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Abstract In this paper, we study the behavior of a discrete-time multiserver buffer
system with infinite buffer size. Packets arrive at the system according to a two-state
Markovian arrival process. The service times of the packets are assumed to be con-
stant, equal to multiple slots. The behavior of the system is analyzed by means of
an analytical technique based on probability generating functions (PGF’s). Explicit
expressions are obtained for the PGF’s of the system contents and the packet delay.
From these, the mean values, the variances and the tail distributions of the system
contents and the packet delay are calculated. Numerical examples are given to show
the influence of various model parameters on the system behavior.

Keywords Discrete-time queueing model · Correlated arrivals · Multiple servers ·
Performance analysis · Generating functions

1 Introduction

Discrete-time queueing models have been used for many years to analyze the behav-
ior and performance of digital communication networks, where buffers are used for
the temporary storage of information packets awaiting transmission. In such discrete-
time models, time is divided into fixed-length slots and the service or transmission
of packets starts and ends at slot boundaries only. In the scientific literature, many
results can be found with respect to the analysis of discrete-time single-server queues
with various types of (uncorrelated or correlated) packet arrival processes and various
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270 P. Gao et al.

types of service-time distributions. For systems with multiple servers however fewer
results are available. First, most studies of multiserver systems assume constant service
times of one slot (see e.g. Bruneel et al. 1992; Bruneel and Kim 1993). Only a lim-
ited number of papers consider more general service-time distributions. Multiserver
systems with geometrically distributed service times have been studied in Rubin and
Zhang (1991), Chaudhry et al. (2001), Artalejo and Hernandez-Lerma (2003), Gao
et al. (2003), Chaudhry et al. (2004) and Gao et al. (2004b,c); queues with multiple
servers and constant service times of arbitrary length have been studied in Bruneel and
Wuyts (1994) and Gao et al. (2004a). Second, in case of multiple servers, mostly an
uncorrelated packet arrival process is considered, i.e., the numbers of packet arrivals
during the consecutive slots are assumed to be independent (see e.g. Rubin and Zhang
1991; Bruneel et al. 1992; Bruneel and Kim 1993; Bruneel and Wuyts 1994; Artalejo
and Hernandez-Lerma 2003; Gao et al. 2004a,b). In Gao et al. (2003) and Gao et al.
(2004c), for the case of geometric service times, more general, so-called correlated
packet arrival processes are considered, which are more adequate to describe the bursty
nature of the traffic in nowadays communication networks.

In the present paper, we investigate the behavior of a discrete-time multiserver
buffer system with constant service times of multiple slots and correlated arrivals.
Specifically, as a first step, we consider a two-state Markovian arrival process, where
the distribution of the number of packet arrivals in a slot is assumed to depend on the
value of a Markovian variable that represents the traffic source behavior. There are two
possible states, each with geometrically distributed sojourn times. Such an arrival pro-
cess allows to take into account the correlation between the numbers of packet arrivals
during consecutive slots, while still being analytically tractable. For more details we
refer to Blondia (1993). Note also that the correlation in the arrival process is strictly
Markovian by nature and has an exponential decay over larger time lags. The model
qualifies as strictly short range dependent (SRD) and our current analysis does not
deal with long range dependent (LRD) traffic; for the latter, other analysis techniques
need to be used, we refer to Daniels and Blondia (2000) for the case of single-slot
service times. From the above survey, the paper can be seen as a first generalization
of Bruneel and Wuyts (1994) and Gao et al. (2004a) to the case of correlated arrivals.
It is also an extension of Wittevrongel and Bruneel (1999) to the multiserver case.

The paper is organized as follows. In Sect. 2, we describe the system under study
and introduce some notations. In Sect. 3, the PGF’s of the partial system contents and
system contents are derived, and the mean value, the variance and the tail distribution
of the system contents are calculated. In Sect. 4, the characteristics of the packet delay
are analyzed. In Sect. 5, some numerical examples and further discussion of the results
are given. Finally, the paper is concluded in Sect. 6.

