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Abstract Adult’s simple-arithmetic strategy use depends
on problem-related characteristics, such as problem size
and operation, and on individual-diVerence variables, such
as working-memory span. The current study investigates
(a) whether the eVects of problem size, operation, and
working-memory span on children’s simple-arithmetic
strategy use are equal to those observed in adults, and (b)
how these eVects emerge and change across age. To this
end, simple-arithmetic performance measures and a work-
ing-memory span measure were obtained from 8-year-old,
10-year-old, and 12-year-old children. Results showed that
the problem-size eVect in children results from the same
strategic performance diVerences as in adults (i.e., size-
related diVerences in strategy selection, retrieval eYciency,
and procedural eYciency). Operation-related eVects in chil-
dren were equal to those observed in adults as well, with
more frequent retrieval use on multiplication, more eYcient
strategy execution in addition, and more pronounced
changes in multiplication. Finally, the advantage of having
a large working-memory span was also present in children.
The diVerences and similarities across children’s and
adult’s strategic performance and the relevance of arithme-
tic models are discussed.

Introduction

The study of arithmetic performance is an important topic,
since children spend a great deal of time mastering this skill

and adults continue to use it in daily life. A well-docu-
mented observation is that a number of diVerent strategies
are used by adults as well as children to solve simple-arith-
metic problems. Performance on a problem depends on
both strategy selection and strategy eYciency. Strategy
selection refers to the choice of a strategy among a set of
alternatives available to solve the problem. In the domain
of mental arithmetic, direct memory retrieval is distin-
guished from procedural strategies1 such as counting (e.g.,
7 + 4 = 7...8...9...10...11; 3 £ 7 = 7...14...21) and transfor-
mation (e.g., 8 + 5 = 8 + 2 + 3; 9 £ 6 = 10 £ 6 - 6). Strat-
egy eYciency refers to how fast and accurate strategies lead
to the solution. Retrieval is generally more eYcient than
transformation, which is still more eYcient than counting.

Accurate information about which strategies are applied
(strategy selection) and how the strategies are applied
(strategy eYciency) can be obtained by the combination of
two approaches of data collection—self-reports and
response latencies (Hopkins & Lawson, 2002). More pre-
cisely, in such a combined approach, trials are Wrst sepa-
rated by self-reports and then response latencies are
analyzed. Using this combination of approaches, it has been
shown that adult’s strategic performance is inXuenced by
both problem-related characteristics (such as operation and
problem size) as well as by individual-diVerence variables
(such as working-memory span). In the current study, we
investigate whether or not children’s strategic performance
is inXuenced by the same variables. Moreover, we also
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1 Many diVerent labels have been used to denote what we call here
‘procedural’ strategies. Examples are “reconstructive strategies”,
“algorithmic strategies”, “back-up strategies”, “the usage of manipula-
tives”, et cetera. In the current study, we consistently use the term ‘pro-
cedural’ strategies, to refer to (mostly time-consuming) strategies in
which the solution is obtained in a sequence of operations.
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aimed at examining how the inXuence of these variables
emerges and changes across primary school years, and
whether these changes can be compared with practice or
training eVects in adults.

EVects of problem size on arithmetic strategy use

The problem-size eVect, which refers to slower and more
error-prone performance on large problems (e.g., 8 £ 9)
than on small problems (e.g., 2 £ 3), is one of the most
robust eVects observed in mental-arithmetic research
(Ashcraft 1992; ZbrodoV 1995). According to Campbell
and Xue (2001), there are three strategy-related sources of
the problem-size eVect in adults: less frequent retrieval use
for large than for small problems, lower retrieval eYciency
for large than for small problems, and lower procedural
eYciency for large than for small problems. In the current
study, we investigated which of these sources determine the
problem-size eVect in children. More speciWcally, we
checked for three diVerent age groups (i.e., 8-, 10-, and 12-
year olds) whether the problem-size eVect was signiWcant
in terms of strategy selection (i.e., more frequent retrieval
use on small than on large problems) and in terms of strat-
egy eYciency (i.e., more eYcient retrieval and procedural
use on small than on large problems).

We also investigated whether the contribution of the
diVerent sources of the problem-size eVect changes across
the primary school years. Chronometric-only studies (i.e.,
without strategy reports) showed that the problem-size eVect
decreases gradually with age (e.g., Campbell & Graham,
1985; Cooney, Swanson, & Ladd, 1988; De Brauwer,
Verguts, & Fias, 2006; Koshmider & Ashcraft, 1991).
However, no study thus far used the combined approach
(i.e., collecting self-reports and response latencies) to
investigate which strategic sources contribute to the age-
related decrease in the problem-size eVect. We expected
that age-related increases in retrieval use, retrieval
eYciency, and procedural eYciency would be larger for
large problems than for small problems (i.e., an age by size
interaction).

EVects of operation on arithmetic strategy use

Adult studies consistently show operation-related diVer-
ences in both strategy selection and strategy eYciency (e.g.,
Campbell, 1995; Campbell & Xue, 2001; Hecht, 1999;
Imbo, Vandierendonck, & Rosseel, 2007, in press). Gener-
ally, retrieval is used more frequently in multiplication than
in addition, whereas both retrieval and procedural eYcien-
cies are higher in addition than in multiplication. The joint
investigation of children’s performance in addition and
multiplication is rather scarce, however. Lépine, Roussel,
and Fayol (2003) investigated 5th graders’ addition and

multiplication veriWcation performance (e.g., 2 + 3 = 7,
true/false?). Although children did not have to report which
strategies they used, Lépine et al. (2003) used priming tech-
niques to infer which strategies the children used. Based on
the observation that priming the operation sign (+ or £)
reduced addition response times but not multiplication
response times, they inferred that addition problems were
generally solved by means of procedures whereas multipli-
cation problems were rather solved by direct fact retrieval.
To test whether this operation-dependent eVect on strategy
selection changes across age, Lépine et al. (2003) compared
their results with those obtained by Roussel, Fayol, and
Barrouillet (2002), who tested the same veriWcation prob-
lems in adults. Apart from faster response times in adults
than in 5th graders, similar eVects occurred in both age
groups. Consequently, Lépine et al. (2003) conclude that
addition and multiplication problems are solved similarly
by Wfth graders and adults, i.e., by means of procedural and
retrieval strategies, respectively.

The current study aimed to test (a) at what age these
operation-related diVerences originate, and (b) whether or
not these operation-related diVerences change across age.
In contrast to Lépine et al. (2003), who used a veriWcation
task without strategy reports, we used a production task
with trial-by-trial strategy reports. Moreover, we tested
three diVerent age groups (second, fourth, and sixth grad-
ers) whereas Lépine et al. tested Wfth graders only. The
retrieval bias for multiplication over addition was expected
to originate from second grade on. Indeed, as addition is
taught already in Wrst grade, children in our study (second,
fourth, and sixth graders) should master this operation rea-
sonably well. As multiplication is taught in second grade,
the youngest children of our study were only starting to
master this operation. Because multiplication performance
is strongly based on direct fact retrieval, we expected larger
increases in retrieval use for multiplication than for addi-
tion, and especially between second and fourth grade. From
fourth grade on, we expected to observe the same opera-
tion-related diVerences in children as in adults; i.e., more
frequent retrieval use in multiplication than in addition and
more eYcient strategy execution in addition than in multi-
plication.

