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Abstract: We describe intricate cavity mode structures, that areipless
in waveguide devices with two or more guided modes. The nlament is

interference between the scattered fields of two modes datets, result-

ing in multipole or mode cancelations. Therefore, strongpting between

the modes, such as around zero group velocity points, isndéalyaous to
obtain high quality factors. We discuss the mechanism iedttifferent

settings: a cylindrical structure with and without negatyroup velocity

mode, and a surface plasmon device. A general semi-aralgitpression
for the cavity parameters describes the phenomenon, andatidated with

extensive numerical calculations.
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1. Introduction

Optical microcavities with high quality factors and smalbdal volumes are used in a wide
range of applications such as low-threshold lasers, dfiltars, nonlinear optics and cavity
guantum electrodynamics [1]. Therefore it is important hok which mechanisms may lead
to efficient confinement, and in which systems they are apiplc

Here we focus on a class of microcavities that can be destaba section of a waveguide.
The properties of the guided waveguide modes and their tighteat the facets determine the
cavity characteristics. The existence of high-qualityityasnodes in waveguides with a zero
group velocity point was shown in [2]. In the present papegwe a more in-depth description
of these cavity modes. We show that the mechanism is veryasgiioi the phenomenon in [3,
4], and we point out the connection with the multipole caatteh mechanism [5]. In [3, 4]
one describes how the interference between multiple modgdend to high facet reflections.
We give a simple semi-analytical description of this pheaoon by examining the round-trip
matrix of the cavity. There is a correlation between the jmbsseflection enhancement and
the interaction between the modes. A zero group velocitytpoi the dispersion relation of
a waveguide creates two modes that are intimately relateerefore, these modes are good
candidates to exploit the cavity mechanism.

The variation of length and frequency generates a rich tyagecavity modes, more than
initially expected in [2]. The parameters of these modegeaeeisely described by the model,
which gives a straightforward expression for the eigeresbof the (half) round-trip matrix. By
approximating this formula it is easy to obtain insight ith@ modal trends. The discussion
is supported by detailed numerical simulations based oenei@de expansion [6] and finite-
difference time-domain (FDTD) calculations [7].

The phenomenon is described using three structures. Wesimploy the zero group velocity
cylindrical structure proposed in [2]. We reach clear ihssgnto the cavity mechanism, and at
the same time we validate the new approaches. Second, wetheidame structure, but at a
wavelength with two normal (i.e. positive group velocityided modes. The same mechanism
appears, however the dispersion and reflection charaaterere quite different. Third, we
examine a surface plasmon cavity device, based on a regenfipsed waveguide with a zero
group velocity point [8]. Again, clear resonances are awdd, however the details differ.

The paper is organized as follows. First we describe the-salytical formulas and the nu-
merical methods used. Then, in the main part, we discusgjuresee the previously mentioned
three structures. Finally we group the conclusions.

2. Semi-analytic and numerical modeling

The class of devices under study is quite general and is epic Fig. 1(a). The center of the
cavity is a waveguide system with two guided modes. Theeefloe properties of the cavity
modes are determined by the dispersion and reflection preparf these waveguide modes.
We consider symmetric cavities, thus with two equal facets.

Because we deal with two guided modes, the reflection andagedjon properties are de-
scribed by 2< 2-matrices. The reflection and propagation matrix are dehbyR andP, re-
spectively. As usual, a resonance or cavity mode is achiétkd imaginary part of an eigen-
value of the round-trip matrix (or, because of symmetryf-trgd matrix) is zero. The half-trip
matrix is given byP x R. In case of resonance, the quality fac@of the cavity mode is de-
termined by the magnitude of its eigenvalue, or, more pedgidy how close the half-trip
eigenvalue is tat1. If the waveguide modes have the same group velocity madgivg| (ir-
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Fig. 1. (a) General picture of a system with two circulating modes. (bg®etic of the
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mode.
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respective of the sign), we obtain [9]
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Here,wr is the resonance frequency of the cavity mode largithe length of the waveguida.
is the eigenvalue of the half-trip matrix, so