2 System under study

We consider a discrete-time multiserver queueing system with correlated arrivals (see
Fig. 1). The specific modeling assumptions are as follows:

(a) The system has an infinite capacity for the storage of packets.
(b) The number of servers (or output channels) is equal to c (c ≥ 1).
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Analytic study of multiserver buffers with two-state Markovian 271

Fig. 1 System model

(c) Time is divided into fixed-length slots. The service (or transmission) of a packet
via an output channel can start or end at slot boundaries only, and the service times
of the packets are deterministic, equal to s (s ≥ 1) slots.

(d) Packets are served (transmitted) based on a first-come-first-served (FCFS) queue-
ing discipline.

(e) Packets arrive in the system according to a Markovian arrival process. Specifi-
cally, the traffic source has a bursty nature and alternates between two states, state
0 and state 1. Transitions between the states are assumed to occur at slot bound-
aries. The numbers of consecutive slots during which the source state is 0 or 1
are called 0-times and 1-times, respectively. The 0- and 1-times are independent
geometrically distributed random variables with parameters α and β, respectively,
i.e.,

Prob[0-time = n slots] = (1 − α)αn−1, n ≥ 1;
Prob[1-time = n slots] = (1 − β)βn−1, n ≥ 1.

This assumption implies a first-order Markovian correlation in the state of the
source, meaning that the probability that the source is in state 0 or state 1 in any
given slot is fully determined by the state of the source in the previous slot. In
particular, if the source is in state 0 during a slot, it will remain in state 0 with
probability α or turn to state 1 with probability 1 − α during the next slot; if the
source is in state 1 during a slot, it will remain in state 1 with probability β or
turn to state 0 with probability 1 − β during the next slot (see Fig. 1). The case of
uncorrelated source states from slot to slot corresponds to γ = α + β − 1 = 0,
where γ is the coefficient of correlation between the source states in two consec-
utive slots in the steady state. Note also that the autocorrelation with lag k of the
source state equals γ k , so there is an exponential decay over larger time lags. The
number of packet arrivals during a slot has an arbitrary distribution which depends
only on the source state during the slot. We denote the probability mass functions
(PMF’s) of the numbers of arrivals during an arbitrary slot where the source state
is 0 or 1 by a0(n) or a1(n), i.e.,

am(n) � Prob
[
n arrivals in a slot where the source state is m

]
,

n ≥ 0, m = 0, 1,

and the corresponding PGF’s by A0(z) and A1(z), respectively.
(f) The service and arrival processes are assumed to be mutually independent.
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With the above assumptions, it is clear that the queueing system can only reach a
steady state if

ρ = s
[
σ0 A′

0(1) + σ1 A′
1(1)

]

c
< 1.

Here ρ denotes the load of the system, σ0 and σ1 denote the probabilities that the
source is in state 0 or state 1, respectively, during an arbitrary slot in the steady state:

σ0 = 1 − β

2 − α − β
= 1 − β

1 − γ
;

σ1 = 1 − α

2 − α − β
= 1 − α

1 − γ
,

and A′
0(1) and A′

1(1) are the average arrival rates of packets when the source state is
0 or 1, respectively. In the analysis that follows, we assume this equilibrium condition
to be satisfied.

3 System contents and partial system contents

3.1 PGF’s of the total and partial system contents

In order to study the system contents, we first introduce the following random vari-
ables. We denote by vk the system contents (i.e., the total number of packets in the
buffer system, including the packets under transmission, if any) at the beginning of
slot k, ak denotes the number of packet arrivals during slot k, and tk is the state of the
source during slot k. Furthermore, we let u j,k denote the partial system contents of
degree j at slot k, i.e., the number of packets in the system at the beginning of slot
k whose service has progressed for at most j slots at the end of slot k. Note that no
packets in the system at the beginning of a slot have received more than s slots of
service at the end of the slot due to the constant nature of the service times. Then, we
have the following system equations:

vk = us,k, (1)

u j,k+1 = u j−1,k + ak, 1 ≤ j ≤ s, (2)

u0,k = (us,k − c)+, (3)

where (· · · )+ = max(0, . . .). Indeed, the right-hand side of (3) is the queue length
at the beginning of slot k, i.e., the number of packets present in the system at the
beginning slot k whose service has not yet started by the end of the slot. In the steady
state, the distributions of the above random variables become independent of the time
index k. We denote by V (z) and U j (z) the PGF’s of the random variables vk and u j,k ,
respectively, when steady state is reached.