EVects of working-memory span on arithmetic strategy use

It has been shown that working memory, a memory system
involved in concurrent maintenance and processing of
information (Baddeley, 1996; Baddeley & Logie, 1999),
plays a signiWcant role in adults’ arithmetic performance
(see DeStefano & LeFevre, 2004, for a review on dual-task
studies). Low-span adults have been shown to perform
worse on arithmetic tasks than high-span adults (e.g.,
Jurden, 1995; Seyler, Kirk, & Ashcraft, 2003), but it is not
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known whether this eVect is due to individual diVerences in
strategy selection, strategy eYciency, or both. Working
memory in children has been studied in relation to mathe-
matical disabilities (see Geary, 2004, for a review); rather
than in relation to its role in normally developing children.
As respects strategy selection, higher working-memory
spans have been linked with less frequent use of procedural
strategies and more frequent use of retrieval strategies (e.g.,
Barrouillet & Lépine, 2005; Geary, Bow-Thomas, Liu, &
Siegler, 1996; Geary, Hoard, Byrd-Craven, &, DeSoto,
2004; Noël, Seron, & Trovarelli, 2004; Steel & Funnel,
2001). Working memory has also been related to strategy
eYciency. Adams and Hitch (1997) observed faster arith-
metic performance in children with higher working-mem-
ory spans. Since no strategy reports were obtained, it is not
clear whether working-memory span was correlated with
both retrieval and procedural eYciency. Rasmussen and
Bisanz (2005) observed that several working-memory mea-
sures together accounted for a substantial proportion of the
variability in arithmetic performance (R2 ¸ 0.40). Compa-
rable results were obtained by Swanson (2004; Swanson &
Beebe-Frankenberger, 2004), who showed that working
memory predicted solution accuracy of arithmetic word
problems independent of other skill measures such as Xuid
intelligence, reading skill, math skill, and short-term mem-
ory. Comparably, Noël et al. (2004) observed that chil-
dren’s addition accuracy was not predicted by processing
speed but that it was predicted by several measures of
working-memory capacity. Finally, Barrouillet and Lépine
(2005) observed that direct memory retrieval was faster in
high-span children than in low-span children.

The current study investigated (a) whether working-
memory capacity is diVerently correlated with children’s
strategy selection and strategy eYciency, and (b) whether
the importance of having a large working-memory capacity
stays equally important throughout the primary school
years. Several predictions were made. Problem–answer
associations in long-term memory can only be strengthened
if both the problem and the answer are hold simultaneously
active in working memory (e.g., Geary, 1993, 1994).
Hence, poor working-memory resources may result in
weaker and less accessible associations in long-term mem-
ory. Based on this reasoning, we predict more frequent
retrieval use in high-span children than in low-span chil-
dren. Second, since poor working-memory resources may
lead to smaller amounts of available attentional resources,
we predict more eYcient retrieval use and more eYcient
procedural use in high-span children than in low-span chil-
dren. Indeed, attentional resources are needed to activate
items in long-term memory and to maintain this activation
(Barrouillet, Bernardin, & Camos, 2004; Lovett, Reder, &
Lebière, 1999) and to execute several subprocesses needed
in procedural strategies (DeStefano & LeFevre, 2004).

Finally, we hypothesized that the advantage of having a
large working-memory capacity would decrease with age.
The latter prediction was based on previous Wndings argu-
ing that cognitive resources are most important during the
initial phase of skill acquisition whereas their role declines
as facts become represented in long-term memory (e.g.,
Ackerman, 1988).

Simple-arithmetic models

Finally, we also wanted to test whether arithmetic models
are able to explain our results. One model that is especially
relevant in the present context is the adaptive strategy
choice model (ASCM) of Siegler and Shipley (1995). In
this model, people have several strategies available. When
encountered with a simple-arithmetic problem, they will try
to choose the fastest and most accurate strategy among all
available strategies. However, people also set a conWdence
criterion, which determines how sure they must be to state a
retrieved answer, and a search length, which determines
how many attempts they will make to retrieve an answer
before trying a procedural strategy to solve the problem.
One will thus retrieve the answer from long-term memory
only if the problem can be solved fast and accurately with
the retrieval strategy. Otherwise stated, the retrieval time
may not exceed the search length criterion whereas the con-
Wdence criterion should be exceeded. If the retrieval strat-
egy would provide a slow and/or incorrect answer (e.g.,
when a problem is associated with several possible answers
in long-term memory) and thus exceeds the search length or
does not exceed the conWdence criterion, one will rather use
a procedural strategy to solve the problem.

The ASCM also predicts the eYciency with which
retrieval and procedural strategies will be executed. The
eYciency of retrieval strategies depends on the number of
searches in long-term memory. If the distribution of prob-
lem–answer associations is peaked (i.e., only one answer
receives high activation), the correct answer will be
retrieved very fast. If the distribution of problem–answer
associations is Xat (i.e., many answers receive activation),
more time is needed to search the correct answer among
several incorrect (but highly related) answers, which have
to be inhibited. The eYciency of procedural strategies, in
contrast, does not depend on the peakedness of problem–
answer associations but on the diYculty of executing the
particular procedural strategy. For example, the number of
counts determines the eYciency of the counting strategy. In
the current study, we explicitly tested this prediction of
Siegler’s model. More speciWcally, because both retrieval
frequency and retrieval eYciency rely on the peakedness of
problem–answer associations, it was hypothesized that
retrieval frequency would be highly correlated with
retrieval eYciency. However, because procedural eYciency
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does not rely on the distribution of problem–answer associ-
ations but rather on the number of steps to be executed, pro-
cedural frequency, or its component, retrieval frequency,
should not be correlated with procedural eYciency.

The present study

To summarize, the purpose of the present study was to test
whether the eVects of problem size, operation, and work-
ing-memory span observed in children are similar to those
observed in adults. We also wanted to test whether age-
related eVects in children can be compared with practice
eVects in adults. Several predictions were made. Since the
magnitude of the problem-size eVect decreases with age,
we expected that the age-related increase in retrieval use
and strategy eYciency would be larger for large problems
than for small problems (i.e., an age by size interaction).
Because multiplication procedures are more diYcult to exe-
cute in comparison to addition procedures, children might
be more motivated to remember multiplication facts. We
thus expected larger increases in retrieval use and strategy
eYciency for multiplication than for addition, and espe-
cially between second and fourth grade (i.e., an age by
operation interaction). Finally, we hypothesized that having
a large working-memory capacity would correlate with
more frequent retrieval use and more eYcient strategy exe-
cution. However, the advantages of having a large working-
memory capacity were expected to decrease with age.

Method

Participants

Sixty children participated. They all attended the same ele-
mentary school in the Flemish part of Belgium. Twenty of
them were in the second grade of elementary school (mean
age: 8 years 0 months; 9 girls and 11 boys), twenty other
children were in the fourth grade of elementary school
(mean age: 10 years 0 months; 10 girls and 10 boys), and
the last twenty children were in the sixth grade of elemen-
tary school (mean age: 12 years 0 months; 7 girls and 13
boys). The children were selected from the whole ability
range, although those who were considered by their teach-
ers to have speciWc learning or behavioral diYculties were
excluded. The children had no documented brain injury,
socio-cultural disadvantage, or behavioral problems. The
children only participated when they, as well as their teach-
ers and their parents consented.

To verify whether the three age groups were representa-
tive samples of the population, a standardized skill test
[Arithmetic Tempo Test (ATT), De Vos, 1992] was admin-
istered. This pen-and-paper test consists of several subtests

that require very elementary computations (e.g., 2 + 3 = ?).
Each subtest concerns only one arithmetic operation (addi-
tion, subtraction, multiplication, or division). In the present
experiment, the Wrst two subtests were administered, i.e.,
the addition and the subtraction subtest, each consisting of
40 items of increasing diYculty. We opted for these opera-
tions since the problems of the multiplication and division
subtest were beyond the second graders’ skill (e.g., 12 £ 4,
75:25). The children were given 1 minute for each subtest
and had to solve as many problems as possible within that
minute. Performance on the test was the sum of both sub-
tests. An ANOVA on these performance data with grade (2,
4, 6) as between-subjects factor showed a main eVect of
grade, F(2, 57) = 61.6, with increasing performance across
the second, fourth, and sixth grade (scores of 29.4, 48.3,
and 55.9, respectively). We further tested whether the chil-
dren diVered from the expected ATT performance. There-
fore, the score expected at the moment of testing (i.e., 19
educational months for second graders, 39 educational
months for fourth graders, and 59 educational months for
sixth graders) was compared with each child’s individual
score. Paired-samples t tests (two-tailed) showed no signiW-
cant diVerences between observed and expected ATT per-
formance, with t values of 0.4, 1.9, and 1.7 for second,
fourth, and sixth graders respectively (all Ps > 0.05).
Clearly, the three age groups were representative subgroups
of the population.

