with given initial conditions in xi−1 and δ ∈ [0, h]. We consider two particular
solutions u(δ) and v(δ) which satisfy the initial conditions

u(0) = 1, p(xi−1)u
′(0) = 0,

and

v(0) = 0, p(xi−1)v
′(0) = 1.

Since the functions u and v are linearly independent, a general solution of (22)
has the form

y(xi−1 + δ) = c1u(δ) + c2v(δ).

From the initial conditions for u and v we know that c1 = y(xi−1) and c2 =
p(xi−1)y

′(xi−1). The solution can thus be written in matrix form as




y(xi−1 + δ)

p(xi−1 + δ)y′(xi−1 + δ)


 =




u(δ) v(δ)

p(xi−1 + δ)u′(δ) p(xi−1 + δ)v′(δ)







y(xi−1)

p(xi−1)y
′(xi−1)


 .

The determinant D(δ) = p(xi−1 + δ) (u(δ)v′(δ) − u′(δ)v(δ)) of the transfer
matrix equals one, since its derivative equals zero and D(0) = 1. Taking the
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inverse of the propagation formula, we thus obtain




y(xi−1)

p(xi−1)y
′(xi−1)


 =




p(xi−1 + δ)v′(δ) −v(δ)

−p(xi−1 + δ)u′(δ) u(δ)







y(xi−1 + δ)

p(xi−1 + δ)y′(xi−1 + δ)


 .

To compute u(δ), v(δ), p(δ)u′(δ) and p(δ)v′(δ), we generalise the Schrödinger
CP approach. This means that we write the coefficient functions as P (x) =
1/p(x) = P̄ + ∆P (x), q(x) = q̄ + ∆q(x) and w(x) = w̄ + ∆w(x), and we
define Z(δ) = P̄ (q̄ − Ew̄)δ2. Note that, as in [16], we replace the P function
by a piecewise polynomial rather than its inverse p. This ensures that the
perturbation corrections will have a closed analytic form.

The reference equation is then defined as follows

−
(
y′(x)/P̄

)
′

+ q̄y(x) = Ew̄y(x). (23)

The reference propagators ū = ξ(Z(δ)), v̄ = P̄ δη0(Z(δ)), ū′ = Z(δ)η0(Z(δ))/δ
and v̄′ = P̄ ξ(Z(δ)) corresponding to this equation, form the zeroth order
propagators in our perturbation method. Corrections of different order can
be added in order to approximate the unknown propagators more accurately.
When no corrections are added, one obtains the second order Pruess method.

3.1 The perturbation corrections

We introduce the parameter dependent functions FP , Fq and Fw

FP (δ; γ) = P̄ + γ∆P (δ), Fq(δ; γ) = q̄ + γ∆q(δ), Fw(δ; γ) = w̄ + γ∆w(δ),

with γ ∈ [0, 1]. These functions reproduce the original functions P, q, w and
the reference functions P̄ , q̄, w̄ when γ takes its extreme values 1, resp. 0. Let
us now define u(δ; γ) and v(δ; γ), generically denoted by z(δ; γ) as

z(δ; γ) =
∞∑

k=0

zk(δ)γ
k, (24)

where z = u if z(0; γ) = 1, z′(0; γ) = 0 and z = v if z(0; γ) = 0, z′(0; γ) =
P (xi−1). To calculate zk we introduce z(δ; γ) into the differential equation:

−
(

z′(δ; γ)

P̄ + γ∆P (δ)

)
′

+
(
q̄ + γ∆q(δ)

)
z(δ; γ) = E

(
w̄ + γ∆w(δ)

)
z(δ; γ) (25)
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and organize the terms in Eq. (25) in powers of γ. To simplify the expressions
we first define

ρ(δ) =
z′(δ)

P (xi−1 + δ)
, ρ(δ; γ) =

∞∑

k=0

ρk(δ)γ
k, (26)

and r̄ = q̄ − Ew̄ and ∆r = ∆q − E∆w. Eq. (25) can then be written as

−
( ∞∑

k=0

ρkγ
k
)
′

+ (r̄ + γ∆r)
∞∑

k=0

zkγ
k = 0 (27)

where the δ-dependence is omitted for brevity reasons. Since (27) has to be
satisfied for every γ ∈ [0, 1], the δ dependent weights of γm must vanish for
any k = 0, 1, . . . , i.e.

ρ′

0 = r̄z0 (28)

ρ′

k = r̄zk + ∆rzk−1, k = 1, 2, . . . . (29)

Note that these equations reduce to Eq. (11) for the Schrödinger problem.
From (26), we can deduce that

P̄
∞∑

k=0

ρkγ
k =

∑
∞

k=0 z′kγ
k

1 + γ ∆P

P̄

(30)

=

(
∞∑

k=0

z′kγ
k

)
∞∑

s=0

(−γ)s
(

∆P

P̄

)s

(31)

=
∞∑

k=0

k∑

s=0

(−∆P

P̄

)k−s

z′sγ
k, (32)

which leads us to expressions for the perturbations ρk(δ), k = 1, 2, . . . :

ρk =
1

P̄

k∑

s=0

(−∆P

P̄

)k−s

z′s (33)

=
z′k
P̄

− ρk−1∆P

P̄
, (34)

and ρ0 = z′0/P̄ .