The next step is now to transform the system equations (1)–(3) into the z-domain.
Since the random variables on the right-hand side of (2) are not independent and ak is
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completely determined by the state tk of the source in slot k, we define the joint PGF
of the random variables (tk , u j,k) as

Y j,k(x, z) � E
[
xtk zu j,k

]

=
1∑

m=0

∞∑

n=0

Prob
[
tk = m, u j,k = n

]
xm zn . (4)

Using the system equation (2), we then obtain

Y j,k+1(x, z) = E
[
xtk+1 zak zu j−1,k

]
, 1 ≤ j ≤ s. (5)

To further calculate Y j,k+1(x, z) in (5), we need the joint PGF of the random vari-
ables (tk+1, ak). From the arrival process description in Sect. 2, it follows that {tk} is a
homogeneous two-state Markov chain and the distribution of ak depends only on the
value of tk . More specifically, the joint PGF of the random variables (tk+1, ak) can be
written in terms of the PGF of the random variable tk as follows

E[xtk+1 zak ] = E
[
xtk+1 zak

∣∣tk =0
] · Prob

[
tk =0

]+E
[
xtk+1 zak

∣∣tk = 1
] · Prob

[
tk = 1

]

= T0(x, z) · Prob
[
tk = 0

] + T1(x, z) · Prob
[
tk = 1

]

= T0(x, z) E

[(
T1(x, z)

T0(x, z)

)tk ]
, (6)

where

T0(x, z) = [α + (1 − α)x]A0(z),

T1(x, z) = [1 − β + βx]A1(z).

Combining Eqs. (4)–(6), we can express the steady-state PGF Y j (x, z) as

Y j (x, z) = lim
k→∞ T0(x, z) E

[(
T1(x, z)

T0(x, z)

)tk
zu j−1,k

]

= T0(x, z) Y j−1

(
T1(x, z)

T0(x, z)
, z

)
, 1 ≤ j ≤ s. (7)

Next, let us introduce the following partial PGF’s:

Y j;m(z) � lim
k→∞

∞∑

n=0

Prob
[
u j,k = n, tk = m

]
zn, 0 ≤ j ≤ s.

Then the function Y j (x, z) is expressed as

Y j (x, z) = Y j;0(z) + xY j;1(z), 0 ≤ j ≤ s. (8)
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Substitution of (8) in the functional equation (7) and identification of the coefficients
of equal powers of x on both sides of the resulting equation then yields the following
set of two recursive equations for Y j;0(z) and Y j;1(z):

{
Y j;0(z) = αA0(z) Y j−1;0(z) + (1 − β)A1(z) Y j−1;1(z),

Y j;1(z) = (1 − α)A0(z) Y j−1;0(z) + β A1(z) Y j−1;1(z),

or in a matrix form

[
Y j;0(z)
Y j;1(z)

]

=
[

αA0(z) (1 − β)A1(z)

(1 − α)A0(z) β A1(z)

]

·
[

Y j−1;0(z)
Y j−1;1(z)

]
, 1 ≤ j ≤ s. (9)

By repeated use of Eq. (9), we find

[
Y j;0(z)
Y j;1(z)

]

= M j
[

Y0;0(z)
Y0;1(z)

]
, 1 ≤ j ≤ s, (10)

where

M j =
[

M00
j (z) M01

j (z)
M10

j (z) M11
j (z)

]

�
[

αA0(z) (1 − β)A1(z)
(1 − α)A0(z) β A1(z)

] j

.