Materials and procedure

The children were individually tested in the month of May.
At that moment, even the second graders had learned how
to solve simple addition problems (up to 20) and simple
multiplication problems (up to 100). All children were
administered a simple-arithmetic task in which they had to
solve addition and multiplication problems, and a reading-
span task to test their complex working-memory span.

Simple-arithmetic task

All children solved 56 simple addition problems and 56
simple multiplication problems. The problems were con-
structed from all the possible pair-wise combinations of
the integers 2–9 with tie problems (e.g., 2 + 2, 2 £ 2)
excluded. For both addition and multiplication problems,
small problems were deWned as problems with a product
smaller than 25 and large problems as problems with a
product larger than 25. The order of operation was counter-
balanced for all grades. For second graders only, the addi-
tion and multiplication test were administered on two
consecutive days, so as to keep the total session load
manageable. For fourth and sixth graders both operations
succeeded each other immediately. For each operation, Wve
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practice trials were presented to let the children get used to
the task and the material.

The problems were presented one at a time in the centre
of a computer screen. A trial started with a Wxation point
for 500 ms. Then the problem was presented horizontally in
Arabic format as dark-blue characters on a light-grey back-
ground, with the operation sign (+ or £) at the Wxation
point. Children were asked to verbally state their answer as
soon as they knew it. The problem remained on screen until
the child responded. Timing began when the stimulus
appeared and ended when the response triggered the sound-
activated relay. To enable this sound-activated relay, chil-
dren wore a microphone which was activated when they
spoke their answer aloud. This microphone was connected
to a software clock accurate to 1 ms. The experimenter
entered the answer by means of the numerical path of the
keyboard. On each trial, visual feedback was presented to
the children, a happy face (smiley) when their answer was
correct, and a sad face when their answer was incorrect.

Immediately after having solved the problem, children
were asked to report verbally which strategy they had used
to solve the problem. Taking into account the literature on
strategy use in simple arithmetic, a distinction was made
between three levels of strategies, namely Retrieval, Trans-
formation, and Counting. Retrieval was explained as
“remembering or knowing the answer directly from mem-
ory”. If children said that the answer “just popped into their
head”, their strategy was coded as retrieval. Transformation
was explained as “deriving the answer from some known
facts” Examples were given, such as making an intermedi-
ate step to 10 (e.g., 8 + 5 = 8 + 2 + 3; 9 £ 4 = 10 £ 4 ¡ 4)
and using a tie in order to solve a non-tie problem (e.g.,
6 + 7 = 6 + 6 + 1; 5 £ 6 = 5 £ 5 + 5). Counting was
explained as “step-by-step counting to get the answer. For
addition, this meant counting one-by-one, e.g.,
4 + 3 = 4...5...6...7. No distinction was made between Wnger
counting, counting all, or counting from the larger addend.
For multiplication, counting meant (subvocally) reciting the
multiplication tables, e.g., 8 £ 3 = 8...16...24. A fourth cat-
egory ‘Other’ was added to cover the case when the chil-
dren used another strategy or did not know which strategy
they had used. All incorrect trials and all trials that were
corrupted due to failure of the voice activated relay were
repeated at the end of the block to decrease the amount of
data loss.

Reading-span task

This is a complex working-memory span task, in which
materials (i.e. words) have to be maintained in memory
while other information (i.e., sentences for comprehension)
has to be processed. This task diVers from simple short-
term memory tasks in which small amounts of materials

have to be maintained and recalled without any processing
load being imposed. The reading-span task (Daneman &
Carpenter, 1980) is a classical example of a complex work-
ing-memory task. In this task, participants have to read sets
of increasing numbers of sentences aloud while retaining
words in memory. Our Dutch reading-span task (see also
De Jonge & De Jong, 1996) included two practice trials
(consisting of two sentences) and two trials for each con-
secutive number of sentences (range: 2–7 sentences). The
sentences were presented on a sheet of paper one-by-one
and the child had to read them aloud. At the end of each
sentence, a word was given by the experimenter, which had
to be stored in memory. At the end of each sentence set, the
child had to reproduce all words in the order in which they
had been presented by the experimenter. As the number of
sentences increased, the number of words-to-retain
increased as well. For example, if the child had read 4 sen-
tences after which each time a word was provided, the cor-
rect response after having read all the sentences consisted
of 4 words. If the child failed at remembering the words in
two sets with the same number of sentences/words, the
reading-span task was stopped. The score on this task was
the number of correctly remembered words (range: 4–54
words).

Results

Of all trials, 13% was spoiled due to failure of the sound-
activated relay. Since all these invalid trials returned at the
end of the block, most of them were recovered from data
loss, which reduced the trials due to failure of the sound-
activated relay to 3%. Further, all trials on which children
had used a strategy of the ‘Other’ category (0.3%) were
deleted. Finally, all the response times (RTs) more than 3
standard deviations from each participant’s mean (per oper-
ation) were discarded as outliers (2%).

The results section is divided into two parts. First, analy-
ses of variance (ANOVAs) were carried out to investigate
age-related eVects on strategy selection and strategy
eYciency; problem size and operation taken into account.
Second, regression analyses were performed to test whether
working-memory span plays a role in children’s simple-
arithmetic strategy use. All reported results are considered
to be signiWcant if P < 0.05, unless mentioned otherwise.

Analyses of variance

Strategy selection

The children used several strategies to solve the simple-
arithmetic problems. Not all strategies were chosen equally
frequently, however. As can be seen in the upper panel of
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Fig. 1, children of all grades most often chose retrieval to
solve addition problems with sums smaller than 10. As
soon as the sum was larger than 10, a tremendous decrease
in retrieval use was observed. The second and fourth grad-
ers chose the transformation strategy more often than direct
memory retrieval on problems with a solution above 10.
For the sixth graders, in contrast, retrieval was the most fre-
quently used strategy to solve addition problems with sums
both smaller and larger than 10. Analyses on the subject
level showed that only eleven children used retrieval on all

addition problems, two second graders, one fourth grader
and eight sixth graders.

The lower panel of Fig. 1 shows the strategy choice pat-
tern for multiplication problems. Here, retrieval use tended
to decrease linearly with increasing problem size, whereas
the frequency of transformation increased as problem size
became larger. Another striking diVerence with the strategy
choices for addition problems is that direct memory
retrieval was the most popular strategy already from second
grade on and on all problem sizes. Analyses on the subject

Fig. 1 Percentages of the used 
strategies for each grade (left 
second grade, middle fourth 
grade, right sixth grade), as a 
function of operation and prob-
lem size
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level showed that fourteen children used retrieval on all
multiplication problems, one second grader, two fourth
graders and eleven sixth graders. The very infrequent use of
counting (in both addition and multiplication) was probably
due to the curriculum in Belgium, which strongly advices
children against using this strategy.

