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Abstract We construct a Diophantine interpretation ofFq [W, Z] overFq[Z].
Using this together with a previous result that every recursively enumerable
(r.e.) relation over Fq[Z] is Diophantine over Fq[W, Z], we will prove that
every r.e. relation over Fq[Z] is Diophantine over Fq[Z]. We will also look
at recursive infinite base fields F, algebraic over Fp. It turns out that the
Diophantine relations over F[Z] are exactly the relations which are r.e. for
every recursive presentation.

1 Introduction

In a previous paper, Recursively enumerable sets of polynomials over a finite
field [2], we proved that every recursively enumerable (r.e.) relation over
Fq[Z] is Diophantine over Fq[W, Z]. In other words, if we take an r.e. subset
of Fq[W, Z]k (for some k ≥ 1) such that no element involves W , then that
set will be Diophantine.

In Sects. 2–4, we will construct a Diophantine interpretation of Fq[W, Z]
over Fq[Z]. Putting this interpretation together with [2], we will prove in
Sect. 5 that every r.e. subset of Fq[Z]k is Diophantine over Fq[Z]. In Sect. 6,
we have a look at what happens for F[Z], where F is a recursive infinite
algebraic extension of Fq . Then we have to consider sets S ⊆ F[Z]k which
are r.e. for every recursive presentation. These are exactly the sets S which
are r.e. for some recursive presentation and invariant under some Frobenius
automorphism.

These results are analogous to the well-known theorem by M. Davis,
H. Putnam, J. Robinson and Y. Matiyasevich (see [5] or [1]), stating that
every r.e. relation over Z is Diophantine (over Z). From this followed the
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negative answer to Hilbert’s Tenth Problem, saying that Diophantine equa-
tions over Z are undecidable. We refer to this theorem as DPRM and will
often use it to prove that certain formulas are Diophantine.

For rings R[Z], with R any integral domain of characteristic p > 0,
undecidability has been known since J. Denef’s 1979 paper [3]. However,
nothing was known about r.e. relations being Diophantine.

We assume the reader knows the concepts of Diophantine sets and
recursively enumerable sets. We refer to the introductory texts [7] and [6].
We also need some basic recursion theory (especially in Sect. 6); for this
we refer to [4] or [8].

We recall the definition of a Diophantine interpretation, since it plays an
important role in this paper. The idea is to encode elements of one ring Z
in an other ring R.

Definition 1. Let R and Z be rings. Then a Diophantine interpretation
of Z over R consists of a set M ⊆ Rr for some r ≥ 1, an equivalence
relation ∼ on M and a bijection τ : Z ∼→ M/∼ such that

1. The set M is Diophantine.
2. The relation ∼ is Diophantine, i.e. the set {(X, Y ) ∈ M × M | X ∼ Y }

is Diophantine.
3. The set G+ = {(X, Y, Z) ∈ M3 | τ−1(X) + τ−1(Y ) = τ−1(Z)} is Dio-

phantine.
4. The set G× = {(X, Y, Z) ∈ M3 | τ−1(X)τ−1(Y ) = τ−1(Z)} is Diophan-

tine.

If the equivalence relation is simply equality, this is called a Diophantine
model.

Let R be an integral domain of characteristic p > 0. In [2], we defined
a Diophantine model of N = {0, 1, 2, . . . } over R[Z], with n ∈ N corres-
ponding to Zn ∈ R[Z]. This was done using Chebyshev polynomials, which
are (up to sign) the solutions X, Y of the Pell equation X2 −(Z2 −1)Y 2 = 1.
We also had a way to define powers of arbitrary elements: “A = Bn” is Dio-
phantine as a ternary relation between A, B ∈ R[Z] and n ∈ N. Of course,
we have to use our model of N to represent the power n, so “A = Bn”
is actually a relation between A, B, Zn ∈ R[Z]. Even though all this was
written down in [2] for R = Fq[W], it works unaltered for other R. This
is because the model is strongly based on [3], which works for any integral
domain of positive characteristic.

We will use the notational convention that lowercase Latin letters (a, b,
c, . . . ) stand for natural numbers, uppercase Latin letters (A, B, C, . . . ) for
polynomials, and lowercase Greek letters (α, β, γ, . . . ) for elements of the
base field Fq or F. So, if we just write “(∃n)”, we really mean “(∃n ∈ N)”.