In a similar way, now using the system equations (1) and (3), we get

Y0,k(x, z) = E
[
xtk zu0,k

]

= E
[
xtk z(vk−c)+

]

= z−c E
[
xtk zvk

∣∣vk ≥ c
]

Prob[vk ≥ c] + E
[
xtk

∣∣vk < c
]

Prob[vk < c].
(11)

The steady-state PGF Y0(x, z) is then obtained as

Y0(x, z) = z−cYs(x, z) +
1∑

m=0

c−1∑

n=0

v(n, m)xm(1 − zn−c), (12)

where

v(n, m) � lim
k→∞ Prob[vk = n, tk = m]

= Prob[v = n, t = m], m = 0, 1; 0 ≤ n ≤ c − 1.
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Using (8), we find

[
Y0;0(z)
Y0;1(z)

]

= z−c

{[
Ys;0(z)
Ys;1(z)

]

+
[∑c−1

n=0 vn0(z)
∑c−1

n=0 vn1(z)

]}

, (13)

where

vnm(z) � v(n, m)(zc − zn), m = 0, 1; 0 ≤ n ≤ c − 1.

Combination of Eqs. (10) and (13) finally gives

zc

[
Y j;0(z)
Y j;1(z)

]

= M j

{[
Ys;0(z)
Ys;1(z)

]

+
[∑c−1

n=0 vn0(z)
∑c−1

n=0 vn1(z)

]}

, 0 ≤ j ≤ s. (14)

Note that the correctness of Eq. (14) can also be seen as follows. First, z−c
[
Ys;i (z) +

∑c−1
n=0 vni (z)

]
is the partial PGF of the number of waiting packets while the arrival

process is in state i [see also (13)]. Also, the transposed of M j holds the PGF’s of the
number of arrivals in a time interval of length j slots. Therefore, since none of the
packets waiting at the beginning of a slot have received j slots of service j slots further
in time, Eq. (14) readily follows. The entries of the matrix M j can be expressed in
terms of the 2 eigenvalues λ1 and λ2 of the matrix M , by using the property that λ1

j

and λ2
j are the 2 eigenvalues of the matrix M j , as follows:

M00
j (z) = λ

j+1
1 − λ

j+1
2 + β A1(z)(λ

j
2 − λ

j
1)

λ1 − λ2
;

M01
j (z) = (1 − β)A1(z)(λ

j
1 − λ

j
2)

λ1 − λ2
;

M10
j (z) = (1 − α)A0(z)(λ

j
1 − λ

j
2)

λ1 − λ2
;

M11
j (z) = λ

j+1
1 − λ

j+1
2 + αA0(z)(λ

j
2 − λ

j
1)

λ1 − λ2
,

where

λτ = αA0(z) + β A1(z)

2

±
√[αA0(z) + β A1(z)]2 − 4γ A0(z)A1(z)

2
, τ = 1, 2,

with ± being + for τ = 1 and − for τ = 2. Note that λ1 and λ2 are functions of
z. However, we write λτ instead of λτ (z) to ease the notation. For the detail of the
calculations of the matrix M j , we refer to Gao (2006).
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When j = s, Eq. (14) leads to a set of linear equations for Ys;0(z) and Ys;1(z), from
which the partial PGF’s Ys;0(z) and Ys;1(z), as well as the PGF of the system contents
V (z) = Ys;0(z) + Ys;1(z) can be calculated. Substitution of the results for Ys;0(z) and
Ys;1(z) in (14) moreover enables the calculation of the PGF U j (z) = Y j;0(z)+Y j;1(z)
of the partial system contents of degree j , 0 ≤ j ≤ s. By means of

λ1 + λ2 = αA0(z) + β A1(z);
λ1λ2 = (α + β − 1)A0(z)A1(z),

and some straightforward, but rather tedious mathematical manipulations, the follow-
ing expressions are obtained:

V (z) = 1

λ1 − λ2

c−1∑

n=0

{ [
λ1λ

s
2

zc − λs
2

− λ2λ
s
1

zc − λs
1

]
vn(z)

+ zc(λs
1 − λs

2)[A0(z)vn0(z) + A1(z)vn1(z)]
(zc − λs

1)(z
c − λs

2)

}
; (15)

U0(z) = z−c

[

V (z) +
c−1∑

n=0

vn(z)

]

; (16)

U j (z) = λ
j
1 − λ

j
2

λs
1 − λs

2
V (z) − λ

j
1λ

s
2 − λ

j
2λ

s
1

λs
1 − λs

2
U0(z), 0 ≤ j ≤ s, (17)

where

vn(z) � vn0(z) + vn1(z) = v(n)(zc − zn);
v(n) � v(n, 0) + v(n, 1), 0 ≤ n ≤ c − 1.