A 3 (Grade: 2, 4, 6) £ 2 (Problem size: small vs. large)
£ 2 (Operation: addition vs. multiplication) ANOVA with

repeated measures on problem size and operation was con-
ducted on percentages of retrieval use (see Table 1). The
main eVect of grade was signiWcant, F(2, 57) = 4.6,
MSe = 8625. The percentage of retrieval use increased line-
arly across second, fourth and sixth grade, F(1, 57) = 9.2.
We Wrst tested whether this eVect diVered across small and
large problems. Obviously, retrieval was more frequently
used on small than on large problems, F(1, 57) = 94.6,
MSe = 299. Although this eVect of problem size was true in
all grades [F(1, 57) = 28.7, 58.9, and 14.5, for second,
fourth, and sixth grade, respectively], problem size inter-
acted with grade, F(2, 57) = 3.8. The age-related trends in
retrieval use thus diVered as a function of problem size.
More speciWcally, the increase in retrieval use between the
second and the fourth grade was only signiWcant for small
problems, F(1, 57) = 7.9, and not for large problems,
F(1, 57) < 1, whereas the increase in retrieval use between
the fourth and the sixth grade was only signiWcant for
large problems, F(1, 57) = 3.9, and not for small problems,
F(1, 57) < 1. Consequently, the diVerence in retrieval use
between small and large problems (i.e., percentage of
retrieval use on large problems—percentage of retrieval use
on small problems) did not decrease between second and
fourth rade (P > 0.10), but did decrease signiWcantly
between fourth and sixth grade, F(1, 57) = 7.5.

We then tested whether the increase in retrieval use
diVered across operations. Although the main eVect of
Operation did not reach signiWcance, F(1, 57) = 1.6, the
operation x grade interaction did, F(2, 57) = 5.1. Between
second and fourth grade, there was a signiWcant increase in
retrieval use for multiplication problems, F(1, 57) = 6.1,
and not for addition problems, F(1, 57) < 1, whereas the
reverse was true between fourth and sixth graders, with a
signiWcant increase in retrieval use for addition problems,

F(1, 57) = 8.6, and not for multiplication problems,
F(1, 57) < 1. This age-related pattern also explains why
percentages of retrieval use did not diVer across addition
and multiplication problems in second graders, F(1, 57) < 1:
retrieval was used as frequently for both operations.
Percentages retrieval use did not diVer across operations in
sixth graders either, with very frequent retrieval use on both
addition problems and multiplication problems, F(1, 57) < 1.
In the fourth grade, however, percentages retrieval use were
larger on multiplication problems than on addition prob-
lems, F(1, 57) = 11.1.

Retrieval eYciency: latency

A 3 (Grade: 2, 4, 6) £ 2 (Problem size: small vs. large)
£ 2 (Operation: addition vs. multiplication) ANOVA with

repeated measures on problem size and operation was con-
ducted on correct retrieval RTs2 (see Table 2a). The main
eVect of grade was signiWcant, F(2, 57) = 65.2,
MSe = 1380585. Retrieval RTs linearly decreased as chil-
dren were older, as conWrmed by a planned comparison
with linear contrast, F(2, 57) = 113.3. We Wrst tested
whether this increase in retrieval eYciency diVered
between small and large problems. The main eVect of prob-
lem size was signiWcant, F(1, 57) = 116.6, MSe = 225,284,
with faster retrieval on small than on large problems. More-
over, the retrieval problem-size eVect (retrieval RTs on
large problems—retrieval RTs on small problems) was sig-
niWcant in all grades, F(1, 57) = 146.2, 15.7, and 7.0 for
second, fourth and sixth grade, respectively. Grade inter-
acted with problem size, however, F(2, 57) = 26.1. This
interaction showed that the retrieval problem-size eVect
decreased signiWcantly between second and fourth grade
children F(1, 57) = 33.0, but did not diVer between fourth
and sixth grade children, F(1, 57) < 1. More precisely,
between second and fourth grade, children became faster in
retrieving large problems, whereas between fourth and
sixth grade, they became slightly faster in retrieving both
small and large problems.

We then tested whether the increase in retrieval
eYciency diVered across operations. Retrieval was faster
on addition problems than on multiplication problems,
F(1, 57) = 6.2, MSe = 448058, but operation did not interact
with grade. The age-related increase in retrieval eYciency
thus runs parallel for addition and multiplication.

Table 1 Mean percentages retrieval use for second, fourth, and sixth
graders as a function of operation and problem size

Standard errors are shown between brackets

Second grade Fourth grade Sixth grade

Addition Small 79 (3) 88 (3) 97 (3)

Large 45 (8) 37 (8) 71 (8)

Multiplication Small 64 (6) 85 (6) 81 (6)

Large 56 (6) 76 (6) 78 (6)

2 Since (a) not all children used both retrieval and procedural strategies,
and (b) only RTs of the correctly solved problems were analyzed, for
some children empty cells occurred in the ANOVAs on latencies. We
replaced these empty cells for each child with the correct RT of the cor-
responding cell [i.e., the mean RT (over participants) of the grade x
problem size x operation cell].
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Retrieval eYciency: accuracy

An Arcsin transformation was applied to the proportions of
correct solutions. The same 3 £ 2 £ 2 ANOVA was con-
ducted on these Arcsin transformed values. To enhance
comprehension however, Table 3a depicts percentages of
correct answers. The main eVect of grade did not reach sig-
niWcance, F(2, 57) = 1.9, but planned comparisons showed
a signiWcant increase in retrieval accuracy between second
and fourth grade, F(1, 57) = 3.6, and no diVerence between
fourth and sixth grade, F(1, 57) < 1. Small problems were
retrieved signiWcantly more accurately than large problems,
F(1, 57) = 9.8, and this eVect did not change across age
[i.e., no grade x problem size interaction, F(2, 57) < 1].
There was also a trend towards higher accuracies on
addition problems than on multiplication problems,
F(1, 57) = 3.3 with P = .07, but this eVect did not change
across age either [i.e., no grade x operation interaction,
F(2, 57) < 1].

Procedural eYciency: latency

The same 3 £ 2 £ 2 ANOVA was conducted on correct
procedural RTs (see Table 2b and footnote 2). The main
eVect of grade was signiWcant, F(2, 57) = 29.8,
MSe = 6,988,988. The second graders were signiWcantly
slower than fourth and sixth graders, F(1, 57) = 53.0 and
F(1, 57) = 34.2, respectively, whereas there was no diVer-
ence between fourth and sixth graders, F(1, 57) = 2.0. We
Wrst tested whether this age-related eVect diVered across
small and large problems. Obviously, procedures were exe-
cuted faster on small than on large problems, F(1, 57) =
38.9, MSe = 1,093,316. Problem size interacted with grade,
though, F(2, 57) = 18.3: the procedural problem-size eVect
(procedural RTs on large problems—procedural RTs on
small problems) decreased signiWcantly between second
and fourth grade children, F(1, 57) = 31.9, but did not diVer
between fourth and sixth grade children, F(1, 57) < 1.
Between second and fourth grade, children became faster in
executing procedures on large problems, which reduced the
problem-size eVect. Consequently, the procedural problem-
size eVect was signiWcant in second grade, F(1, 57) = 71.9,
but not in fourth and sixth grade.

We also tested whether the increase in procedural
eYciency diVered across operations. The main eVect of oper-
ation was signiWcant, with higher procedural eYciencies on
addition problems than on multiplication problems, F(1, 57)
= 52.5, MSe = 3820986. Operation also interacted with
grade, F(2, 57) = 3.0. Planned comparisons showed that the
increase in procedural eYciency was larger for multiplica-
tion problems than for addition problems between second
and fourth grade, F(1, 57) = 5.3, but did not diVer across
operations between fourth and sixth grade, F(1, 57) < 1.