PXR{CO}—/\[CO], @)
C1 C1
with ¢ and c; the complex eigenvector components corresponding withetgenvalueA,

which are normalized s@o|? + |c1|? = 1. In the case of waveguide modes with different group
velocity magnitudesig andv, the factorvg in Eq. 1 is replaced by

Virereoe— ol + vl ©

To obtain the eigenvalu@ we need to construct the half-trip matrix. We assume a time
dependence exjwt). Then, for two positivelg modes, we get the matrix for propagation over
a lengthL:
| exp(—ikoL) 0
P= 0 exp(—ikil) |’ )

with kg andk; the waveguide mode propagation constants of mode 0 and moespEctively.
We always assumie andk; positive (and > ki), so for a negativeg mode we need to adjust
the sign in the propagation matrix. E.g. if mode 0 has negatjwe have to use exjkol ),

as the power fluxes of both modes need to be in the same dirediite waveguide modes
in the examples have negligible propagation losses, blidirg losses does not change the
equations. The complex reflection matrix describes the hredlaction properties at a facet:

R— | Moo To1 7 (5)
fo ru

where, because of reciprocityg; = r1o. In the next equations it is sometimes convenient to
work with average and difference values, ko= k+ A, k; = k—A. Likewise for the reflection
matrix:ropo=d+9,r;1 =d— 9.
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Now, we can readily note the eigenvalues of the half-triprma® x R. There are slight
differences in the equation for the three structures dsmilign the following sections, as the
elements of the propagation matrix depend on the positinegativevy character of the modes.
In the case of the example in the next section mode 0 has\@gjtand mode 1 has negative
vg. Then we obtain:

A =exp(—iAL) |[dcogKkL) —idsin(kL) £ \/(—id sin(kL)+6cos(kL))2+rg1 . ()

In the case of two positiveg modes (as in section 4) we have to interchakgsmdA in the
previous equation. Finally, in the case where mode 0 hastinegg and mode 1 has positive
Vg (as in section 5), we have to interchangeéth —i in equation 6. The previous equation gives
us a comprehensive picture of the cavity modes. The imagipant determines which combi-
nations of frequency and lengthgive rise to a resonant mode. Then the real part indicates how
strong the resonance is, through the quality factor in éguat

The previous description is semi-analytical, because veel modeling methods to get the
propagation constants and the reflection matrix. For thipqae we use CAMFR, a freely
available eigenmode expansion simulation tool [6] (Mtpihfr.sourceforge.net). As CAMFR
is an efficient frequency domain code we quickly obtain thememeters at each frequency
of interest. These values are then employed to study thenegees and quality factors with
the previous equations, for different cavity lengthsSome of the resonant modes have been
simulated with MEEP, a freely available finite-differenaadé-domain (FDTD) code, in order
to validate the semi-analytical model [7] (http://ab-imimit.edu/wiki/index.php/Meep). Good
agreement has been obtained, as we present below, showtirtfehmodal description is suffi-
cient.

3. Cylindrical cavity: negative group velocity mode

We study the same cylindrical structure in this section dmedrtext. However, we discuss dif-
ferent frequency regions and modes of different angulamsgiry. A schematic is shown in
Fig. 1(b), it is the same device as in [2]. It was shown that stiucture gives rise to a zevg
point in the dispersion relation of the HEmode [10]. We plot this dispersion in Fig. 1(c). The
geometry is useful as a model for similar phenomena that ppeax in omniguide or photonic
bandgap structures [2, 10].