In order to determine V (z) completely, we need to find the 2c unknown constants
v(n, 0) and v(n, 1) (0 ≤ n ≤ c − 1) in (15). These can be obtained by invoking
the analyticity of the PGF V (z) inside the unit disk {z : |z| < 1} of the complex z-
plane and the normalization condition V (1) = 1. Specifically, by means of Rouché’s
theorem (Kleinrock 1975), it can be shown that the factor (zc − λs

1)(z
c − λs

2) in the
denominator of V (z) has exactly 2c − 1 roots inside the unit disk. We denote these
roots by zi , 1 ≤ i ≤ 2c − 1. Since V (z) is analytic for |z| < 1, the numerator of V (z)
must also be zero at these points. Thus, we have

(λs
1 − λs

2)z
c

c−1∑

n=0

{ [
λ1δ(z

c − λs
2) + λ2δ(z

c − λs
1)

]
vn(z)

−A0(z)vn0(z) − A1(z)vn1(z)
}∣∣
∣
z=zi

= 0, 1 ≤ i ≤ 2c − 1, (18)

where δ(·) is the Kronecker delta function, which is 1 when its argument is zero and
0 otherwise. From the normalization condition V (1) = 1 and Eq. (15), we moreover
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find that
c−1∑

n=0

(c − n)v(n) = c − sλ′
1(1) = c(1 − ρ), (19)

where λ′
1(1) = σ0 A′

0(1) + σ1 A′
1(1) is the first-order derivative of λ1 at z = 1, which

also denotes the mean number of packet arrivals during an arbitrary slot. With Eqs. (18)
and (19), the constants v(n, 0) and v(n, 1) (0 ≤ n ≤ c−1) can be found. Note that this
requires the calculation of the roots zi of the denominator of V (z) inside the unit disk.
For medium-sized problems this can be done by standard algebra software packages
such as e.g. MAPLE. For problems of higher dimensions, one has to turn to more
specific algorithms, such as described e.g. in Kravanja and Van Barel (2000).

The expressions in the above analysis of the system contents have been derived
under the implicit assumption that λ1(z) �= λ2(z). In case for a given z, λ1(z) = λ2(z),
the analysis can be adapted based on techniques from matrix theory described e.g. in
(Gantmacher 1998, p.101). It turns out that this comes down to applying de l’Hospi-
tal’s rule to the obtained expressions, which can be done e.g. by taking the limit for
λ1 → λ2, considering λ2 to be a constant and λ1 the variable.

3.2 Moments and tail distribution of the system contents

Once V (z) is determined, some important performance measures for the system, such
as the mean value, the variance and the tail distribution of the system contents, can be
calculated. The mean system contents E[v] can be obtained by taking the first-order
derivative of Eq. (15) with respect to z in z = 1. Using de l’Hospital’s rule twice, we
get

E[v] = V ′(1)

=
∑c−1

n=0[A′
0(1) v(n, 0) + A′

1(1) v(n, 1)](c − n)

c (1 − γ )(1 − ρ)

− ρc

s(1 − γ )
+ sλ′′

1(1) + ∑c−1
n=0(c

2 − n2)v(n)

2c(1 − ρ)

−c(1 − ρ)

2
+ ρ(s − cρ)

2s(1 − ρ)
,

where λ′′
1(1) is the second-order derivative of λ1 with respect to z at z = 1. Higher-

order moments of the system contents can be derived in a similar way. For instance,
the variance of the system contents follows from the relation

Var[v] = V ′′(1) + V ′(1) − V ′(1)2.