Procedural eYciency: accuracy

The same 3 £ 2 £ 2 ANOVA was conducted on the Arcsin
transformations of proportions of correct answers. Percent-
ages of correct answers are shown in Table 3b. The main
eVect of grade was signiWcant, F(2, 57) = 13.5. A planned
comparison conWrmed that procedural accuracies increased
linearly with grade, F(1, 57) = 24.7. We Wrst tested whether
this age-related eVect diVered across small and large prob-
lems. Accuracies were higher on small than on large prob-
lems, F(1, 57) = 9.8. Furthermore, problem size interacted
with grade, F(2, 57) = 4.5. Whereas the procedural prob-
lem-size eVect (accuracy on large problems—accuracy on
small problems) decreased signiWcantly between second
and fourth grade, F(1, 57) = 8.4, it did not change anymore
between fourth and sixth grade, F(1, 57) < 1. Consequently,
the procedural problem-size eVect was signiWcant in second
grade, F(1, 57) = 17.2 but not in fourth and sixth grade
(both Fs < 1.5).

Table 2 Mean retrieval and procedural latencies for second, fourth,
and sixth graders as a function of operation and problem size

Standard errors are shown between brackets

Second grade Fourth grade Sixth grade

Retrieval

Addition Small 2,252 (113) 1,195 (113) 966 (113)

Large 3,806 (261) 1,682 (261) 1,328 (261)

Multiplication Small 2,844 (130) 1,454 (130) 1,177 (130)

Large 3,856 (142) 1,809 (142) 1,378 (142)

Procedural

Addition Small 3,172 (248) 1,547 (248) 2,096 (248)

Large 5,089 (265) 2,027 (265) 2,446 (265)

Multiplication Small 5,786 (548) 3,139 (548) 3,525 (548)

Large 7,854 (484) 2,939 (484) 4,033 (484)

Table 3 Mean accuracies for second, fourth, and sixth graders as a
function of operation and problem size

Standard errors are shown between brackets

Second grade Fourth grade Sixth grade

Retrieval

Addition Small 98 (1) 99 (1) 100 (1)

Large 95 (1) 98 (1) 98 (1)

Multiplication Small 95 (1) 99 (1) 98 (1)

Large 96 (1) 97 (1) 95 (1)

Procedural

Addition Small 99 (1) 95 (1) 100 (1)

Large 87 (3) 98 (3) 100 (3)

Multiplication Small 86 (2) 98 (2) 99 (2)

Large 78 (4) 95 (4) 97 (4)
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We then tested whether the increase in procedural
eYciency diVered across operations. Accuracies were
higher on addition problems than on multiplication prob-
lems, F(1, 57) = 14.6. Operation also interacted with grade,
F(2, 57) = 3.1. Addition accuracies did not increase
between second and fourth grade, but did increase between
fourth and sixth grade, F(1, 57) = 4.8. Multiplication accu-
racies, in contrast, increased between second and fourth
grade, F(1, 57) = 15.7, but not between fourth and sixth
grade, F(1, 57) < 1.

Summary

Analyses of variance were run to answer two questions for-
mulated in the introduction. Concerning the Wrst question
(Are all three sources of the problem-size eVect present in
children and do they change across age?), results showed
that two sources of the problem-size eVect were present in
all grades, namely more frequent retrieval use on small than
on large problems, and more eYcient retrieval use on small
than on large problems. The third source of the problem-
size eVect, more eYcient procedural use on small than on
large problems, was only present in the second grade.
Moreover, the diVerent sources of the problem-size eVect
changed across age: The decrease in the size of the prob-
lem-size eVect was Wrst (i.e., between second and fourth
grade) due to more eYcient retrieval use and more eYcient
procedural use, after which (i.e., between fourth and sixth
grade) it was due to more frequent retrieval use.

Concerning the second question (Does children’s sim-
ple-arithmetic strategy use diVer between addition and mul-
tiplication, and does this diVerence change across age?),
results showed that the improvement in strategic perfor-
mance (more frequent retrieval use and more eYcient pro-
cedural use) on multiplication was especially apparent
between second and fourth grade. The improvement in stra-
tegic performance on addition, in contrast, was especially
apparent between fourth and sixth grade. Finally, the age-
related improvement in retrieval eYciency was equally
large for addition and multiplication. In the next section,
regression analyses are run to test the role of working-
memory span in children’s simple-arithmetic strategy use
across the primary school years (cfr. our third research
question).

Regression analyses

Before presenting the results of the regression analyses, we
Wrst report children’s performance on the working-memory
span task, which is one of the predictors used in the regres-
sion analyses. Children’s performance on the working-
memory span task was tested with an ANOVA with Grade
(2, 4, 6) as between-subjects factor. As expected, the main

eVect of Grade was signiWcant, F(2, 57) = 37.8, with
increasing working-memory span across the second, fourth,
and sixth grade (scores of 12.7, 20.2, and 28.0, corresponding
to working-memory spans of 2.4, 3.3, and 4.2, respec-
tively). The question now is whether complex working-
memory span plays a role in strategy selection or strategy
eYciency. More precisely, we will test whether working-
memory span predicts variance in percentages of retrieval
use, retrieval latencies, and procedural latencies. To this
end, correlation and regression analyses were conducted for
each dependent variable (i.e., retrieval use, retrieval
latency, and procedural latency3 separately.

Retrieval use was regressed on working-memory span,
problem size4, and operation. Retrieval latency and proce-
dural latency were regressed on the same three variables
and on percentage retrieval use as well. Doing so, we
wanted to test Siegler’s (1988) prediction that retrieval fre-
quency should correlate with retrieval eYciency but not
with procedural eYciency. Indeed, both retrieval frequency
and retrieval eYciency are in his model of strategy choice
dependent on the peakedness of problem–answer associa-
tions, whereas procedural eYciency depends on the diY-
culty of executing the particular procedure. Correlation
results can be found in Table 4 and regression results can
be found in Table 5.

Retrieval use

The percentage of retrieval use was regressed on problem
size, operation, and working-memory span, for each grade
separately. For second graders, the total amount of variance
explained (R2) was .073, F(3, 778) = 20.36. Retrieval use
was signiWcantly more frequent on small than on large
problems, and for high-span children than for low-span
children. Operation was not signiWcantly predictive. For the
fourth grade, R2 = .088 and F(3, 1056) = 34.12, smaller
problem sizes predicted more frequent retrieval use,
whereas working-memory span did not play a signiWcant
role. Direct memory retrieval was also more frequently
used on multiplication problems than on addition problems.
For the sixth grade Wnally, R2 = .013 and F(3, 975) = 4.45,
retrieval use was more frequent on small than on large

3 As age-related diVerences were substantially smaller in accuracy data
than in latency data (cfr. ANOVA results), regression analyses were
performed on latency data only.
4 In the regression analyses, problem size was determined by the cor-
rect answer of the problem (i.e., sizes from 5 to 17 for addition prob-
lems and sizes from 6 to 72 for multiplication problems). Thus,
whereas a dichotomous measure of problem size was used in the anal-
yses of variance, a continuous measure of problem size was used in the
regression analyses. Operation was in the regression analyses coded by
a dummy variable with value 1 for addition problems and value -1 for
multiplication problems.
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problems, whereas no eVects of operation or working-mem-
ory span were observed. Note that operation was only sig-
niWcantly predictive of percentage retrieval use in fourth
graders, which Wts well with the ANOVA on retrieval use.

Retrieval eYciency

Retrieval latencies were regressed on problem size, opera-
tion, working-memory span, and percentage retrieval use,
for each grade separately. The R2 was .192 for the second
grade, F(4, 585) = 34.73, R2 = .226 for the fourth grade,
F(4, 819) = 59.77 and R2 = .162 for the sixth grade,
F(4, 818) = 39.66. Problem size was signiWcantly predic-
tive in all grades, with faster retrieval use on small than on
large problems. The percentage retrieval use was signiW-
cantly predictive in all grades as well, with faster retrieval
use when retrieval was more frequently used. Working-

memory span was only predictive in second and fourth
grade, with faster retrieval use for high-span than for low-
span children. Operation was not predictive in any grade.