The Diophantine interpretation of Fq[W, Z] over Fq[Z] will be in the lan-
guage LZ = {+, ·, 0, 1, Z}; we do not need any constants from Fq for this.
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However, we will need more constant symbols when giving a Diophantine
definition of certain r.e. sets.

Acknowledgements. The author would like to thank Jan Van Geel for reading this paper
many times, pointing out mistakes and making plenty of good suggestions.

2 Degree

We will start with the case of finite fields in Sects. 2–5. Before we can
construct the Diophantine interpretation, we need some tools.

One of these tools is a Diophantine definition of the degree of a poly-
nomial in Fq[Z]. For this, we will have to work in the field of rational
functions Fq(Z). Since Fq[Z] admits a Diophantine definition of the set
of non-zero elements (see [11, Theorem 4.2]), there exists a Diophantine
interpretation of Fq(Z) over Fq[Z]. This is because any element of Fq(Z)
can be written as P/Q, where P, Q ∈ Fq[Z] and Q �= 0. Conversely, P/Q
represents an element of Fq(Z) whenever Q �= 0. There is an equivalence
relation P/Q ∼ R/S ↔ PS = Q R. The equivalence, the addition and
multiplication of such fractions are given by simple formulas, which are
clearly Diophantine.

In Fq(Z), “negative degree” defines a discrete valuation v∞, as follows:
v∞(P/Q) = deg Q − deg P. It is well known (see [10] or [11]) that all
discrete valuation rings in Fq(Z) are Diophantine. This means that we can
express “v∞(P/Q) ≥ 0” with a Diophantine formula. Then

deg P = deg Q ⇐⇒ v∞(P/Q) ≥ 0 ∧ v∞(Q/P) ≥ 0.

Using our encoding of N, where n is represented by Zn, the degree
function is Diophantine:

deg P = n ⇐⇒ deg P = deg Zn.

3 Stride polynomials

The second tool is what I call stride polynomials:

Definition 2. For integers 0 ≤ w ≤ s, define the set Sw,s of (w, s)-
stride polynomials over Fq as the Fq[Zs]-submodule of Fq[Z] with basis
{1, Z, Z2, . . . , Zw−1} (if w = 0, then S0,s = {0}.) Therefore, a general
element of Sw,s has the following form:

d−1∑

i=0

w−1∑

j=0

αij Zsi+ j (for a certain d ∈ N, all αij in Fq).
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Next, we define the set containing all stride polynomials where s is
a power of q (this includes the case s = 1):

M = {
(F, w, s) ∈ Fq[Z] × N× N∣∣w ≤ s = qk for some k and F ∈ Sw,s

}
.

(1)

If we encode a natural number n as Zn, then M becomes a subset
of Fq[Z]3. To prove that M is Diophantine as subset of Fq[Z]3, we need the
following auxiliary set:

N = {
(G, F, w, s, d) ∈ Fq[Z]2 × N3

∣∣w ≤ s = qk for some k, d ≥ 2,

deg G < wd and F is the remainder of Gs

after Euclidean division by Zsd − Z
}
. (2)

We also need two lemmas:

Lemma 3. Let w, s and d be natural numbers such that w ≤ s with s
a power of q and d ≥ 2. Let

G =
d−1∑

i=0

w−1∑

j=0

αij Zi+d j and F =
d−1∑

i=0

w−1∑

j=0

αij Zsi+ j , (3)

where the coefficients αij are in Fq. Then (G, F, w, s, d) ∈ N and every
element of N is of this form.

Proof. Let G, F, w, s and d be as in the statement of the lemma. We see
that deg G ≤ (d − 1) + d(w − 1) < wd. Using the fact that s is a power
of q, we find

Gs =
d−1∑

i=0

w−1∑

j=0

αij Zsi+sd j ≡
d−1∑

i=0

w−1∑

j=0

αij Zsi+ j = F (mod Zsd − Z).

It follows that there exists a Q for which Gs = (Zsd − Z)Q + F. To have
a Euclidean division, the degree of F must be less than the degree of Zsd −Z.
But deg F ≤ s(d − 1) + (w − 1), which is less than sd since w ≤ s.

Conversely, let (G, F, w, s, d) ∈ N . We have to show that G and F are of
the form (3). Looking at the double sum for G in (3), we see that i +d j runs
over every element of {0, 1, 2, . . . , wd − 1}. Therefore, the fact that G has
degree less than wd implies that it can be written as

∑
i<d

∑
j<w αij Zi+d j .