Another important performance characteristic for a buffer is the tail distribution
of the system contents, i.e., the probability that the system contents equals a given
value n, for sufficiently large n. In principle, the tail distribution of a discrete random
variable can be determined by applying the inversion formula for z-transforms and
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Cauchy’s residue theorem from complex analysis (see e.g. Kleinrock 1975) on its gen-
erating function and keeping only the contribution of the pole (or poles) of the PGF
with smallest modulus outside the unit disk. As argued in Bruneel and Kim (1993), the
system-contents distribution exhibits a geometric tail behavior. That is, for sufficiently
large values of n, the tail distribution of the system contents can be approximated as

Prob[v = n] ≈ −Cv z−n−1
v , (20)

where zv is the pole of V (z) with the smallest modulus (outside the unit disk), and the
constant Cv is the residue of V (z) at z = zv . The dominant pole zv must necessarily be
real and positive in order to ensure that the tail distribution is nonnegative anywhere
(Bruneel and Kim 1993). From (15), it follows that zv is a real positive zero of the
denominator of V (z). The residue Cv can be calculated from (15) as

Cv =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∑c−1
n=0 {A0(z)vn0(z) + A1(z)vn1(z) − λ2vn(z)}

(λ1 − λ2) [c/z − sλ
′
1(z)/λ1]

∣∣∣
z=zv

, when zv
c = λ1(zv)

s;
∑c−1

n=0 {A0(z)vn0(z) + A1(z)vn1(z) − λ1vn(z)}
(λ2 − λ1) [c/z − sλ

′
2(z)/λ2]

∣∣∣
z=zv

, when zv
c = λ2(zv)

s .

(21)
From (20), the probability that the system contents exceeds a given threshold N , for
large N , follows as

Prob[v > N ] ≈ −Cv

z−N−1
v

zv − 1
.

This probability (for an infinite buffer model) is often used to estimate the packet loss
probability or buffer overflow probability that would be observed in case of a buffer
with a finite storage capacity N (see e.g. Bisdikian et al. 1993).

4 Packet delay

4.1 PGF of the packet delay

The delay of a packet is defined as the total number of slots between the end of the slot
during which the packet arrives in the system and the end of the slot where the packet
finishes its transmission and leaves the system. Let D(z) be the PGF of the delay d that
an arbitrary packet experiences in the system. In this section, we analyze the character-
istics of the packet delay by means of the general relationship between partial system
contents and packet delay established in Gao et al. (2005) and Gao (2006). Specifi-
cally, it has been shown in Gao et al. (2005) and Gao (2006) that for any discrete-time
multiserver system with constant service times of multiple slots and a FCFS queueing
discipline, the PGF D(z) can be expressed in terms of the PGF’s of the partial system

123



Analytic study of multiserver buffers with two-state Markovian 279

contents as

D(zc) = 1 − zc

cσ

c−1∑

j=0

θ j zs

(1 − θ j zs)2 ·
s−1∑

i=0

zci
[
Us−i−1(θ

j zs) − Us−i (θ
j zs)

]
, (22)

where θ = exp(2π I/c) with I 2 = −1. The relationship (22) holds regardless of the
exact nature of the arrival process, and therefore it can also be applied to derive the
delay characteristics for the considered system with a two-state (first-order Markov-
ian) correlated traffic source. Here σ , the mean number of packet arrivals per slot,
equals λ

′
1(1). Combination of (22) and (15)–(17) finally gives

D(zc) = 1 − zc

cλ′
1(1)

c−1∑

j=0

θ j zs

(1 − θ j zs)2(zc − λ1)(zc − λ2)

×
c−1∑

n=0

{
(zc + λ1λ2 − λ1 − λ2)vn(θ j zs) + (1 − zc)

×
[

A0(θ
j zs)vn0(θ

j zs) + A1(θ
j zs)vn1(θ

j zs)
]}

. (23)

Note that in Eq. (23) λ1 and λ2 are functions of θ j zs , i.e., functions λ1(θ
j zs) and

λ2(θ
j zs).