Procedural eYciency

Procedural latencies were regressed on problem size, opera-
tion, working-memory span, and percentage retrieval use,
for each grade separately. The R2 was 0.174 for the second
grade, F(4, 475) = 25.03, R2 = .216 for the fourth grade,
F(4, 392) = 27.04 and R2 = 0.238 for the sixth grade,
F(4, 227) = 17.71. Problem size was signiWcantly predic-
tive in all grades, with more eYcient procedural strategy
execution on small than on large problems. Working-mem-
ory span was predictive in all grades as well, but the rela-
tion between span and procedural eYciency changed across
grades. High-span second and fourth graders were more

Table 4 Correlations between 
retrieval use, retrieval RTs, 
procedural RTs, problem size, 
operation, and working-memory 
span

Retrieval RT Procedural RT Problem size Operation WM span

Second grade

Retrieval use ¡0.239* ¡0.164* ¡0.138* 0.017 0.218*

Retrieval RT 0.445* 0.344* ¡0.159* ¡0.174*

Procedural RT 0.293* ¡0.163* ¡0.284*

Fourth grade

Retrieval use ¡164* 0.057 ¡0.018 ¡0.224* ¡0.045

Retrieval RT 0.547* 0.402* ¡0.212* ¡0.224*

Procedural RT 0.342* ¡0.315* ¡0.285*

Sixth grade

Retrieval use ¡0.320* ¡0.132 ¡0.102* 0.021 0.022

Retrieval RT 0.303* 0.251* ¡0.116* ¡0.035

Procedural RT 0.412* ¡0.253* 0.228*
*P is signiWcant at the 0.01 level 
(2-tailed)

Table 5 Summary of the 
regression analyses for variables 
predicting percentage retrieval 
use, retrieval RTs, and proce-
dural RTs

Second grade Fourth grade Sixth grade

B SE ß B SE ß B SE ß

Retrieval use

Problem size ¡0.50 0.11 ¡0.194* ¡0.64 0.10 ¡0.237* ¡0.33 0.09 ¡0.140*

Operation ¡3.48 1.70 ¡0.087 ¡15.15 1.52 ¡0.366* ¡2.33 1.47 ¡0.063

WM span 2.03 0.32 .218* ¡0.31 0.20 ¡0.044 0.12 0.18 .022

Retrieval RTs

Problem size 47.74 6.19 0.354* 19.03 1.88 0.388* 9.64 1.42 0.270*

Operation 42.00 93.21 0.021 ¡2.36 29.70 ¡0.003 24.87 21.79 0.045

WM span ¡75.13 18.55 ¡0.153* ¡27.68 3.91 ¡0.218* ¡0.54 2.61 ¡0.007

Retrieval use ¡15.82 3.07 ¡0.196* ¡4.95 1.24 ¡0.125* ¡13.22 1.36 ¡0.312*

Procedural RTs

Problem size 86.27 15.38 0.302* 22.65 5.66 0.252* 39.43 7.32 0.387*

Operation 198.2 237.4 ¡0.045 ¡195.8 92.04 ¡0.134 ¡94.96 116.1 ¡0.059

WM span ¡302.3 46.47 ¡0.272* ¡69.36 11.01 ¡0.284* 63.38 15.73 0.241*

Retrieval use ¡14.52 6.57 ¡0.094 ¡6.86 2.47 ¡0.126 ¡3.51 3.41 ¡0.062*P is signiWcant at the 0.01 level
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eYcient procedural strategy users than were low-span sec-
ond and fourth graders, but high-span sixth graders were
less eYcient procedural strategy users than were low-span
sixth graders. Span-related diVerences in strategy selection
can explain this unexpected result. Indeed, retrieval was
used more frequently in high-span sixth graders (85%) than
in low-span sixth graders (78%), and this diVerence was
larger for large problems (79% vs. 69%) than for small
problems (91% vs. 87%). Consequently, high-span sixth
graders used procedural strategies to solve the largest
problems only, which results in large procedural RTs in
high-span sixth graders. Indeed, procedural RTs for large
problems were larger for high-span than for low-span sixth
graders (3,707 ms vs. 3,089 ms, respectively), whereas pro-
cedural RTs for small problems did not diVer between high-
span and low-span sixth graders (2,772 ms vs. 2,533 ms,
respectively). Operation and percentage retrieval did not
predict procedural eYciency in any grade.

Summary

The advantage of having a large working-memory span
decreased across grades, especially regarding retrieval fre-
quency and retrieval eYciency. More speciWcally: (1)
working-memory span signiWcantly predicted retrieval fre-
quency for second graders but not for fourth and sixth grad-
ers, and (2) working-memory span predicted retrieval
eYciency for second and fourth graders but not for sixth
graders. Comparably, the execution of procedural strategies
beneWted from a high working-memory span in second and
fourth grade only. Because high-span sixth graders used
procedural strategies almost exclusively on large problems,
procedural eYciency decreased for these children. Strategy
eYciency data were thus inXuenced by the children’s strat-
egy choices. This bias can be avoided by using the choice/
no-choice method (Siegler & Lemaire, 1997), as discussed
further in this paper. A Wnal interesting observation was
that, as predicted by Siegler (1988), percentage retrieval
use did predict retrieval eYciency but not procedural
eYciency.

General discussion

Children’s arithmetic strategic performance increased with
age: older children used memory retrieval more often, were
faster and more accurate in retrieving arithmetic facts, and
were faster and more accurate in executing procedural strat-
egies. In the remaining of this chapter, we discuss whether
or not (and from which moment on) children’s arithmetic
strategy use resembles adults’ arithmetic strategy use. We
successively discuss the problem-size eVect, operation-
related eVects, and the role of working-memory span. The

discussion section ends with an evaluation of the present
results within a model of arithmetic strategic performance.

The problem-size eVect

From fourth to sixth grade, retrieval use increased for large
problems but not for small problems. As such, the problem-
size eVect caused by strategy selection processes became
smaller from fourth grade on. However, the retrieval strat-
egy was more frequently used on small than on large prob-
lems in all age groups. Strategy selection processes were
thus a signiWcant source of the problem-size eVect in sec-
ond, fourth, and sixth graders. From second to fourth grade,
retrieval and procedural eYciencies increased for large
problems but not for small problems. This way, the prob-
lem-size eVect caused by strategy eYciency processes
became smaller from second grade on. However, the
retrieval problem-size eVect (i.e., the diVerence in retrieval
RTs between large and small problems) stayed signiWcant
in all grades. The procedural problem-size eVect (i.e., the
diVerence in procedural RTs between large and small prob-
lems), in contrast, was signiWcant in second grade only.
Thus, whereas problem size aVected retrieval frequency
and retrieval eYciency in all age groups, problem size
aVected procedural eYciency in second grade only.

Importantly, previous studies showed that all three size-
related eVects on strategy use (i.e., less frequent retrieval
use for large than for small problems, lower retrieval
eYciency for large than for small problems, and lower pro-
cedural eYciency for large than for small problems) are
signiWcant sources of the problem size eVect in adults (e.g.,
Campbell & Xue, 2001). The Wrst two factors were signiW-
cant in the current child study as well. Concerning the third
factor, something strange occurred: the procedural prob-
lem-size eVect was present in second grade but disappeared
in fourth and sixth grade. However, it reappeared in sec-
ondary-school children (Imbo et al., 2007, in press). The
proWciency for solving small and large problems equally
eYciently by means of procedures is probably caused by
practice and schooling eVects. As soon as children Wnish
elementary school, such eVects disappear, resulting in less
eYcient procedure execution, especially for large prob-
lems. Comparable eVects have been reported by Geary
(1996), who observed that the problem-size eVect disap-
peared and reversed between 1st and third grade Chinese
children, but re-appeared in Chinese adults. The investiga-
tion of the appearance, disappearance, and re-appearance of
the problem-size eVect across lifetime provides interesting
ideas for future research.