To find cavity modes we scan tliey, L)-space. In the frequency region with two interacting
waveguide modes (mode 0 with positiygand mode 1 with negativg) we find highQ cavity
resonances. This is presented in Fig. 2(a). Some of Qgseaks (dark blue dots in Fig. 2(a))
were discussed in [2]. Now however we find additional modé® drigin of the extra modes
is elucidated in Fig. 2(b). In this graph we put a dot each tammesonance is obtained, thus
each time the imaginary part af becomes zero, regardless of the size of the real part. In this
way we clearly see the connection between the resonancedr@hches are grouped in pairs.
Each pair corresponds to a certain resonance order. Eanbhbha a pair corresponds to a
symmetry (node versus antinode in the middle of the cav@yly the lowest order pair (lower
left in Fig. 2(b), dark blue dots) was described in [2]. Ndtattthe agreement between the
semi-analytic mode expansion approach and FDTD is indicat&ig. 2, which validates the
approach.

The field distribution of some modes is shown in Fig. 3, togethith the far field on- and off-
resonance of a cavity mode. Clearly the multipole canamatiffect is at work, as described
in [5]. At a high-Q resonance the radiation pattern changes: there are exdea les, see
Fig. 3(b), as the lowest order multipole is canceled. Thisgiproof of a bimodal mechanism:
Both waveguide modes are prominent in the cavity. At thetfatteey reflect but radiate some
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Fig. 2. (a) Q versusL of the resonances. Dots are data points from mode expansion
(CAMFR), crosses present results from FDTD (MEEP).¢bjersusL for the same cavity
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Fig. 3. (a) Field plot of some resonances. The electric field afpisgshown L, andoy, are
L/aandw x (a/2mc), respectively. (b) Far-field on- and off-resonance. The magfietit
along the direction of the axis is shown. The cavity is located to the left of fhlese

energy into the space adjacent to the cavity. This radiat@onbe described as a superposition
of multipoles. At certain cavity lengths and frequencies wonditions are fulfilled: there is
a phase resonance (imaginary partiofs zero), and the important lowest order multipole
contribution of the modes cancel each other (leading to lap@aof A close to one, meaning
low losses). When these conditions are satisfied we obtaigtaicavity. This mechanism
was also at work in the two-dimensional square structur¢3]and [4].

To gain insight into the particular frequencies and lengthesonance we study the eigen-
value equation more closely. It turns out that for each exampthis paper we can make
approximations to obtain the main trends of the resonafidesapproximations are made via
the reflection matrix. The magnitudes of the elements ofrtiatrix for the current example are
shown in Fig. 4. For a large range of frequencies it is cleatrtthe off-diagonal elementis larger
than the diagonal ones, thirgy| > |roo|, |r11] (Or |ro1| > |d|,|8]). In that case the magnitude of
the eigenvalues (from Eq. 6) is approximated by:

AP & [ro1|* + 2 cogkL)Re(rosd*) T 2sin(kL)Im(r15%), (7

where Re (Im) is the real (imaginary) part, ahtheans complex conjugate. This expression
implies that the magnitude of (at constant.) is only a weakly-varying function of the fre-
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Fig. 4. Magnitudes of the reflection matrix elements for the cylindrical iraowith the
negative group velocity mode.
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Fig. 5. Magnitude squared of the two eigenvalues for the cylindrical tstreign the fre-
guency range with a negative group velocity mode.

quency. In function of. (at constantv) the maxima ofA |? are separated biy/k or 3.4a. Note
that in this examplé corresponds with the zeng-point. The exactA |2 values are plotted in
Fig. 5; we indeed see vertical lines of magnitude extremaarsged horizontally by.3a.

For the phase resonance we can simplify a bit further androbta

A = £rorexp(—iAL). (8)

This means that thie-difference between two pairs or resonance orders (at aiocérequency)

is given by r/A. Thus, if we approach the zerg-point, A goes to zero, and the distance

between pairs becomes infinite. This explains the trendselbtanches in Fig. 2(b).
Combining the magnitude and the imaginary part describesadkity modes. If a magnitude

maximum (the red vertical ribbons in Fig. 5) coincides witlplzase resonance one obtains

a mode with a very higlQ. The previous also elucidates the longitudinal lengthesealk

provided by the zergg-point, which was only partly explained in [2].