From (24) we can derive that z(δ; 0) = z0(δ). On the other hand, we know
that z(δ; 0) = z̄(δ), so we get z0(δ) = z̄(δ). Since the initial values for z(δ; γ)
are the same as for z̄(δ), the difference z(0; γ) − z0(0) vanishes:

∞∑

k=1

zk(0)γk = 0 γ ∈ [0, 1]. (35)

Analogously the initial values for ρ(δ; γ) equal the ones for ρ0(δ) = z̄′(δ)/P̄ ,
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and we have
∞∑

k=1

ρk(0)γk = 0 γ ∈ [0, 1]. (36)

This means that

zk(0) = ρk(0) = 0, k = 1, 2, 3, . . . . (37)

In short, we then have the following results:

Theorem 3.1 CPM algorithm for SL problems. The solution of (22)
with initial conditions y(xi−1) = α and p(xi−1)y

′(xi−1) = β can be written as




y(xi−1 + δ)

p(xi−1 + δ)y′(xi−1 + δ)


 =




u(δ) v(δ)

µ(δ) ν(δ)







y(xi−1)

p(xi−1)y
′(xi−1)




where the propagators u, v, µ and ν are written as perturbation series:

u(δ) =
∞∑

k=0

uk(δ), v(δ) =
∞∑

k=0

vk(δ), µ(δ) =
∞∑

k=0

µk(δ), ν(δ) =
∞∑

k=0

νk(δ). (38)

The zeroth order propagators are exactly the reference propagators: u0(δ) =
ū(δ) = ξ(Z(δ)), v0(δ) = v̄(δ) = P̄ δη0(Z(δ)), µ0(δ) = ū′(δ)/P̄ = Z(δ)η0(Z(δ))/(δP̄ )
and ν0(δ) = v̄′(δ)/P̄ = ξ(Z(δ)). The correction terms (k = 1, 2, . . . ) satisfy
the following relations:

µ′

k = r̄uk + ∆ruk−1, (39)

ν ′

k = r̄vk + ∆rvk−1, (40)

P̄ µk = u′

k − µk−1∆P , (41)

P̄ νk = v′

k − νk−1∆P , (42)

with initial conditions

uk(0) = vk(0) = µk(0) = νk(0) = 0. (43)

3.2 The construction of the perturbation corrections

To construct the kth correction zk with z = u, v and ρ = µ, ν, we first rewrite
(39)-(40) using (41)-(42) to obtain:

z′′k
P̄

= r̄zk + ∆rzk−1 +
∆′

P ρk−1

P̄
+

∆P ρ′

k−1

P̄
. (44)
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We assume that the inhomogeneous term in (44) can be expressed in terms of
the functions ξ and δη0, δ

3η1, ..., δ
2M+1ηM , as follows:

∆rzk−1 +
(∆P ρk−1)

′

P̄
= G(δ)ξ(Z(δ)) +

M∑

m=0

Sm(δ)δ2m+1ηm(Z(δ)) (45)

where G,S0, S1, ... are polynomials in δ. Now we search for zk of the form

zk(δ) =
+∞∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)) . (46)

We will see that the sum in (46) has a finite number of terms and that the
coefficients Cm(δ) are polynomials in δ. We differentiate (46) with respect to
δ and use the differentiation properties of the ξ and η functions

∂ξ(Z(δ))

∂δ
= Z(δ)η0(Z(δ))/δ,

∂δη0(Z(δ))

∂δ
= ξ(Z(δ)), (47)

∂δ2m+1ηm(Z(δ))

∂δ
= δ2mηm−1(Z(δ)), m = 1, 2, · · · , (48)

to obtain

z′k(δ) = C0ξ(Z) + [C ′

0 + δC1]δη0(Z) + · · · + [C ′

m + δCm+1]δ
2m+1ηm(Z) + . . .

(49)

Differentiating this again with respect to δ and using (47)-(48), gives us

z′′k(δ) = (2C ′

0 + δC1)ξ(Z) + [C ′′

0 + C0Z/δ2 + C1 + 2C ′

1δ + δ2C2]δη0(Z)

+ · · · + [C ′′

m + Cm+1 + 2C ′

m+1δ + δ2Cm+2]δ
2m+1ηm(Z) + . . .

(50)

One can then construct an expression for
z′′
k
(δ)

P̄
− r̄zk(δ):

z′′k(δ)

P̄
− r̄zk(δ) =

z′′k(δ)

P̄
− Zzk(δ)

P̄ δ2

=
2C ′

0ξ

P̄
+

1

P̄
[C ′′

0 + 2C1 + 2C ′

1δ]δη0 + . . .

