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Abstract. In this paper we present experiments with data-driven part-of-speech
taggers trained and evaluated on the annotated Helsinki Corpus of Swahili. Using
four of the current state-of-the-art data-driven taggers, TnT, MBT, SVMTool and
MXPOST, we observe the latter as being the most accurate tagger for the Kiswahili
dataset.We further improve on the performance of the individual taggers by combining
them into a committee of taggers. We observe that the more naive combination
methods, like the novel plural voting approach, outperform more elaborate schemes
like cascaded classifiers and weighted voting. This paper is the first publication to
present experiments on data-driven part-of-speech tagging for Kiswahili and Bantu
languages in general.

1 Introduction

It is well-known that Part-of-Speech (POS) taggers are crucial components in the develop-
ment of any serious application in the fields of Computational Linguistics (CL), Natural Lan-
guage Processing (NLP) or Human Language Technology (HLT). While great strides have
been made for (major) Indo-European languages such as English, Dutch and German, work
on the Bantu languages is scarcely out of the egg. The Bantu languages - of which there
are roughly five to six hundred - are basically agglutinating in nature, are characterized by a
nominal class system and concordial agreement, and are spoken from an imaginary line north
of the Democratic Republic of the Congo all the way down to the southern tip of the African
continent.

A particularly active region with regard to work on POS taggers for the Bantu languages
is South(ern) Africa, but so far the projects have unfortunately not gone much beyond the
development of (proposed) tagsets and, in some cases, prototype modules for morphological
analysis. In this regard, the EAGLES tagset was adjusted for Setswana [1], a different tagset
and suggestions to venture into Transformation-Based Tagging were presented for isiXhosa
[2], yet another tagset and a combination of rule-based symbolic tagging and statistical
tagging were offered as a corpus-processing tool for Sesotho sa Leboa [3,4], and a prototype
finite-state morphological analyzer was developed for isiZulu [5,4].

For Kiswahili — a Bantu language spoken by up to fifty million people in East Africa
(which makes it one of the most widely spoken African languages) — the situation is
markedly different. Close to two decades of work at the University of Helsinki resulted in a
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relatively large corpus, the Helsinki Corpus of Swahili (HCS) [6], which has been thoroughly
analyzed and carefully annotated using a two-level finite-state formalism, with morphological
disambiguation carried out using a Constraint Grammar Parser [7]. The POS tag information
in HCS allows one to use supervised learning techniques to build data-driven POS taggers
and to perform a quantitative comparative evaluation of the available techniques. The latter
is exactly the purpose of this paper.

2 An Annotated Corpus of Kiswahili: HCS

Lexical ambiguity in Kiswahili is limited, making POS tagging relatively straightforward,
but still far from trivial, as illustrated in the following example:

(1) paka alianguka ndani ya maji
��� ���� ���� �� 	����

noun verb adverb adjective noun
verb noun preposition

To tackle this disambiguation problem, we investigate the applicability of existing data-driven
POS taggers. These methods have in common that they require a large amount of annotated
data to induce the word class disambiguation task. For the experiments we used the POS tag
annotated part of the aforementioned HCS as our training material.

After some general data clean-up and disposal of duplicate sections, we had a corpus of
3,656,821 words (169,702 sentences) available. To obtain a reasonable spread in language
usage, we randomized the sentences in the corpus, so that the tagger would not be biased
towards a particular type of text during training. Given the expansive size of the corpus, full
10-fold cross validation experiments were not feasible. We therefore randomly divided the
corpus into a 80% training set (2,927,846 words), a 10% validation set (362,866 words) on
which the optimal parameters of the algorithms could be established, and finally a 10% blind
test set (366,109 words) for evaluation on unseen text.

3 Data-Driven Taggers

The last 15 years have witnessed corpus-based methods making tremendous headway in
providing accurate and robust POS taggers. Many of these tools have since been made
publicly available, so that they can relatively easily be applied to new languages when
annotated corpora become available. In this section, we briefly introduce the taggers used
for the experiments.