4. Cylindrical cavity: positive group velocity modes

Here we study the same cylindrical structure as in the ptssection, but at higher frequencies
and with angular momentum zero (which means an angular depea co@ng) with m= 0,
as opposed ton = 1 in the previous example). The dispersion of the TE modely (one
electric field component, along) is plotted in Fig. 6. We examine the frequency region with
two guided modes between= 0.4 and 06(2rc/a), indicated in the figure, and we note that
both modes have a positivg.

Scanning thgw, L)-space we obtain resonances again, which are shown in Fichese
graphs look different than in the previous example. Howesteidy of the far-field (not shown)
and theQ-peaks shows again that multipole cancelation is at worlerdfore, the bimodal
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Fig. 6. Dispersion of the TE modes with angular momentum zero in the cidaiditruc-
ture. The frequency region with two guided modes is indicated.
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Fig. 7. (2)Q versud. of resonances. Dots are data points from mode expansion (CAMFR),
crosses present checks with FDTD (MEEP). ¢b)ersusL for the cavity modes in the
cylindrical structure with two positivey waveguide modes.

resonance mechanism is equivalent, but we need to exanamssimilarity with the previous
section. The field patterns for some resonances are dejickeg. 8(a).

The differences in the trends are explained by an analydiseoéigenvalue. The reflection
matrix is shown in Fig. 8(b), and it is quite different frongk# for the previous example. Here,
we see thalroo|, |r11| > |ro1| (@and alsdd| > |ro1| @and|d| > |ro1]). In this case the magnitude of
A is approximated by:

©)

/\|2xdi6|ziRe< c2(d* + &*)exp(+iAL) >

—idsin(AL) + d cogAL)

This means we obtain an extremum|&f? if the denominator in this equation becomes small,
or (approximately) if tatAL) =~ —|d/d|, which gives a period (at constant frequencyymi.

As the frequency increases, we note that iétfd| andA decrease, so the maximum |af|?
moves to larget, as shown in Fig. 9.

The phase branches in Fig. 7(b) clearly present two diftetremds. Analysis shows that,
away from the main interaction points (these are the awosings, where in this case the
high-Q values are reached), the branches are approximatdd byrooexp(—ikoL) andA_ ~
rizexp(—ikiL), respectively. An anti-crossing switches the trends ofdheres between |
andA_. A crossing indicates that the branches correspond to areiff symmetry (node or
antinode in the middle of the cavity). In between anti-ciogs the curves follow IrfA;.) = 0
or Im(A_) = 0, respectively. The latter indicates e.g. that the brarmgrs/off to highet, as
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Fig. 8. (a) Field plot of some resonances. The electric field alpig shown; only one
half is presentedlL,, and wy arelL/a and w x (a/2mc), respectively. (b) Magnitudes of
the reflection matrix elements for the cylindrical structure in the frequesroge with two
positive group velocity modes.
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Fig. 9. Magnitude squared of the two eigenvalues for the cylindrical tstreién the fre-
guency range with positive group velocity modes.

the frequency nears the cut-off for mode 1. Furthermoredisi@nce (at constant frequency)
between branches igi2ky or 211/k;, respectively.

Overlaying amplitude and phase (Fig. 9 and Fig. 7(b)) welsagthe highQ cavities appear
at the anti-crossing regions in Fig. 7(b), as previoushedot

5. Plasmonic cavity

In this section we construct a cavity mode by exploiting abaggpoint in the dispersion of
a plasmonic waveguide. This dispersion relation appeassviraveguide consisting of metal
with a narrow dielectric layer on top, as presented in [8F Tho-dimensional, non-cylindrical
geometry we study is shown in Fig. 10(a). We use a metal-atiétemetal structure, so there
are two semi-infinite metal slabs, with a dielectric strippgtween. The cavity is defined by the
narrow dielectric sections with higher index-€ v/2), the rest is air{= 1). For the metal we
use the permittivitye =1 — wg/ooz, with w, the plasmon frequency.