4.2 Moments and tail distribution of the packet delay

The mean value of the packet delay can be found from (23) by evaluation of the
first-order derivative of the PGF D(zc) with respect to z at z = 1. Specifically, we get

E[d] = D′(1) = 1

c

d D(zc)

dz

∣∣∣
z=1

= E[v]
λ′

1(1)
,

in agreement with Little’s theorem. In a similar way, we can also obtain higher-order
moments of the packet delay, by calculating the appropriate higher-order derivatives
of D(zc) at z = 1. For instance, the variance of the packet delay (delay jitter) can be
obtained as

Var[d] = D′′(1) + D′(1) − D′(1)2

= 1

c2

d2 D(zc)

dz2

∣∣∣
z=1

+ 1

c
D′(1) − D′(1)2.

In order to derive the tail distribution of the delay of a packet, we use a similar procedure
as for the system contents. However, from expression (23) for D(zc), we note that this
function does not satisfy the condition that it has only one pole with minimal modulus.
Indeed, if zv is the dominant pole of V (z), i.e., the zero of [zc −λ1(z)s] · [zc −λ2(z)s]
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with smallest modulus outside the unit disk, then zd(0) � z1/s
v is the zero with minimal

modulus outside the unit disk of the factor [zc − λ1(zs)][zc − λ2(zs)] in the denom-
inator of D(zc). Due to θmc = 1 for any integer value of m, zc remains unchanged
when z is multiplied by θ−m , and therefore zd(m) = θ−m z1/s

v (0 ≤ m ≤ c −1) is also
a pole of D(zc) with the same modulus zv

1/s . In particular, it can be shown that the
pole zd(m) is a zero of the factor [zc − λ1(θ

j zs)][zc − λ2(θ
j zs)] in the denominator

of D(zc) for which j = (ms) mod c, i.e., for which j equals the remainder of the
division of ms by c. Taking into account all the poles zd(m), 0 ≤ m ≤ c − 1, and
keeping in mind that Prob[d = n] is the coefficient of zcn in the series expansion of
D(zc), we finally get

Prob[d = n] ≈ −
c−1∑

m=0

bm

zd(m)
[zd(m)]−cn

= −
c−1∑

m=0

bm

zd(m)
z−cn/s
v

= −Cd zv
−cn/s, (24)

for sufficiently large n. In (24), bm is the residue of D(zc) at the point z = zd(m) and
is given by

bm = Nm
(
zd(m)

)

Rm
′(zd(m)

) ,

where Nm(z) and Rm(z) are the numerator and the denominator, respectively, of the
term in (23) corresponding to the index value j = (ms) mod c. Using the expressions
(23) and (21), we find

Cd =
c−1∑

m=0

bm

zd(m)
= z−c/s

v

λ′
1(1)

(
1 − zc/s

v

1 − zv

)2

Cv.

The probability that the packet delay exceeds a given threshold T follows from (24)
as

Prob[d > T ] ≈ −Cd
z−cT/s
v

zv
c/s − 1

.

5 Discussion of results

In order to illustrate the influence of various parameters of the model, such as the
degree of correlation in the arrival process, the number of servers and the length of the
service times, on the system behavior, we present a number of numerical examples in
this section.
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Table 1 The three sets of
arrival distributions

Set 1 2 3

A0(z)
1

1 + �1 − �1z
1 − �2 + �2z 1 − �3 + �3z

A1(z) 1
1

1 + 2�2 − 2�2z

1

1 + �3 − �3z

mean system contents

-.8

0

.6

.8

4

6

8

10

12

0.5                        0.6                        0.7                         0.8                         0.9

rho

Fig. 2 Mean system contents versus load ρ

Throughout this section, we assume that the packet arrivals during states 0 and 1
are governed by the sets of distributions shown in Table 1.

In the first set, packet arrivals are governed by a geometric distribution with arrival
rate �1 during state 0 and there are no packet arrivals when the source is in state 1. In
the second set, packet arrivals are governed by a Bernoulli distribution with rate �2
during state 0 and a geometric distribution with rate 2�2 during state 1. In the third
set, the arrival distributions are of the same type as for the second set, but with the
same arrival rate �3 during both states.