+
1

P̄
[C ′′

m + 2(m + 1)Cm+1 + 2δC ′

m+1]δ
2m+1ηm + . . . (51)

where we used relations (12)-(13). From (39), we know that (51) should be

equal to ∆rzk−1 +
∆P ρ′

k−1

P̄
+

∆′

P
ρk−1

P̄
. Then, upon identifying the coefficients of

11



ξ, η0, η1, ... of the expressions (45) and (51), one gets

2C ′

0(δ) = P̄G(δ)

C ′′

m(δ) + 2[δC ′

m+1(δ) + (m + 1)Cm+1(δ)] = P̄Sm(δ), m = 1, 2, . . . ,M

C ′′

m(δ) + 2[δC ′

m+1(δ) + (m + 1)Cm+1(δ)] = 0, m = M + 1,M + 2, . . . .

These equations can be solved iteratively; for C0 the following formula is
obtained

C0(δ) =
P̄

2

∫ δ

0
G(δ1)dδ1 + β, β = z′k(0), (52)

while for C1(δ), C2(δ), ... we get

Cm(δ) =
1

2
δ−m

∫ δ

0
δm−1
1 Hm−1(δ1)dδ1, (53)

where

Hm(δ) =





P̄Sm(δ) − C ′′

m(δ) if m = 0, 1, 2, ...,M

−C ′′

m(δ) if m = M + 1,M + 2, ...
(54)

Since, from (34), z′k(0) = P̄ ρk(0) + ρk−1(0)∆P (0), and µk(0) = 0 for k =
0, 1, . . . and ν0(0) = 1, νk(0) = 0 for k = 1, 2, . . . , the constant β = z′k(0) in
(52) is nonzero only for zk = v1, in which case we have β = ∆P (0).

Let us denote the degree of a polynomial P by d(P ). Eqs. (52) and (54)
imply that H0 is a polynomial with maximal degree d(H0) = max(d(S0),
d(C ′′

0 )) = max(d(S0), d(G) − 1), so that C1 which results from eq. (53) is a
polynomial of the same degree. Also for higher m-values, the degree of Cm

is equal to the degree of Hm−1 and d(Hm−1) = max(d(Sm−1), d(C ′′

m−1)) =
max(d(Sm−1), d(Cm−1) − 2) for m ≤ M + 1, but d(Hm−1) = d(C ′′

m−1) =
d(Cm−1) − 2 for m > M + 1. It follows that d(CM+2) = d(CM+1) − 2,
d(CM+3) = d(CM+1) − 4 and so on. Thus, upon denoting the integer part
of d(CM+1)/2 by M̄ , it results that Cm(δ) = 0 for any m > M + M̄ + 1, i.e.
the last term in the sum (46) is CM+M̄+1(δ)ηM+M̄+1(δ). Upon this we have

shown that if ∆rzk−1+
∆P ρ′

k−1

P̄
+

∆′

P
ρk−1

P̄
can be written as (45) then zk(δ) results

in the form (46) with a finite number of terms, and also that the coefficients
are polynomials in δ which can be calculated by Eqs. (52)-(54). The only re-
maining question is whether the assumed form for (45) is valid. The answer
is positive provided ∆r and ∆P are polynomials in δ. In fact, for k = 1, the
expression in the right handside of (45) consists of two terms: the first term

with G(δ) = ∆r(δ) + r̄∆P (δ)
P̄

for z = u, G(δ) =
∆′

P
(δ)

P̄
for z = v, and the second

term S0(δ) =
r̄∆′

P
(δ)

P̄
for z = u, S0(δ) = ∆r(δ)P̄ + r̄∆P (δ) for z = v. This

guarantees that z1 will be of the form (46). In turn, since ρ1 =
z′
1

P̄
− ρ0∆P

P̄
,

ρ0 = z′0/P̄ and ρ′

1 = r̄z1 + ∆rz0, the expression ∆rz1 +
∆P ρ′

1

P̄
+

∆′

P
ρ1

P̄
will also

be of the form (45), and so on.
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We can summarize the previous in the following theorem:

Theorem 3.2 If the functions p, q, w are polynomials in δ, then the k′th (k =
1, 2, . . . ) correction zk for the propagator z (z = u, v) is of the form

zk(δ) =
∑

m=0

Cm(δ)δ2m+1ηm(Z(δ)) , (55)

z′k(δ) = C0(δ)ξ(Z(δ)) +
∑

m=0

[C ′

m(δ) + δCm+1(δ)]δ
2m+1ηm(Z(δ)) (56)

with a finite number of terms. This means that ∆rzk−1 +
∆P ρ′

k−1

P̄
+

∆′

P
ρk−1

P̄
is

of the form

G(δ)ξ(Z(δ)) +
∑

m=0

Sm(δ)δ2m+1ηm(Z(δ)), (57)

and the coefficients Cm(δ) are polynomials in δ which are given by quadrature

C0(δ) =
P̄

2

∫ δ

0
G(δ1)dδ1 + β, (58)

Cm(δ) =
1

2
δ−m

∫ δ

0
δm−1
1 [P̄Sm−1(δ1) − C ′′

m−1(δ1)]dδ1, m = 1, 2, . . . . (59)