Since F is uniquely determined given G, w, s and d, it follows from the
first part of this proof that F must also be as in (3). ��
Lemma 4. The projection of N on the second, third and fourth coordinates
is exactly M.
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Proof. Take an element (G, F, w, s, d) in N . Because of Lemma 3, we
know that F can be written as

∑
i<d

∑
j<w αij Zsi+ j , which is a (w, s)-stride

polynomial; hence (F, w, s) ∈ M.
Conversely, given (F, w, s) ∈ M, we have to find G and d such that

(G, F, w, s, d) ∈ N . Since F ∈ Sw,s, there exists a d ≥ 2 such that F =∑
i<d

∑
j<w αij Zsi+ j for some αij ∈ Fq. Let G = ∑

i<d

∑
j<w αij Zi+d j .

Lemma 3 proves that (G, F, w, s, d) ∈ N . ��
Now we can easily show that M is Diophantine:

Proposition 5. The set N is a Diophantine subset of Fq[Z]5 and M is
a Diophantine subset of Fq[Z]3 (where we encode w, s and d as Zw, Zs

and Zd).

Proof. We claim that (2) yields a Diophantine definition of N . The sub-
formula “w ≤ s = qk ∧ d ≥ 2” is Diophantine because of DPRM. The
Diophantineness of “deg G < wd” follows from Sect. 2 combined with
DPRM. The Euclidean division can be written as

(∃Q)(Gs = (Zsd − Z)Q + F ∧ (F = 0 ∨ deg(F) < sd)).

Since Zsd simply represents the element sd and exponentiation is Dio-
phantine (see [2, Sect. 4.5]), this is Diophantine.

Projections of Diophantine sets are again Diophantine, so it follows from
Lemma 4 that M is also Diophantine. ��

4 The interpretation of Fq[V, W] over Fq[Z]
Inside Fq[Z], we will now construct a Diophantine interpretation of a two-
variable polynomial ring over Fq. In the introduction, we wrote Fq[W, Z]
for this ring, but to avoid confusion between the Z from Fq[W, Z] and the Z
from Fq[Z], we write Fq[V, W] instead for the two-variable polynomial ring.

4.1 Construction. We will encode elements of Fq[V, W] as certain equiv-
alence classes of triples (F, w, s) in M. To explain this, we are going to
construct a map θ : M → Fq[V, W] giving the correspondence (this map is
the inverse of the τ in Definition 1). Then two elements of M are equivalent
(notation: ∼) if their images under θ are the same.

Take a triple (F, w, s) ∈ M. By Definition 2 F can be written as
F = ∑

i<d

∑
j<w αij Zsi+ j for some d ∈ N. We define θ(F, w, s) =∑

i<d

∑
j<w αij V iW j .

Conversely, suppose we are given an F̃ ∈ Fq[V, W]. Then θ−1(F̃) is the
set of triples (F̃(Zs, Z),w, s) where w and s range over natural numbers
such that degW (F̃) < w ≤ s = qk for some k. In particular, we see that θ is
surjective.
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We can characterise equivalence in M using the set N :

Proposition 6. Let (F1, w1, s1) and (F2, w2, s2) be elements of M. Then
(F1, w1, s1) ∼ (F2, w2, s2) if and only if (G, F1, w1, s1, d) and (G, F2,
w2, s2, d) are both in N for some G ∈ Fq[Z] and d ∈ N.

Proof. Assume (F1, w1, s1) ∼ (F2, w2, s2) and let w = min{w1, w2}. Then
for some d ≥ 2, we have

F1 =
∑

i<d

∑

j<w

αij Zs1i+ j and F2 =
∑

i<d

∑

j<w

αij Zs2i+ j .

If we define G = ∑
i<d

∑
j<w αij Zi+d j , it follows from Lemma 3 that

(G, Fk, w, sk, d) ∈ N for k ∈ {1, 2}. But w ≤ wk ≤ sk, so we also have
(G, Fk, wk, sk, d) ∈ N .