In Fig. 2, we have plotted the mean system contents versus the load ρ, for c = 4,

s = 4, α = β, arrival distributions of set 2, and various values of the source state
correlation coefficient γ , namely γ = −0.8, 0, 0.6, 0.8. The figure clearly shows
that for a given ρ, the mean system contents increases as γ increases. Especially, for
higher loads ρ, the system contents may be heavily underestimated when the (positive)
correlation between the source states in two consecutive slots is not taken into account.

In Figs. 3–5, we assume α = 0.7 and β = 0.8. The source state correlation coeffi-
cient γ then equals 0.5. In Fig. 3, the overflow probability Prob[v > N ] is shown as
a function of N (see the solid lines), for ρ = 0.8, c = 4, s = 4 and the three sets
of arrival distributions. The mean service rate is equal to c/s = 1. For comparison,
we have also plotted (by means of the analysis of Gao et al. 2004c) the corresponding
curves in case the service times of packets are geometrically distributed with param-
eter 1 − µ, where we set µ = 0.25, so that the mean service rate cµ is also equal to 1
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Prob[system contents>N]

Set1

Set3
Set2

1e–07

1e–06

1e–05

.1e–3
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20            40            60             80          100          120          140
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Fig. 3 Overflow probability, Prob[v > N ], versus N

mean delay
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rho

Fig. 4 Mean packet delay versus load ρ

(see the dashed lines). We note that for a given type of service-time distribution, the
first set of arrival distributions gives the highest overflow probability, while the third
set gives the smallest value. This observation can be understood intuitively from the
fact that the variance of the number of arrivals per slot decreases in the order of set 1,
set 2 and set 3. Indeed, the higher the variance of the number of arrivals and, hence,
the more fluctuation of the arrival process, the higher we expect the buffer contents
to be. For a given set of arrival distributions, the overflow probability is higher for
geometric service times than for constant service times. This is also intuitively clear
since the variance of the service times is higher for the geometric distribution. The
required buffer size N to satisfy a given loss bound can also be estimated from Fig. 3.
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variance of delay
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Fig. 5 Variance of the packet delay versus load ρ

In Fig. 4, the mean packet delay is plotted versus the load ρ, for the arrival distri-
butions of set 1, for s = 1, 3, 5 and c = 4, 8. For given values of c and s, we see
that the mean packet delay increases as ρ increases. For a given ρ, the mean delay
increases as the service times become longer and/or the number of servers decreases.
We also observe that the longer the service times, the higher the impact of the number
of servers on the packet delay, especially when the load gets higher.

In Fig. 5, the variance of the packet delay is shown versus ρ, for the arrival distri-
butions of set 3, for s = 8 and c = 1, 4, 8. Clearly, for a given value of ρ, the delay
jitter decreases as the number of servers increases.

6 Concluding remarks

In this paper, we have studied the behavior of a discrete-time infinite-capacity buffer
system with multiple servers and constant service times of multiple slots. Packet
arrivals to the system are described by a general but state-dependent arrival process.
Specifically, a two-state traffic source with a first-order Markovian correlation in the
state of the source is considered. An analytical technique based on generating func-
tions has been presented for the analysis of the system. Closed-form expressions for
the mean values, the variances and the tail distributions of the system contents and the
packet delay have been derived.

Some numerical results have been presented to illustrate the analysis. The numerical
examples show that the characteristics of the system contents and the packet delay are
sensitive to both the arrival process and the service mechanism. The analysis method
presented in this paper relies on the fact that the arrival process is a two-state Markov-
ian process; the obtained results are expressed in terms of the eigenvalues of a 2 × 2
matrix; these eigenvalues can be calculated analytically in case of a 2 × 2 matrix. As
future work, we intend to investigate how the analysis can be generalized to the case
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of an m-state (m > 2) Markovian arrival process. It is expected that basically similar
methods could be used in this case. However, as the dimensions of the occurring
matrices will grow, more numerical work will be involved.
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