TnT (Trigrams’n’Tags): Hidden Markov Modeling One of the most common approaches to
data-driven POS tagging is using Hidden Markov Models (HMMs). A very sophisticated
HMM tagger is the Trigrams’n’Tags (TnT) tagger1 [8]. It improves on previous HMM
approaches through the use of well established smoothing methods and its more sophisticated
processing of unknown words, capitalized words and sentence boundaries.

1 TnT is available from �������			����������������������������������
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MXPOST: Maximum Entropy Modeling Maximum entropy modeling has consistently been
achieving top performance on a variety of NLP tasks. The maximum entropy tagger,
MXPOST2 [9], is typically able to beat most other POS taggers in a direct comparison [10].
Like most other taggers, it uses lexical information about the word to be tagged, contextual
features (preceding, following tags) and morphological features (prefix, suffix letters).

MBT: Memory-Based Learning With its emphasis on symbolic processing and its inherent
robustness to exceptions, Memory-Based Learning (MBL) is particularly well suited for NLP
classification tasks. The Memory-Based Tagger (MBT)3 [11] induces two taggers from the
training data: one for known words and one for unknown words, the former using contextual
clues, while the latter also uses orthographical features.

SVMTool: Support Vector Machines Support Vector Machines (SVMs) have been success-
fully applied to a wide range of classification tasks [12], but only recently has an SVM-based
POS tagging tool become available: SVMTool4 [13], which functions as a set of pre- and
postprocessing scripts for SVM-Light [14]. SVMTool has been shown to outperform TnT on
English data [13], but has so far not been extensively compared to other methods and on other
datasets.

4 Experiments: Individual Tagger Performance

In this section, we outline the performance of the individual data-driven taggers trained and
evaluated on the Kiswahili dataset. The training, validation and test sets outlined in Section 2
were kept constant for all of the experiments, allowing for a systematic and direct comparison
between the tagging methods.

In a first phase, algorithmic parameters and information source are optimized on the
basis of the validation set. The taggers obtained from this training and optimization phase
are subsequently used to tag the held-out test set. The accuracy of the respective taggers is
calculated by comparing the output of the taggers to the gold-standard annotation provided
by HCS.

The average per-word lexical ambiguity in the Kiswahili dataset is quite favorable, with
only an average of 1.3 possible tags per word. This figure indicates that (on the basis of the
HCS tagset) there is not a lot of lexical ambiguity in Kiswahili. Roughly 3% of the words
(about 12,000 words) in the validation set, as well as the test set, are unknown, meaning that
they do not occur in the training set.

The limited lexical ambiguity is further illustrated by the high score achieved by the
baseline method: a simple statistical unigram method, which assigns to each of the known
words in the test set the tag it has been most often associated with in the training set. For
unknown words, it assigns the tag most frequently associated with unknown words in the
validation set (PROPNAME). This baseline method already achieves more than 97% accuracy
on known words (Table 1), but does not handle unknown words very well with a score of
only 18.59%.

2 MXPOST is available from �����������������������������	�����������������
3 MBT is available from ���������������������	��������
4 SVMTool is available from �������			���������������� !"#����
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Table 1. Accuracy scores on blind test set (366K words) and approximate CPU times for the individual
taggers

Accuracy Scores CPU Time
Tagger Known Words Unknown Words Total Train Tag

Baseline 97.01% 18.59% 94.50% 4s 1s
TnT 98.00% 91.66% 97.79% 9s 4s
MBT (default) 98.39% 90.59% 98.14% 3m 20s
MBT (optimal) 98.46% 91.61% 98.25% 6m 8m
SVMTool 98.48% 91.30% 98.24% ±80h 15s
MXPOST 98.61% 93.32% 98.44% ±5h 90s

Table 1 indicates that the TnT tagger by far exhibits the most efficient processing times
of all data-driven taggers5. Despite an exhaustive optimization phase on the validation set
(which still revealed the default settings to perform the best), the performance of the TnT
tagger trails in direct comparison to the other taggers. It nevertheless establishes a significant
increase compared to the baseline tagger, particularly with respect to unknown words.