Conversely, let (G, Fk, wk, sk, d) be in N for k ∈ {1, 2}. Then
deg G < wd with w = min{w1, w2}. If we write G = ∑

i<d

∑
j<w αij Zi+d j

as in Lemma 3, it follows from that lemma that

Fk =
∑

i<d

∑

j<w

αij Zski+ j , so θ(Fk, wk, sk) =
∑

i<d

∑

j<w

αij V
iW j

for k ∈ {1, 2}. The right hand side is independent of k, therefore (F1, w1, s1)
∼ (F2, w2, s2). ��

4.2 Addition and multiplication. The set M/∼ gives an interpretation
of Fq[V, W] over Fq[Z], but is it Diophantine? In Proposition 5 we already
showed that the set M is Diophantine. Since N is Diophantine, it follows
from Proposition 6 that ∼ is a Diophantine relation. It remains to show that
addition and multiplication in the interpretation are Diophantine.

To define an operator (either addition or multiplication), we may assume
that both operands have the same w and s. This follows from the following
lemma:

Lemma 7. Let (F1, w1, s1), (F2, w2, s2), (F3, w3, s3) ∈ M. Then

θ(F1, w1, s1) + θ(F2, w2, s2) = θ(F3, w3, s3) (4)
�

(∃H1, H2, H3)(∃w, s) (5)
(H1, w, s) ∈ M ∧ (F1, w1, s1) ∼ (H1, w, s) (6)

∧ (H2, w, s) ∈ M ∧ (F2, w2, s2) ∼ (H2, w, s) (7)
∧ (H3, w, s) ∈ M ∧ (F3, w3, s3) ∼ (H3, w, s) (8)
∧ θ(H1, w, s) + θ(H2, w, s) = θ(H3, w, s). (9)
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Proof. The implication ⇑ is trivial, since θ(Hk, w, s) = θ(Fk, wk, sk) for
k ∈ {1, 2, 3}.

Conversely, assume (4) and pick w ≥ max{w1, w2, w3} and s ≥
max{s1, s2, s3, w} with s a power of q. Let k ∈ {1, 2, 3}. From Lemma 4
it follows that there exist Gk and dk such that (Gk, Fk, wk, sk, dk) ∈ N .
If we let Hk be the remainder of Gs

k after division by Zsdk − Z, then
(Gk, Hk, w, s, dk) will be in N . Using Proposition 6, we get (Fk, wk, sk) ∼
(Hk, w, s). ��

The above lemma was about addition, but exactly the same holds for
multiplication. Also remark that w and s can be chosen arbitrarily large. Now
we can easily give Diophantine definitions of addition and multiplication:

Proposition 8. Let (F1, w, s), (F2, w, s) ∈ M.

1. Then

θ(F1, w, s) + θ(F2, w, s) = θ(F1 + F2, w, s). (10)

2. If 2w ≤ s (this can be ensured by choosing s ≥ 2w in Lemma 7), then

θ(F1, w, s) · θ(F2, w, s) = θ(F1 F2, 2w, s). (11)

Proof. The first item is immediate because the sets Sw,s are Fq-linear, and
the map θ is also Fq-linear in the first argument.

For the multiplication, we rely on the fact that if degW(F1) and degW (F2)
are both less than w, then degW(F1 F2) is less than 2w. If we fix w and s
and restrict ourselves to polynomials with W-degree small enough, then
the restriction of θ acts as a “isomorphism” of rings between a subspace
of Fq[Z] and a subspace of Fq[V, W]. ��

5 Diophantine versus recursively enumerable

Now we show how the Diophantine interpretation of Fq[V, W] over Fq[Z]
can be used to prove that every recursively enumerable (r.e.) subset ofFq[Z]k

(with k ≥ 1) is Diophantine over Fq[Z]. This will be in the language
{+, ·, 0, 1, α, Z}, where α is a constant such that Fq = Fp(α), with p the
characteristic of Fq.

We first do the one-dimensional (k = 1) case. Consider an r.e. set
S ⊆ Fq[Z], but write it as S(Z) to stress that the polynomials are in the
variable Z. Let S(V ) ⊆ Fq[V, W] be the set with the same polynomials, but
in V instead of Z. Since S(V ) is an r.e. subset of Fq[V ], it follows from [2]
that S(V ) is a Diophantine subset of Fq[V, W].

But we have an interpretation of Fq[V, W] over Fq[Z], such that elements
of Fq[V, W] are seen as equivalence classes in M. We can also translate the
Diophantine definition of S(V ) to a Diophantine definition in M of the elem-
ents representing S(V ). Therefore θ−1(S(V )) is Diophantine over Fq[Z].
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Since θ(F(Z), 1, 1) = F(V ), this yields the following Diophantine
definition of S(Z):

F(Z) ∈ S(Z) ⇐⇒ (F(Z), 1, 1) ∈ θ−1(S(V )).