To conclude, the decreasing problem-size eVect was
associated with an increase in strategy eYciency for youn-
ger children and with an increase in retrieval frequency for
older children. Moreover, the size-related eVect on strategy
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eYciency did not change anymore from fourth grade on.
Since De Brauwer et al. (2006) observed that the problem-
size eVect remains equally large from sixth grade on till
adulthood; we might conclude that children from fourth
grade on have developed a memory network that strongly
resembles the adult memory network. This conclusion is in
agreement with previous studies which maintain that men-
tal-arithmetic networks might be completely operational
from third grade on (e.g., Ashcraft & Fierman, 1982;
Koshmider & Ashcraft, 1991; Lemaire, Barrett, Fayol, &
Abdi, 1994).

DiVerences between addition and multiplication

Children of all age groups retrieved addition facts more
eYciently (i.e., faster and more accurately) than they
retrieved multiplication facts. Comparable eVects have
been observed in adults (e.g. Campbell & Xue, 2001;
Hecht, 1999; Imbo et al., 2007, in press). Importantly, the
main eVect of operation in retrieval eYciency (i.e., more
eYcient retrieval use for addition than for multiplication)
did not change across the primary school years. This indi-
cates consistent changes in the speed with which addition
and multiplication facts are retrieved from long-term mem-
ory. Thus, although the addition and multiplication network
may diVer across age groups in general (i.e., main diVer-
ences in retrieval speed), their development seems to run
fairly parallel (i.e., no interaction between age and opera-
tion). Otherwise stated, addition and multiplication involve
similar retrieval processes across childhood (this study) and
in adulthood (e.g., Campbell & Oliphant, 1992; Geary,
Widaman, & Little, 1986; Miller, Perlmutter, & Keating,
1984).

Another persistent eVect in adults is that retrieval is used
more frequently in multiplication than in addition (e.g.
Campbell & Xue, 2001; Hecht, 1999; Imbo et al. 2007, in
press). Surprisingly, in the current study, this operation-
related eVect on strategy selection was signiWcant in fourth
grade only. In second grade, where children only start to
learn the multiplication tables, retrieval was used as
frequently in addition as in multiplication. However,
multiplication fact retrieval signiWcantly increased from
second to fourth grade, an eVect that was probably due to
the great emphasis of the Belgian school system on the
memorization of multiplication tables. Because the amount
of retrieval use in multiplication reached in fourth grade
(81%) was comparable to that observed in Belgian adults
(73–88%; Imbo et al., 2007, in press; Imbo &
Vandierendonck, 2007) and in North-American adults (64–
88%, Campbell & Xue, 2001), there was no space left for
another increase in retrieval use. Thus, for multiplication,
children from fourth grade on may already have developed
a complete memory network that strongly resembles an

adult network (see also De Brauwer et al., 2006). For addi-
tion, retrieval use still increased from fourth to sixth grade.
This eVect should be attributed to general practice eVects
(e.g., increases in processing speed) rather than to speciWc
training eVects (e.g., explicit memorization of addition
facts).

Finally, procedural eYciency was higher in addition
than in multiplication, an eVect observed in adults as well
(e.g. Campbell & Xue, 2001; Hecht, 1999; Imbo et al.,
2007, in press). All age groups showed higher eYciencies
in addition than in multiplication and this eVect boosted
from fourth grade on. Indeed, between second and fourth
grade, procedural eYciency increased for multiplication but
not for addition. This early increase in multiplication
eYciency might be related to two facts. First, multiplication
is heavily trained from second grade on. As noted above,
children are taught to solve multiplication problems very
fast and accurately. Obviously, increases in procedural
eYciency are the precursors of increases in retrieval use.
Second, multiplication strategy eYciency is more suscepti-
ble to change than addition strategy eYciency. In a previ-
ous study, we observed that adults’ daily arithmetic
experience (e.g., the amount of arithmetic lessons in sec-
ondary school) inXuenced multiplication eYciency but not
addition eYciency (Imbo et al., 2007, in press). Moreover,
when explicitly practicing arithmetic problems, eVects were
larger in multiplication eYciency than in addition
eYciency (Imbo & Vandierendonck, 2007). These eVects
can be accounted for by the relative eYciency of procedural
strategies for addition and multiplication. Indeed, in both
children and adults, addition strategies are far more eYcient
(i.e., faster) than multiplication strategies. Consequently, it
is less demanding to increase multiplication eYciencies
than to increase addition eYciencies. Strategy selection and
strategy eYciency processes in other arithmetic operations
(such as subtraction and division) have been investigated
less frequently (but see Campbell & Xue, 2001; Imbo &
Vandierendonck, 2007b, c; Robinson et al., 2006; Seyler
et al., 2003) and are an issue for further research.

The role of working memory

Working-memory span was related to strategy selection in
second grade only. High-span second graders used retrieval
more frequently than did low-span second graders, but this
eVect disappeared in fourth and sixth graders. Up until now,
the relevance of working memory in children’s strategy
selection process was equivocal, since some studies
observed a correlation between working-memory span and
retrieval use (e.g., Barrouillet & Lépine, 2005), whereas
others did not (e.g., Geary et al., 2004). The current study
suggests that strategy selection processes tend to rely on
working-memory resources in young children only. This
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runs parallel to adult studies which observed that working
memory is not needed in strategy selection (e.g., Hecht,
2002; Imbo & Vandierendonck, 2007b, c).

Working-memory span was related to retrieval eYciency
in second and fourth grade, with less eYcient retrieval use
in low-span children than in high-span children. Less
eYcient retrieval use in low-span children than in high-
span children has been observed earlier (e.g., Barrouillet &
Lépine, 2005). Apparently, low-span children develop Xat-
ter distributions of problem–answer associations, resulting
in less frequent and less eYcient retrieval use. However,
with growing age and increasing practice and schooling,
even low-span children can develop peaked distributions of
problem–answer associations. Consequently, the diVer-
ences between low-span children and high-span children
decrease across primary school years. In adults, the role of
working-memory in strategy eYciency has been investi-
gated by means of dual-task studies rather than correla-
tional studies. The evidence is equivocal: Hecht (2002)
observed no eVects of working-memory load on retrieval
eYciency whereas Imbo and Vandierendonck (2007b, c)
did observe less eYcient fact retrieval under working-mem-
ory load. Future research is needed to specify the relation
between working memory and direct fact retrieval in both
children and adults.

Finally, procedural eYciency was also related to work-
ing-memory span. In second and fourth grade, low-span
children executed procedural strategies less eYciently than
did high-span children. A signiWcant role of working mem-
ory in procedural strategy execution has been observed in
adults as well (e.g., Hitch, 2002; Imbo et al., 2007b, c). The
role of working memory in procedural strategies is quite
obvious: Each procedure requires several subprocesses that
require working-memory resources, such as storing inter-
mediate results, keeping track of several steps, integrating
information, et cetera (see DeStefano & LeFevre, 2004, for
a review). High-span children and adults can carry out these
various subprocesses with fewer demands on a limited
resource pool than low-span children and adults. Conse-
quently, high-span children have more working-memory
resources left for storage while processing the problem,
resulting in higher procedural eYciency scores.