The k’th correction for ρ = µ, ν is given by

ρk =
z′k
P̄

− ρk−1∆P

P̄
, (60)

ρ′

k = r̄zk + ∆rzk−1. (61)

The starting functions in ∆ru0+
∆P µ′

0

P̄
+

∆′

P
µ0

P̄
are G(δ) = ∆r(δ)+

r̄∆P (δ)
P̄

, S0(δ) =
r̄∆′

P
(δ)

P̄
, S1(δ) = S2(δ) = · · · = 0, while for ∆rv0 +

∆P ν′

0

P̄
+

∆′

P
ν0

P̄
they are

G(δ) =
∆′

P
(δ)

P̄
, S0(δ) = ∆r(δ)P̄ + r̄∆P (δ), S1(δ) = S2(δ) = · · · = 0. The con-

stant β is nonzero only for zk = v1, viz. β = ∆P (0).

3.3 A pilot reference equation

Theorem 3.2 assumes that the functions P, q and w are polynomials in δ. Also
the integrals in (58)–(59) are difficult to deal with when ∆P and ∆r are not
of the polynomial form. Therefore, we add an extra stage to the procedure in
which we approximate the functions P (xi−1 + δ), q(xi−1 + δ) and w(xi−1 + δ)
by polynomials in δ, as was also described for the Schrödinger CPM schemes
in Section 2. Each coefficient function f = q, w, P is approximated by

f(xi−1 + δ) ≈
ν−1∑

s=0

Fsh
s
iP

∗

s (δ/hi), δ ∈ [0, hi]. (62)
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where the coefficients Fs(F = Q,W,P ) are given by:

Fs =
(2s + 1)

hs+1
i

∫ hi

0
f(xi−1 + δ)P ∗

s (δ/hi)dδ, m = 0, 1, 2, . . . . (63)

The reference coefficient functions can then be taken as follows: q̄ = Q0, P̄ =
P0, w̄ = W0. As we will see in section 5, the value of ν can be chosen in such a
way (i.e. high enough) that the differences between the coefficients functions
and their approximations do not affect the accuracy of the method.

4 The CPM as modified Neumann method

Let us rewrite the SL problem (1) in matrix form as

y′(x) = A(x)y(x), y(a) = y0, (64)

with

A(x) =




0 1/p(x)

q(x) − Ew(x) 0


 , y =




y(x)

p(x)y′(x)


 . (65)

There is an emerging family of numerical methods based on integral series
representation of ODE solutions which can be applied on systems of the form
(64) (see [20,21]). The Neumann series is an example of such an integral series.
When the solution of a linear system y′ = A(x)y oscillates rapidly, a Neumann
method should not be applied directly to the problem but modified schemes
should be used, as recommended in [15,22,23]. Here we show that the applica-
tion of a modified Neumann method to the SL problem is in fact theoretically
equivalent to the CPM approach discussed in the previous section.

Suppose that we have already computed yi−1 ≈ y(xi−1) and that we wish to
advance the numerical solution to xi = xi−1 +h. The first step in the modified
Neumann scheme is to change the variables locally

y(x) = e(x−xi−1)Āu(x − xi−1), xi−1 ≤ x ≤ xi (66)

where Ā(E) is a (piecewise) constant approximation of the matrix function A

Ā(E) =




0 P̄

r̄ 0


 , P (x) = 1/p(x). (67)

We treat u as our new unknown which itself obeys the equation

u′(δ) = B(δ, E)u(δ), δ ∈ [0, h], u(0) = yi−1 (68)
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where

B(δ, E) = e−δĀ
(
A(xi−1 + δ) − Ā

)
eδĀ = e−δĀ∆A(δ)eδĀ. (69)

Over each interval [xi−1, xi], we apply a Neumann method to the modified
equation u′(δ) = B(δ)u(δ),u(0) = yi−1. This gives

ui = yi−1 +
∫ h

0
B(x)dxyi−1 +

∫ h

0

∫ x1

0
B(x1)B(x2)dx2dx1yi−1 + . . . (70)

The solution y in x = xi of the original system is then obtained from y(E, xi) =
ehĀu(h), where ehĀ is given by

ehĀ =




ξ(Z(h)) hP̄η0(Z(h))

Z(h)η0(Z(h))

hP̄
ξ(Z(h))


 . (71)

When only the first term in the Neumann series (70) is retained, one has
exactly the second-order Pruess method. In [16] we constructed some higher
order methods by including more Neumann terms. Each such Neumann term
corresponds to a CPM correction term. This can be seen as follows. Applying
a modified Neumann method, the fundamental solution Y on the ith interval
is constructed as the limit of the series