The default MBT uses a context of two disambiguated tags to the left of the word to be
tagged and one ambiguous tag to the right. Table 1 shows that the default MBT performs
quite well for known words, but is lacking for unknown words. We subsequently performed
extensive optimization experiments during which we established the ideal information source
and optimal algorithmic parameters. For known and unknown words, this equaled to three
tags before and after the word to be tagged. For unknown words, we also took into account
five prefix and suffix letters and information on capitalization, hyphenation and numerical
characters within the word. While this optimization had a significantly positive effect on the
accuracy of the tagger, particularly on the processing of unknown words, it has a detrimental
effect on CPU time during classification.

Typical for SVM-based methods, SVMTool has a laborious training phase, but very
attractive efficiency properties during classification. The training phase of the SVMTool
tagger is rather problematic with a processing time of several days, which rendered
optimization experiments unfeasible. Table 1 therefore presents the accuracy scores on the
test set using the default radial basis kernel. As expected however, tagging time is very
favorable and SVMTool’s performance is easily able to match that of the optimized MBT.
Its lower performance on processing unknown words means it achieves a barely significantly
lower score than MBT, but we are confident that further optimization experiments can at least
level the field.

In direct comparison with other data-driven taggers, the MXPOST tagger further
establishes its state-of-the-art status. The default settings of MXPOST were confirmed as
performing the best during optimization experiments on the validation set, except for the
number of iterations (we used 500 iterations during training instead of the default 200).
Table 1 illustrates that MXPOST is able to achieve the highest accuracy, with a particularly
impressive accuracy score for unknown words. Compared to the baseline tagger, MXPOST
achieves an error reduction rate of 72% (54% on known words, 92% on unknown words).

5 Approximate CPU time was measured on a dual 64bit AMD Opteron 2.44GHz system with 6GB
RAM.
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Data analysis showed that most taggers are able to resolve ambiguity well. The MXPOST
tagger for instance has an accuracy of more than 94% on ambiguous words. Interestingly
however, both TnT and MBT beat MXPOST when it comes to unambiguous words, which
means MXPOST makes slightly more mistakes on words that should not be considered
ambiguous. MXPOST seems to avoid overfitting the training data, by a more loose definition
of lexical ambiguity, while the other 3 taggers tend to choose the single tag associated with
the word in the lexicon.

The most common mistake made by all taggers is the tagging of a preposition (PREP) as
an agentative particle (AG-PART) and vice versa. This accounts for almost 20% of all tagging
errors. Other common mistakes include the tagging of a noun as a verb and the tagging of a
proper name as a noun.

5 Experiments: System Combination

While some studies [15] suggest that classifier bias can be minimized given an exhaustive
search through algorithmic parameters and information source, in practice most data-driven
taggers exhibit quite different tagging behavior given the same data set. In the system
combination experiments, we try to exploit these differences by combining the output of the
taggers to create a type of tagging committee that agrees on a tag for a word. Data analysis
indeed shows that only 97.23% of the time do the taggers all predict the same tag. 96.75% of
the time do the taggers agree on a tag which matches the correct tag. Furthermore, only 0.5%
of the time, do the taggers all agree on the same erroneous tag.

These figures indicate that there is enough disagreement between the individual taggers to
obtain a considerable increase using system combination. This type of system combination
is again performed in two processing steps: first we use the four data-driven taggers to tag
the validation set and test set. We then create a new dataset with 6 columns: the word, the
four tagger predictions and the gold-standard tag. The upper bound performance of any given
combination method can be found on the last line of Table 2. If we were to have an oracle
which, given the four possible predicted tags, always chooses the correct one, we could obtain
a tagging accuracy of 99.44%.

Table 2. Results of system combination experiments

Method Known Words Unknown Words Total

MXPOST 98.61% 93.32% 98.44%

Majority Voting 98.53% 93.12% 98.36%
Weighted Voting 98.59% 93.68% 98.42%
Plural Voting 98.72% 92.72% 98.56%
MXPOST+LLU 98.79% 93.32% 98.61%
Cascaded Classifier 98.63% 93.37% 98.46%

Oracle 99.52% 96.85% 99.44%

The first combination method we consider, simple majority voting, chooses for each
word the tag that is most often predicted by the taggers. Ties are resolved randomly. This
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combination method improves on all of the individual taggers, except MXPOST. Apparently,
many of the correct tags suggested by MXPOST are outvoted by the other taggers. To counter
this effect, we implemented two more refined voting methods: weighted voting and plural
voting. Interestingly, weighted voting in which the weight of each classifier’s vote is equal to
its observed accuracy on the validation set, again fails to yield a performance increase.