Surprisingly, we observed higher procedural eYciencies
in low-span sixth graders than in high-span sixth graders.
We suppose that this eVect was due to an artifact. Indeed,
high-span sixth graders used procedural strategies to solve
the largest problems only, which might have increased their
procedural RTs relative to low-span sixth graders, who
used procedural strategies on smaller problems as well.
This artifact occurred because we only used a choice condi-
tion, in which strategy eYciency data are biased by strategy
selection eVects (Siegler & Lemaire, 1997). Such a bias
would have been avoided by using the choice/no-choice

method (devised by Siegler & Lemaire, 1997), which not
only entails a choice condition, but also no-choice condi-
tions. In no-choice conditions, participants are asked to
use one single strategy to solve all problems. In a recent
study using the choice/no-choice method, we indeed showed
that loading sixth graders’ working-memory resources
resulted in less eYcient procedural strategy use (Imbo &
Vandierendonck, 2007a).

Finally, it should be noted that the advantage of having a
large working-memory capacity decreased across age. The
relation between working-memory span and retrieval fre-
quency was not signiWcant anymore from fourth grade on,
and the relation between working-memory span and
retrieval eYciency was not signiWcant anymore from sixth
grade on. These results are consistent with Ackerman’s
(1988) Wndings. SpeciWcally, working memory is most
important during the initial phase of arithmetic-skill acqui-
sition and its role declines as procedures are used less fre-
quently and facts become represented in long-term
memory. Working-memory resources might thus be needed
to achieve a complete representation of number facts in
long-term memory (e.g., Geary, 1990; Geary & Brown,
1991; Hitch & McAuley, 1991; Siegler & Shrager, 1984),
which explains the correlation between working-memory
span and retrieval use in the younger children. However,
once the number facts are completely represented in long-
term memory, fact retrieval becomes more automatic and
less eVortful, resulting in smaller arithmetic-performance
diVerences between high-span children and low-span chil-
dren.

A model of strategic change

In the ASCM (Siegler & Shipley, 1995), outlined in the
introduction, people have several strategies available and
try to choose the best one. Strategy selection occurs on the
basis of knowledge on each strategy’s eYciency. Each time
a simple-arithmetic problem is solved correctly, the prob-
lem–answer association increases, resulting in a more
peaked distribution of problem–answer associations. The
more peaked the distribution of problem–answer associa-
tions, the more frequently retrieval is used; while the use of
procedural strategies vanishes. This reasoning Wts with our
data, since the frequency of retrieval use increased across
age.

Across age, the eYciency of both retrieval and proce-
dural strategies increased as well. This observation can also
be accounted for by the ASCM. Indeed, each time an
answer is retrieved from long-term memory, the problem–
answer association is strengthened. As outlined above, this
results in more peaked distributions of problem–answer
associations and thus in more eYcient retrieval use. Each
execution of a procedural strategy brings an increase in the
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strategy’s speed and a decrease in its probability of generat-
ing an error. The ASCM thus accounts for age-related
increases in both retrieval eYciency and procedural
eYciency.

To summarize, in the ASCM, both retrieval frequency
and retrieval eYciency depend on the peakedness of the
problem–answer association, whereas procedural eYciency
does not. We tested the hypothesis that the frequency of
retrieval use would be highly correlated with retrieval
eYciency but not with procedural eYciency. Regression
results conWrmed this prediction, since the frequency of
retrieval use was highly predictive of retrieval eYciency in
all grades, whereas the frequency of retrieval use was not
predictive of procedural eYciency.

In the following, we verify whether the ASCM is able to
account for the size-related, operation-related, and
resource-related results observed in children and adults.
First, what does the ASCM tell about the problem-size
eVect? Because small problems are more frequently
encountered, young children develop peaked problem–
answer associations for small problems and relatively Xat
problem–answer associations for large problems. They
might also set larger search lengths for small problems,
because they are taught that small problems should be
retrieved in any case. More peaked problem–answer associ-
ations and larger search lengths for small problems than for
large problems results in increases in retrieval frequency
for small problems but not in increases in retrieval
eYciency for small problems, which is exactly what we
observed between second and fourth grade. However, as
children grow older, the emphasis shifts towards large
problems. This results in more peaked problem–answer
associations for large problems and thus in more frequent
retrieval use for large problems, as observed between fourth
and sixth grade.

However, some results are more diYcult to explain by
the ASCM. Theoretically, the ASCM predicts that exten-
sive practice should create equally peaked problem–answer
associations for small and large problems. Accordingly,
retrieval frequency and retrieval eYciency should be equal
in small as in large problems. Such eVects, however, have
not yet been observed; the retrieval problem-size eVect is
still present in adults (e.g., Campbell & Xue, 2001; Imbo
et al., in press; LeFevre et al., 1996a, b), even after explicit
practice (e.g., Imbo & Vandierendonck, 2007). One expla-
nation for the persisting problem-size eVect is that adult’s
problem–answer associations for small problems are still
stronger for small problems than for large problems.
Another explanation is based on interference eVects
(Campbell, 1987, 1995): answers to large problems
undergo stronger interference eVects than do answers to
small problems, resulting in less eYcient retrieval for large
than for small problems. Future research is needed to clear

up the persistent nature of the problem-size eVect across
lifetime.

Second, what can the ASCM tell about the diVerences
across addition and multiplication? More frequent retrieval
use for multiplication than for addition suggests more
peaked distributions of associations for multiplication than
for addition. However, multiplication facts are retrieved
less eYciently than addition facts, which suggests rather the
opposite (i.e., more peaked distributions for addition than
for multiplication). Thus, although the notion of peaked and
Xat distributions is relevant within each operation (i.e.,
peaked distributions predict frequent and fast retrieval use),
it is not clear how this notion can account for diVerences in
retrieval frequency and retrieval speed across operations.
One possibility is that the search length is larger for multi-
plication than for addition. Indeed, this would result in
more frequent retrieval use for multiplication than for addi-
tion and in less eYcient (i.e., slower) retrieval use for multi-
plication than for addition. The more eYcient procedural
use for addition than for multiplication can easily be
accounted for by the ASCM, in which procedural eYcien-
cies are based on the amount and the diYculty of steps.
Because fewer increments of counting steps are needed in
addition procedures than in multiplication procedures, pro-
cedural strategies are much easier to implement in addition
than in multiplication.

Finally, we consider whether the ASCM may account
for the role of working memory in strategic performance.
Although working memory is not explicitly included in the
ASCM, it has been predicted (e.g., Geary, 1993, 1994) that
low-span children use slow counting procedures, which
lead to delays in problem encoding and consequently to
weak problem–answer associations and Xat distributions of
associations. High-span children, in contrast, develop
strong problem–answer associations and more peaked dis-
tributions of associations, resulting in more frequent and
more eYcient retrieval use. More frequent and more
eYcient retrieval use in high-span children than in low-
span children is exactly what we observed. However, with
growing age and experience, even low-span children may
develop strong problem–answer associations and more
peaked distributions of associations. Hence, the diVerences
in retrieval performance between low-span and high-span
children should decrease across the primary school years,
as was observed in the current study.

It should be noted, however, that other models may also
account for the relation between working-memory span and
retrieval performance. The time-based resource-sharing
model of working memory (Barrouillet et al., 2004), for
example, predicts that lower working-memory resources
reduce the amount of attentional resources available to acti-
vate knowledge from long-term memory (see also Cowan,
1999; Lovett et al., 1999). Consequently, poor working-
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memory resources not only impair the formation of associa-
tions in long-term memory but also the retrieval of existing
associations. In other models (e.g., Engle, 2001; Engle,
Kane, & Tuholski, 1999), lower working-memory resources
reduce the ability to resist interference, which might also
result in less eYcient retrieval performance. Thus far, our
and other’s results (e.g., Barrouillet & Lépine, 2005) do not
contradict the theories mentioned above. Future research is
thus needed to investigate the predictive value of several
models in the domain of mental arithmetic and cognitive
strategy use, and more speciWcally to investigate the spe-
ciWc role of working memory in retrieval frequency and
retrieval eYciency.
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