Y (E, x, xi−1) = T0(x) + T1(x) + T2(x) + . . . , x ∈ [xi−1, xi], (72)

where

T0(x) = e(x−xi−1)Ā (73)

and

T1(x) = T0(x)
∫ δ

0
B(s)ds, δ = x − xi−1. (74)

Tk(x) = T0(x)
∫ δ

0
B(s1)

∫ s1

0
B(s2) . . .

∫ sk−1

0
B(sk)dsk . . . ds2ds1, k = 2, 3, . . . .

Equivalently,

Tk(x) = T0(x)
∫ δ

0
T−1

0 (s)∆A(s)Tk−1(s)ds, k = 1, 2, . . . , (75)

or
d

dx

[
T−1

0 (x)Tk(x)
]

= T−1
0 (x)∆A(x)Tk−1(x), k = 1, 2, . . . . (76)

With (73), this can also be written as

T ′

k(x) = ĀTk(x) + ∆A(x)Tk−1(x), Tk(xi−1) = 0, k = 1, 2, . . . . (77)

For the four entries in the matrix function Tk we have (where we now use k
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as the superscript instead of subscript)

T k
11

′

= P̄ T k
21 + ∆P T k−1

21 , T k
12

′

= P̄ T k
22 + ∆P T k−1

22 , (78)

T k
21

′

= r̄T k
11 + ∆rT

k−1
11 , T k

22

′

= r̄T k
12 + ∆rT

k−1
12 . (79)

With u = T11, v = T12, µ = T21 and ν = T22, these equations correspond
exactly to Eqs. (39)–(42).

In [16], practical Neumann algorithms were constructed by truncating the
Neumann series and applying a Filon-Legendre approach to approximate the
oscillating integrals in the modified scheme (70). The Filon method, in fact,
fits a polynomial to the nonoscillatory part of the integrand and solves the
resulting integral analytically. That is, the functions q, w, P = 1/p were re-
placed by interpolating polynomials written as series over shifted Legendre
polynomials, in the exact same way as for the CPM in section 3.3.

5 The CPM[N,K]: CPM versions of different order

The formulae in Theorem 3.2 allow us to obtain the analytic form of the correc-
tions (with the help of a symbolic software package). Depending on the number
of corrections and the degree of the approximating polynomials, different CPM
versions can be formulated. Ixaru introduced the notation CPM[N ,K] in [9]
for a Schrödinger CPM with N the degree of the polynomial approximating
the potential function q, and K the number of perturbation corrections re-
tained in the algorithm. Let us use here the same notation to identify the
different versions. We also introduce some extra notations (for m = 1, ..., N):

P̂m = Pmhm+2, R̂m = (Qm − EWm)hm+2. (80)

and
Um = R̂mP̄ − P̂mr̄, Vm = R̂mP̄ + P̂mr̄. (81)

5.1 CPM[0,0]: a method of order 2

The CPM[0,0] method is the simplest version, in which P , q and w are ap-
proximated by piecewise constants and no correction term is introduced. In
this case the propagators are approximated as follows (Z = Z(h)):

u(h) ≈ ξ(Z), v(h) ≈ P̄ hη0(Z), (82)

µ(h) ≈ Zη0(Z)/(hP̄ ), ν(h) ≈ ξ(Z). (83)
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5.2 CPM[1,1]: a method of order 4

Taking linear pilot reference functions and one correction term, we obtain:

u(h) ≈ ξ(Z) − U1

2
η1(Z) (84)

v(h) ≈ P̄ hη0(Z) (85)

hP̄µ(h) ≈Zη0(Z) (86)

ν(h) ≈ ξ(Z) +
U1

2
η1(Z). (87)

This scheme is theoretically equivalent to the Neumann method with one
integral term and first degree approximating polynomials (see [16]), and is
thus also fourth order. Note that although the procedure is a bit complicated,
surprisingly simple formulae are obtained in the end. For comparison, the
fourth order Neumann method presented in [16] reads




y(xi)

p(xi)y
′(xi)


 = T (h)




y(xi−1)

p(xi−1)y
′(xi−1)




where the elements of T (h) = ehĀ(I + N1), with I the identity matrix and N1

the approximation of the first Neumann integral, are given by

u(h) = T11(h) = ξ(Z)(1 + I1) − hη0(Z)
I2

2
(88)

v(h) = T12(h) = ξ(Z)
I2

2r̄
+ hP̄η0(Z)(1 − I1) (89)

µ(h) = T21(h) = r̄hη0(Z)(1 + I1) − ξ(Z)
I2

2P̄
(90)

ν(h) = T22(h) = hη0(Z)
I2

2
+ ξ(Z)(1 − I1) (91)

with

I1 =
2η̂0 − 1 − ξ̂

4Z
U1, I2 = −2Zη̂0 + 1 − ξ̂

2hZ
U1,

and

ξ̂ = ξ(Ẑ) = 2ξ(Z)2 − 1, η̂0 = η0(Ẑ) = η0(Z)ξ(Z), Ẑ = 4Z.