For k = 2, we use a Diophantine pairing function, that is an injection
Fq[Z]2 ↪→ Fq[Z]:

δ : Fq[Z] × Fq[Z] → Fq[Z]
(A, B) �→ Ap Z + B p.

Now let S be an r.e. subset of Fq[Z]2. Then δ(S) is an r.e. subset of
Fq[Z], hence δ(S) is Diophantine. But then S is also Diophantine because

(A, B) ∈ S ⇐⇒ Ap Z + B p ∈ δ(S).

We can do larger k’s inductively, by applying the above pairing function
on two of the k components.

6 Infinite fields

So far, we have proven that r.e. equals Diophantine for rings F[Z], where F
is a finite field. But we can do more: let p be a prime number and fix an
algebraic closure Fp of Fp. We will look at infinite subfields F of Fp, and try
to figure out whether r.e. subsets of F[Z]k are Diophantine.

First of all, we only need to consider the case k = 1 because the argument
at the end of the previous section works unaltered for the ring F[Z] (or any
polynomial ring in characteristic p). Therefore, we only need to look at
subsets of F[Z] in the remainder of this section.

6.1 Recursive structure. If F is an infinite field, some problems arise:
First of all, the field F might not be recursive, which means it is impossible
to compute in F. Second, it is not clear how to give a meaningful definition
of “recursively enumerable set”.

We start by recalling the definition of a recursive presentation; for more
details we refer to [4]. A recursive presentation of a ring R is a bijection
θ : R ∼→ N such that the following sets are recursive:

R+
θ = {(θ(A), θ(B), θ(A + B)) ∈ N3 | A, B ∈ R},

R×
θ = {(θ(A), θ(B), θ(AB)) ∈ N3 | A, B ∈ R}.

R+
θ is called the addition table, and R×

θ the multiplication table of R.
A ring admitting a recursive presentation is called a recursive ring. Note

that such a ring must be countable. Not every subfield of Fp is recursive. This
can simply be seen by considering cardinalities: there are 2ℵ0 such subfields,
but at most ℵ0 of them can be recursive. The latter follows from the fact that
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every Turing machine has a Gödel number which is simply a natural number.
So there are only countably many Turing machines, hence only countably
many recursive sets. Since the field F is determined (up to isomorphism)
by the recursive sets R+

θ and R×
θ , only countably many subfields of Fp are

recursive.
So we have to assume that F is a recursive infinite algebraic extension

of Fp. The algebraic closure satisfies this condition (see [8]).
Once we have a recursive presentation θ for a ring R, we can define

recursively enumerable sets in R: A set S ⊆ R is called r.e. if and only
if θ(S) is an r.e. subset of N. The problem with this definition is that it
depends on θ.

This happens for example in infinite subfields F ⊆ Fp, where it can
be explained by looking at the automorphism group Gal(F/Fp). Let θ be
a recursive presentation F ∼→ N. It is possible to construct an r.e. set S (r.e.
for θ), and a φ ∈ Gal(F/Fp) such that φ(S) is not r.e. (for θ). Using φ, we
twist θ to a new recursive presentation ψ = θ ◦ φ. Then S will be r.e. for θ,
but not for ψ. Obviously, we need a way to avoid this problem. First we
have a look at how different recursive presentations relate to one another:

Lemma 9. Let F be a recursive infinite algebraic extension of Fp. Assume
we have two recursive presentations σ : F ∼→ N and θ : F ∼→ N. Then there
exists a recursive permutation π of N and an automorphism φ of F such
that π ◦ σ = θ ◦ φ.

F ��
φ∈Gal(F/Fp)

��������

��

σ

F

��

θ

N ��π recursive
�������� N

Proof. Note that the maps σ , θ, π and φ are all bijections. To every
φ ∈ Gal(F/Fp), there corresponds a unique permutation π such that the
above diagram commutes. For every such π, we look at the value vec-
tor (π(0), π(1), π(2), . . . ). We take the unique π such that this value vector
is lexicographically the first. This fixes the choice of φ and π, but we still
have to prove that this π is recursive.