The waveguide is designed such that the center section (methigh-index parts) has two
guided modes in a certain frequency range, whereas thedeusictions (to the left and to
the right) have one guided, more conventional, plasmonidandhese dispersion relations are
shown in Fig. 10(b). Note that we only consider modes with sty such that the electric
field tangential to the plane indicated with the dashed ImEig. 10(a) is zero. Furthermore,
we use TM-polarization, thus with one magnetic field compmperpendicular to this figure.
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Fig. 10. (a) Schematic of the two-dimensional, non-cylindrical plasnretsire. (b) Dis-
persion of the central waveguide (black), and of the outside waveg)(ield).
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Fig. 11. (a)Q versusL of a resonance. Data calculated with mode expansion (CAMFR).
(b) w versusl for the plasmonic cavity.

The eigenmode solver we use has been adapted to deal withgriasmodes, see [11].

The structure differs from the previous examples in thatalieno open space to the left and
right of the cavity. Therefore, there is no loss into (mwtg) radiation, but only through the
guided mode in the outside sections. However, f@gbavities can exist through cancelation
of the contributions to this loss mode. Thus, the bimodallmaism of the previous sections
remains crucial and largely unchanged. The situation =ari¢arity e.g. to the setting of [12]
with directional couplers.

A resonance peak for the quality factor is presented in Fi¢a)l For clarity only one peak
is shown. A depiction of the field at this resonance is giveRim 12(a). Note that we obtain
very high quality factors, as there is only one mode thatidesa loss channel, and needs to be
canceled. The phase resonance portrait is shown in Fig).JAdghin the portrait looks different
than for the other examples.

The analysis starts from the reflection matrix, shown in E2(b). Away from the direct
neighborhood of the zeng-point we can assume thfibo| > |ro1| andri1 ~ 0 (ord ~ & and
|d] > |ro1]). We note furthermore that the reflection matrix is appraatiety real. In that case
the magnitude of the largest eigenvalue approximates to:

4

r
s |? ~r8o+ 2§y cog(2kL) + -9 (10)
oo
#80543 - $15.00 USD Received 28 Feb 2007; accepted 22 Mar 2007; published 7 May 2007

(C) 2007 OSA 14 May 2007/ Vol. 15, No. 10/ OPTICS EXPRESS 6276



|70l
0.8
-
061
[ro1]=rol
04 \
— 0.2
|74
0 : , ;
0.58 0.59 06 0.61 0.62
Y0

P
(a) (b)

Fig. 12. (a) Depiction of the magnetic field at the peak of the resonameensh Fig. 11(a)

(L =0.238_p andw = 0.601wp). (b) Magnitudes of the reflection matrix elements for the

plasmonic structure.
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Fig. 13. Numerically calculated magnitude squared of an eigenvalue éopldsmonic
structure.

This means a period (at constant frequencyjtdf. Indeed, we see this trend in the numerical
results of Fig. 13: If the frequency increases thatecreases and the period increases.

For the phase picture we obtain that ~ rooekol. There is resonance if IfA, ) equals zero,
so L = mm/ky, with m a positive integer. This agrees with the main lines in therpirof
Fig. 11(b). The curly lines originating close to the zggepoint, and the anti-crossings, are not
captured by this analysis, as the approximations no long@ygor because they belongio.

6. Conclusion

The interplay of two modes in a cavity gives rise to high gqyatsonances. In the case of open
space cavities they instigate the multipole cancelatiocharism. In the case of losses through
guided modes, the losses are annulled via Falgnpitype interference. We give a detailed
description of these mechanisms through three examplésoddh the mechanism is similar,
the reflection matrix and the resulting resonance parasikiek quite different. We show that
modes coupled through a zero group velocity point are wékkduo realize these resonances.
The main ingredient seems to be a significant coupling betwiee waveguide modes. A re-
cently proposed plasmon waveguide is exploited for thisaeffThe analysis provides a clear
path to design and gain insight into novel cavity devices.
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