The Neumann approach of truncating the Neumann series and using a Filon-
type method to approximate the integrals, led us to expressions which are
not linear in ξ(Z) and η0(Z), in contrast to the CPM formulae (84)-(87). By
rearranging the terms in (88)-(91), introducing the set of functions η1, η2, . . . ,
and using the trigonometric and hyperbolic identities, the formulae (88)-(91)
can be proven to be equal to (84)-(87). For higher order methods it is not so
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obvious to reduce formulae obtained by the Neumann method to the CPM
ones, and a CPM approach which directly expresses the formulae in terms of
the ξ, η0, η1, . . . functions should be prefered.

Another observation is that the formulae (84)-(87) reduce to the formulae for
the Schrödinger CPM[1,1] method when p = w = 1:

u(h) ≈ ξ(Z) − Q̂1

2
η1(Z)

v(h) ≈hη0(Z)

hu′(h) ≈Z(h)η0(Z)

v′(h) ≈ ξ(Z) +
Q̂1

2
η1(Z).

5.3 CPM[2,2]: a method of order 6

As for the sixth order Neumann scheme [16], a sixth order CPM scheme is
constructed by taking second degree approximating polynomials and two cor-
rection terms. With P̃1 = (P̂1r̄)/Z = P̂1/(h

2P̄ ), P̃2 = P̂2/(h
2P̄ ) we obtain

u(h) ≈ξ(Z) +

[
U1P̃1

12
+

U2P̃2

20

]
η0(Z) +

[
−U1

2
− P̃1(V2 + U1) + P̃2V1

4

]
η1(Z)

+

[
3P̃1V2 + P̃2(7V1 − 3U2)

4
− U2V2

40
− U1V1

24

]
η2(Z)

+
5V1(U2 + 2V2) + V2(5U1 − 3U2)

40
η3(Z)

v(h)

hP0
≈
[
1 − P̃ 2

1

2
+ P̃2

]
η0(Z) +

[
3(P̃ 2

1 + P̃ 2
2 )

2
− 3P̃2 +

P̃1(U1 + V1)

12
+

P̃2(U2 + V2)

20

]
η1(Z)

−
[

V2

2
+

15P̃ 2
2

2
+

P̃1(U1 + V1)

6
+

P̃2(2U2 + 7V2)

10

]
η2(Z)

+

[
−V 2

2

40
− V 2

1

24
+

P̃2(9U2 + 24V2)

10

]
η3(Z) +

9V 2
2

40
η4(Z)

hP̄µ(h) ≈
[

P̃1U1

12
+

P̃2U2

20

]
ξ(h) +

[
Z(h) +

U2

2
+

P̃2(V2 − U2 + U1)

4
+

P̃1(V1 − U2)

4

]
η0(Z)

+

[
−3U2

2
− U2V2

40
− U1V1

24
− 3P̃2(3V2 − U2 + U1)

4
− P̃1(3V1 + U1 − 3U2)

4

]
η1(Z)

−
[

U1V1

6
+

U2V2

40
+

U1V2 − U2V1 + V 2
1 + V 2

2

8
+

3P̃2(U2 − 10V2)

4

]
η2(Z)

+

[
V2(30V2 + 27U2)

40

]
η3(Z)
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ν(h) ≈
[
1 +

P̃1(P̃1 + 2P̃2 − 2)

2

]
ξ(Z)

+

[
(1 − 4P̃2)P̃1 +

(V1 + U1)P̃1

12
+

(V2 + U2)P̃2

20
− P̃ 2

1 − 3P̃ 2
2

2

]
η0(Z)

+

[
(1 − P̃1)V1

2
− 9P̃2(P̃2 − 2P̃1)

2
+

P̃1V2 + P̃2U1

2

]
η1(Z)

−
[

3P̃2(V2 + 2V1)

2
+

P̃1(V2 + 3U2)

2
+

V 2
2

40
+

V 2
1

24

]
η2(Z) − V2(3V2 + 20V1)

40
η3(Z)

Again these formulae reduce to the corresponding Schrödinger CPM formulae
(see e.g. the formulae mentioned in Appendix B of [11]) when p = w = 1, i.e.
when all terms in P̃1 and P̃2 are dropped, and U1, V1 and U2, V2 are replaced
by Q̂1 and Q̂2, respectively.

As for the fourth order method, we can remark that in contrast to the expres-
sions for the sixth order Neumann method from [16], these CPM formulae are
expressed in terms of the functions ξ, η0, η1, . . . . The CPM approach generates
corrections which are linear in ξ and η0. The Neumann approach however led
to equations which are cubic in ξ and η0. This means that the CPM formulae
are less sensitive to the numerical effect of near cancellation of large terms.
Similar arguments were used in [9] (p. 233) to explain the reduced sensitivity
of the piecewise perturbation methods over Gordon’s approach.