We will compute π by induction. Assume that an algorithm knows
the values π(0), π(1), . . . , π(a − 1) for some a ≥ 0, and that we have to
compute π(a). Note that this algorithm knows nothing about φ. As extra
input, the algorithm needs σ(1) and π(σ(1)) = θ(1).

The first thing to do is to determine the finite field Fq generated by
{σ−1(0), . . . , σ−1(a − 1)}. For every σ−1(i), we can compute the small-
est n such that σ−1(i)pn = σ−1(i) by successively taking p-th powers. This
powering is done using the multiplication table for the recursive presenta-
tion σ . We do this for all i < a and let m be the l.c.m. of the n’s, then
q = pm . The set σ(Fq) can easily be determined, it contains exactly the
elements x such that σ−1(x)q = σ−1(x). Given π(0), . . . , π(a − 1), we can
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also compute π on all of σ(Fq), by taking algebraic combinations of the
elements σ−1(0), . . . , σ−1(a − 1) and 1.

Now we will compute π(a). Writing α = σ−1(a), we can compute its
minimal polynomial over Fq:

P(Z) = (Z − α)(Z − αq)(Z − αq2
) · · · (Z − αqn−1

)

(αqn = α with n minimal).

We have to explain what it means to compute this, because an algorithm
can only work with natural numbers (representing elements of F via a recur-
sive presentation). So, our algorithm cannot really compute the polynomial,
but only the codes of the coefficients. The minimal polynomial of α will be
represented as some numbers ai ∈ σ(Fq) such that P(Z) = ∑n

i=0 σ−1(ai)Zi

is the actual minimal polynomial.
Since we can compute π on σ(Fq), we can compute bi = π(ai). Let

b = π(a) (which we still have to compute) and β = θ−1(b). Expanding
φ(P(α)) = 0, and using π ◦ σ = θ ◦ φ, we get

0 = φ
( n∑

i=0

σ−1(ai)α
i
)

=
n∑

i=0

φ
(
σ−1(ai)

)
φ(α)i =

n∑

i=0

θ−1(bi)β
i .

This gives the minimal polynomial of θ−1(b). So, to find π(a), we try all
x ∈ N and compute the minimal polynomial of θ−1(x) (as before, we actu-
ally compute θ of the coefficients). If we get the polynomial

∑
θ−1(bi)Zi ,

we are done. Since we want π to be the lexicographically first amongst all
possible π, we try the x’s in order and take the smallest one with the correct
minimal polynomial. ��

Since the definition of recursively enumerable sets depends on the re-
cursive presentation chosen, we will restrict ourselves to the sets S ⊆ F
which are r.e. for every recursive presentation of F. These sets can also be
characterized algebraically, using the q-Frobenius φq on F, mapping ξ to ξq:

Lemma 10. Let S be a subset of F. Then θ(S) is r.e. for every recursive
presentation θ if and only if S is invariant under φq for some q.

Proof. First, we do the “if” direction, so we take two recursive presentations
σ and θ. Then we take π and φ satisfying Lemma 9. Let S be r.e. for σ , this
means by definition that σ(S) is r.e. as a subset of N. Since π is recursive,
this implies that θ(φ(S)) = π(σ(S)) is r.e. Now S is invariant under taking
q-th powers, therefore φ(S) = φpk(S) for a certain k. The Frobenius φpk is
computable and θ(φ(S)) is r.e., so θ(S) is also r.e. This shows that S is also
r.e. for the recursive presentation θ.

The converse can be proven using the theory of profinite groups. Con-
sider the group G ≤ Gal(F/Fp) which stabilizes S, this is a closed sub-
group of the profinite group Gal(F/Fp). The quotient Q = Gal(F/Fp)/G
determines the possible images of S under Gal(F/Fp). This Q is a quo-
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tient of a profinite group by a closed subgroup, so Q is also profinite (see
[9, Proposition 2.2.1]).

Fix one particular recursive presentation θ. If φ is any automorphism
of F, then θ ◦ φ is also a recursive presentation. Since θ is a bijection, we
get a different set θ(φ(S)) for every φ ∈ Q. By assumption, all sets θ(φ(S))
are r.e., so Q can contain at most countably many elements. Since profinite
groups cannot have exactly ℵ0 elements (see [9, Proposition 2.3.1]), Q must
be finite. We conclude that some power of the Frobenius ξ �→ ξ p must be
in G. ��

This whole discussion was for the field F, but it also applies to the
polynomial ring F[Z]. In [4], it is proven that F[Z] is recursive whenever F
is. We can extend the Frobenius φq to an automorphism on F[Z] by setting
φq(Z) = Z. In F[Z], we will work with r.e. subsets S such that there exists
a q for which φq(S) = S. As above, one can prove that such a set S will be
r.e. for every recursive presentation F[Z] ∼→ N. Finally, using the pairing
function δ (see Sect. 5), everything also applies to cartesian powers F[Z]k ,
if we let φq act component-wise.