We also experimented with a more naive voting method, plural voting, in which we
attribute MXPOST four votes, MBT and SVMTool three votes and TnT two votes. These
values were manually chosen on the basis of their performance on the validation set. Plural
voting achieves a higher accuracy on the test set than any of the individual taggers. To our
knowledge, plural voting has not yet been attempted as a system combination technique. It
is therefore interesting to observe that this very naive combination method outperforms the
more sophisticated weighted voting method.

We previously observed that MXPOST makes more mistakes on unambiguous words than
the other taggers, but is better at handling ambiguous words. Since ambiguity information is
available before tagging, we are able to propose a combined system, where MXPOST tags
ambiguous and unknown words and a simple lexicon lookup approach handles unambiguous
words. This almost trivial combination method yields a substantial performance increase with
an overall tagging accuracy of 98.61% (MXPOST+LLU in Table 2).

A last combination method takes the output of the taggers and transforms them into
instances that can be used as training material for a machine learning algorithm, with the
gold-standard tag as the class to be predicted. The tagged validation set was used to create
a training set for a memory-based classifier which classified the instance base generated
from the test set. The output tags were then considered as the final tag proposed by the
tagger committee. Table 2 shows that the cascaded classifier is indeed able to improve on
any of the individual taggers with an overall accuracy of 98.46%. Interestingly however, this
combination method underperforms compared to the more naive combination methods.

The best system combination method (MXPOST+LLU) achieves an error reduction rate of
more than 11% compared to the best individual tagger. While this increase in accuracy is not
as dramatic compared to those observed for other languages and datasets [10], it nevertheless
establishes further proof that system combination is able to overcome the individual taggers’
bias to a significant extent. Moreover, given the upper-bound accuracy obtained by the oracle,
there is still ample room for improvement for other system combination methods, especially
for the disambiguation of unknown words.

6 Future Work and Conclusion

In this paper we presented experiments with data-driven part-of-speech taggers trained and
evaluated on the annotated Helsinki Corpus of Swahili. We selected four of the current state-
of-the-art data-driven taggers, TnT, MBT, SVMTool and MXPOST, and observed the latter
as being the most accurate tagger for this dataset. In another set of experiments, we further
improved on the performance of the individual taggers by combining them into a committee
of taggers. Surprisingly, we observed the more naive combination methods, like the novel
plural voting approach, outperform more elaborate schemes like cascaded classifiers and
weighted voting.

This paper presents the first direct comparison of data-driven taggers on this particular
data set. We are confident that significant increases in tagging accuracy can still be
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obtained through various stages of algorithmic optimization and more refined system
combination methods. The results of SVMTool in particular can undoubtedly be improved
through the selection of a more appropriate kernel and a thorough validation phase.
Furthermore, the inclusion of other data-driven tagging methods such as CRF++, WPDV [10]
or Transformation-Based Tagging [16] might also improve the performance of the system
combination methods.

Future work will include learning curve experiments to determine how much data is
minimally needed to obtain optimal performance. Thorough data analysis is further needed
to investigate the way the taggers handle morphological issues in Kiswahili. Affixation is an
important indicator of word class in Kiswahili and all of the data-driven taggers used in the
experiments only cover this aspect indirectly on the level of the grapheme. Perhaps a more
rigid morphologically inspired approach to part-of-speech tagging, where morphological
analysis functions as a preprocessing step, might provide a significant performance increase.
Despite the limitations of the taggers presented in this paper, we nevertheless hope that the
results presented herein can function as a first benchmark for future research on data-driven
part-of-speech tagging of Kiswahili, and Bantu languages in general.
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