As for the Neumann schemes from [16], the (absolute) error of the CPM be-
haves asymptotically (i.e. for Z(h) ≪ 0) like O(E) for a SL problem not in
the Schrödinger form, while for a Schrödinger problem the error is O(E−1/2)
for Z(h) ≪ 0 (see [17]). Consequently, for some well-behaved regular Sturm-
Liouville problems, on which the Liouville’s transformation can be applied and
is not too expensive, it is still a good idea to transform the problem to the
Schrödinger problem, since larger stepsizes can then be taken as the (index
of the) eigenvalue increases or one and the same E-independent mesh can be
used to compute all eigenvalues required.

6 Eigenvalue computations

To locate the eigenvalues of the boundary value problem we can use a shooting
procedure. The CPM algorithms presented here are well suited for the repeated
solution of the initial value problems appearing in this shooting procedure.
Shooting procedures were described for the Schrödinger problem in [24] and for
the Neumann schemes in [16]. The same Prüfer-based procedure as described
in [16] can be used to count the oscillations in the solution as to home in on a
particular eigenvalue. Many data can be computed before the actual shooting,
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as e.g. the values of q̄, w̄, P̄ , Q̂m, P̂m, Ŵm. This means that no further function
evaluations of the coefficient functions are needed during shooting.

7 Some numerical experiments

The first test problem was also used as test problem for the SLCPM12 package
in [13]. The problem has the coefficient functions

p(x) = (γ + x)3, q(x) = 4(γ + x), w(x) = (γ + x)5, γ =
√

0.2 (92)

and is defined over the integration interval [a, b] with a = 0 and b = −γ +√
γ2 + 2π and y(a) = y(b) = 0. We call this problem the Paine problem,

since by the Liouville transformation it can be transformed to a Schrödinger
problem introduced by Paine in [25]:

p(x) = 1, q(x) = 1/(x + 0.1)2, w(x) = 1, y(0) = y(π) = 0. (93)

The second test problem is the Collatz problem [26]

y′′ +
3

4x2
y = − 1

x6
Ey y(1) = y(2) = 0. (94)

This problem can be solved in closed form. The solutions are

Ek =
64

9
k2π2, yk =

3

8kπ
x3/2 sin

4kπ

3

(
1 − 1

x2

)
, k = 1, 2, 3, . . . . (95)

Some numerical results for these test problems are given in the double loga-
rithmic plot in Figure 1. The CPMs of order two, four and six were used to
propagate y from a with starting values y(a) = 0, y′(a) = 1 to b. The methods
were applied with constant step sizes h. The plots confirm the order of the
different schemes numerically. Table 1 shows some eigenvalue computations.

In Figure 2, the E dependence of the error is illustrated for both a Schrödinger
problem and a SL problem. We used two problems with the same eigenvalues:
the Paine Schrödinger problem (93) and the Paine SL problem (92). Where
the error increases with E for the SL problem, this is not the case for the
Schrödinger problem: the error even slightly decreases. It is clear that when
for a regular SL problem with sufficiently well-behaved p, q, w, a large batch
of eigenvalues, or just particularly large eigenvalues are computed, it is a
good idea to transform the problem to the Schrödinger form before a CPM
is applied. For some problems however, the Liouville transformation may be
difficult or expensive to realize and in this case applying a CPM directly to
the SL problem forms a way out. Let us consider a SL problem on which both
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Fig. 1. Application of different CPM schemes on the Paine (upper figure) and the
Collatz problem (lower figure). The absolute error in y(b) is shown as a function of
h for E = E9 = 102.42498839825 (Paine) and E = E0 = 64π2/9 (Collatz).

Table 1
The relative errors in some eigenvalue computations for the Collatz problem and
the Paine problem, computed by the sixth order CPM[2,2]. nsteps is the number of
mesh intervals in the equidistant mesh and the notation a(−b) stands for a 10−b.

Collatz (nsteps= 128) Paine (nsteps=192 )

k Ek rel. err. Ek rel. err.

0 70.1836836876 4.6(-13) 1.5198658211 3.0(-13)

10 47444.18579306 7.7(-11) 37.9644258619 5.3(-11)

20 182548.2030025 3.6(-10) 123.4977068009 1.9(-10)

30 405381.9379249 1.2(-9) 443.8529598352 4.2(-10)

40 715945.489746 4.6(-9) 963.9644462621 7.3(-10)

50 1114238.858465 3.2(-9) 1684.0120143379 1.1(-9)
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Fig. 2. The absolute value of the (absolute) errors in the eigenvalue approximations
obtained with the sixth order CPM[2,2] for the Paine problem in the Schödinger form
(Paine-Schrod) and the Paine problem in the Sturm-Liouville form (Paine-SLP)
computed over a mesh with 64 equidistant mesh intervals.