6.2 Some lemmas. In the previous section, we already saw that we cannot
work with every r.e. set, we have to assume that our r.e. sets are invariant
under a Frobenius automorphism φq . But there is another, more algebraic
reason why we need this assumption: Take any Diophantine subset D
of F[Z]. In the polynomial used to define D , only finitely many elements
from F can appear. This is true even if we allow an infinite language. If Fq
is the finite field generated by these elements of F, then D will be invariant
under the Frobenius φq .

The following is the main theorem of Sect. 6:

Theorem 11. Let F be a recursive infinite algebraic extension of Fp. For
all k ≥ 1, the Diophantine sets in F[Z]k are exactly the recursively enumer-
able sets that are fixed under a Frobenius automorphism. Moreover, an r.e.
set invariant under φq can be Diophantinely defined using only constants
from Fq[Z].

We need the following Lemma, which is a generalization of the fact that
for two polynomials F �= G over an infinite field, there is a value α such
that F(α) �= G(α). We also want that F(α) �= G(ασ)τ for automorphisms
σ and τ:

Lemma 12. Let Fq be a finite subfield of F. Consider a finite subset
{P1, . . . , Pn} of F[Z], such that none of the Pi is a q-th power. Then there
exists an α ∈ F such that the implication Pi(α) = Pj(α

σ)τ → Pσ
i = Pj

holds for all 1 ≤ i, j ≤ n and σ, τ ∈ Gal(F/Fq).

Proof. Without loss of generality, we may assume that if a polynomial P is
amongst {P1, . . . , Pn}, all its conjugates Pσ also are. We can assure this by
adding a finite number of polynomials to the given set.
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Fix a finite subfield Fr ⊂ F containing Fq and all the coefficients of
the Pi . Note that there is a minimal r, but we can take r arbitrarily large.

In symbols, we have to prove that

(∃α ∈ F)(∀i, j ≤ n)(∀σ, τ ∈ Gal(F/Fq))
(
Pi(α) = Pj(α

σ)τ → Pσ
i = Pj

)
.

We will take α in Fr , so everything is well-defined if we see σ and τ as
elements of G = Gal(Fr/Fq):

(∃α ∈ Fr)(∀i, j ≤ n)(∀σ, τ ∈ G)
(
Pi(α) = Pj(α

σ)τ → Pσ
i = Pj

)
.

If we set Pk = Pσ−1

j and ρ = στ , this becomes

(∃α ∈ Fr)(∀i, k ≤ n)(∀ρ ∈ G)
(
Pi(α) = Pk(α)ρ → i = k

)
.

We want to prove this by contradiction, so we assume that

(∀α ∈ Fr)(∃i, k ≤ n)(∃ρ ∈ G)
(

Pi(α) = Pk(α)ρ ∧ i �= k
)
. (12)

We will use a counting argument to show that (12) is not possible if r
is large enough. To every α ∈ Fr there corresponds a triple (i, k, ρ) such
that Pi(α) = Pk(α)ρ with i �= k. There are at most n · n · logq r such
triples, by the pigeonhole principle at least N = ⌈

r
n2 logq r

⌉
different α’s have

the same (i, k, ρ). In other words, there exist certain fixed i, k ∈ N and
ρ ∈ Gal(Fr/Fq) such that Pi(α) = Pk(α)ρ for at least N different values of
α ∈ Fr .

ρ is simply raising to the power qh , for a certain h ∈ {0, . . . , logq r −1}.
But we may assume that h ≤ (logq r)/2, because we can always apply ρ−1

to Pi(α) = Pk(α)ρ and exchange i and k. Like this, qh is at most
√

r.
So, for N different values of α, the following holds:

Pi(α) = Pk(α)qh
.