Table 2
Error in the eigenvalues of the Pruess-Fulton problem 123, computed by CPM[2,2]
on the mesh shown in Figure 3. Ek denotes the values of the two eigenvalues men-
tioned in [27]. err is the relative error between Ek and the computed eigenvalues.

k Ek err

1 9.139761599 7.2(-8)

9 714.36156162 7.8(-8)

SLCPM12 and Matslise fail:

p(x) = 1+x0.5, q(x) = 0, w(x) = 1+(1−x)0.2, py′(0) = py′(1) = 0. (96)

The problem is listed, as problem 123, in the Pruess-Fulton test set which
was used to test SLEDGE [27]. The problem (96) is a regular SL problem.
Applying Liouville’s transformation, however, leads to a Schrödinger problem
with singularities in both endpoints. In Figure 3, the potential function q of
this Schrödinger problem is shown, as well as the coefficient functions p and
w of the SL problem (96). Where the functions p and w are regular and well-
defined over the interval [0,1], the derivatives of w are singular in 1 and the
derivatives of p are singular in 0, causing the singularities in the Schrödinger q
function. By applying a CPM directly to the SL problem (96), the difficulties
associated with the singularities in the Schrödinger problem are avoided. Table
2 shows the eigenvalues we obtained by applying the sixth order CPM to (96).
The same mesh selection procedure was used as in the MATSLEMN package,
which implements the sixth order Neumann method [16], to obtain a mesh
with 69 mesh points. The mesh is shown in Figure 3.
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Fig. 3. Problem 123 in the Pruess-Fulton test set. In the upper plot the functions
p and w of the SL problem and the mesh on which the results from Table 2 were
computed, are shown. The lower figure contains a plot of the potential function of
the Schrödinger problem which is obtained after applying Liouville’s transformation.

The Collatz problem, the Paine problem and problem 123 from the Pruess-
Fulton test set are regular problems. The CPM can, however, also be used to
solve singular problems, i.e. problems defined on an infinite integration interval
and problems with singular endpoints. These singular problems require a spe-
cial numerical treatment: an interval truncation procedure must be adopted.
As shown in [16] higher order CA methods (CPM or Neumann-based) pre-
serve the interesting advantage of the Pruess methods that they allow a very
simple truncation algorithm for singular problems. Evaluating the coefficient
functions only at the Legendre nodes effectively regularizes the problem. A
suitable (variable) mesh can be constructed in a very similar way as for the
algorithm in SLEDGE or as described in [16] for the Neumann methods. We
consider here a singular problem originating from mass and heat transfer stud-
ies as described by Dranoff in [28]. The problem is also listed, as problem 9,
in the Pruess-Fulton test set [27]. The problem has the following form:

p = x, q = 0, w = 4x(1 − x2), a = 0, b = 1, py′(a) = py′(b) = 0. (97)

Table 3 shows some eigenvalues computed with the sixth order CPM. Again,
the same mesh selection procedure was applied as in MATSLEMN. The eigen-
values obtained here agree with the first approximations Dranoff computed
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with little accuracy (6 digits) in [28] and the ones mentioned in [27].

Table 3
Some eigenvalues of the Dranoff problem, computed by the sixth order CPM.

k Ek

1 6.41990300049

9 347.2056119022

19 1493.549086178

8 Conclusion

The CPM family was originally devised as a class of methods for the solution
of one-dimensional, as well as multichannel and multidimensional Schrödinger
equations (see e.g. [29,30]). These CPM exhibit the very important advantage
that with them the energy dependence of the error is bounded. As a direct
consequence, the step widths are unusually big and the computation is fast.
Where until now the CPM could only be applied on general Sturm-Liouville
(SL) problems after a Liouville transformation, we presented here new CPM
formulae which can be applied directly on the SL problem. The new, more
general formulae, allow us to also efficiently solve problems where a Liouville
transformation is problematic or expensive. We showed that the CPM pro-
cedure is (theoretically) equivalent to applying a modified Neumann method.
The CPM approach, however, leads to algorithms which are easy to construct
and brings the formulae in a more convenient form. The formulae for a method
upto order six were derived, but the procedure presented can be used to con-
struct more correction terms and thus to realize higher order methods, forming
equivalents to the high order CPM for Schrödinger problems.
We presented some numerical experiments illustrating the power of the CPM
algorithms to solve a wide class of SL problems efficiently. Combined with
automatic meshsize selection and error control, the CPM algorithms can form
the basis for a new general-purpose Sturm-Liouville software package which
outperforms the other codes. A substantial enhancement in efficiency can be
expected from flexible programs which combine different techniques and de-
ploy them adaptively on the fly. For problems of the Schrödinger type, the
orginal CPM for Schrödinger problems are the most efficient. Without ques-
tion, a Liouville’s transformation can be a good idea for regular well-behaved
SL problems, since it transforms the SL problem into a Schrödinger problem
for which CPM have the best error behaviour, i.e. the error decreases with E.
But the general CPM algorithms introduced in this paper are the best option
for SL problems with discontinuities, singularities, or just strongly varying
coefficient functions or with no second order derivatives of p and w available.
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