If Pi(Z) − Pk(Z)qh
is the zero polynomial, then either h = 0 and

i = k, or h > 0 and Pi is a q-th power. Both these cases are excluded,
so Pi(Z) − Pk(Z)qh

has only finitely many zeros. If d is the maximum
degree of all given polynomials Pi , then Pi(Z) − Pk(Z)qh

has degree at
most dqh ≤ d

√
r. But this polynomial has N different zeros; therefore

d
√

r ≥ N ≥ r

n2 logq r
.

Since d, n and q do not depend on r, it is possible to take r large enough to
contradict this inequality. ��
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Definition 13. For all u ≥ 1, define

Au = {X ∈ F[Z] | (X p Z p + Z + 1)|(Zu − 1)},
Zu = {X p Z p + Z + 1 ∈ F[Z] | (X p Z p + Z + 1)|(Zu − 1)}.

Lemma 14. The sets Au and Zu satisfy the following properties:

1. For all u, Au and Zu are finite.
2. For all X ∈ Au, the degree of X is at most u.
3. The union of all Au’s is equal to F[Z].

Proof. Since F[Z] has unique factorization, (Zu − 1) has only finitely
many divisors up to units. There are infinitely many units, but for every
divisor F(Z) of (Zu − 1), there is exactly one unit ε ∈ F∗ such that
εF(Z) ≡ 1 mod Z. Therefore, Zu − 1 can have only finitely many div-
isors of the form X p Z p + Z + 1.

The second item follows immediately from the definition of Au. It is
clear that this is not a very good bound, but that does not matter.

To prove the last item, take any X ∈ F[Z] and let F(Z) = X p Z p + Z +1
∈ Zu . The derivative F ′(Z) = 1, so F(Z) is a separable polynomial. Now
consider the ring R = F[Z]/F. By assumption, gcd(F, Z) = 1, so Z is
a unit in R. Since F is seperable, this ring is a product of fields. Each of
these fields is a subfield of Fp, so Z has finite multiplicative order in them.
This means that Zu ≡ 1 mod F for a certain u. ��

We can use this to give a Diophantine definition of Fq[Z] in F[Z]. The
same definition even works to define Fq[Z] in R[Z] where R is any integral
domain of characteristic p. This is because we only need the model of N
(and we have this model in any R[Z], see Introduction).

Lemma 15. For X ∈ F[Z], the following holds:

X ∈ Fq[Z] (13)
�

(∃a, b, u)

X ∈ Au (14)

∧ qa > u ∧ qb > u ∧ gcd(a, b) = 1 (15)

∧ Xqa ≡ X (mod Zqa − Z) (16)

∧ Xqb ≡ X (mod Zqb − Z). (17)

Proof. Assume X ∈ Fq[Z] and write X = ∑d
i=0 αi Zi with αi ∈ Fq.

Choose u such that (14) holds. Then choose a and b such that (15) holds.
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Since αi ∈ Fq, we find

Xqa =
d∑

i=0

αi Z
iqa ≡

d∑

i=0

αi Z
i = X (mod Zqa − Z).

Analogously, Xqb ≡ X (mod Zqb − Z).
Conversely, assume (14)–(17). From (14) it follows that deg X ≤ u, so

we can write X as
∑u

i=0 αi Zi , where αi ∈ F. We want to prove that every αi
is actually in Fq. Congruence (16) implies that

u∑

i=0

αi Z
i = X ≡ Xqa =

u∑

i=0

α
qa

i Ziqa ≡
u∑

i=0

α
qa

i Zi (mod Zqa − Z).

The left and right hand sides of this congruence are polynomials of degree
at most u, but they are congruent modulo a polynomial of degree qa > u,

so they are equal. This means that αi = α
qa

i ; in other words, αi ∈ Fqa . In
the same way, from (17) it follows that αi ∈ Fqb . Since gcd(a, b) = 1, we
have αi ∈ Fq. ��

6.3 Recursively enumerable subsets ofF[Z]. We now prove Theorem 11,
it suffices to do the case k = 1. Let S be an r.e. subset of F[Z], and let q be
a power of p such that φq(S) = S. We want to find a Diophantine definition
of the set S, using only constants from Fq[Z].

Given S, we construct a set P1 ⊆ N × F × F which will encode
the elements of S. For an F ∈ S, the following procedure gives a triple
(u, α, β) ∈ N× F× F corresponding to F:

• u is the smallest number for which F ∈ Au (see Definition 13). This
means that G = F p Z p + Z + 1 ∈ Zu .

• α comes from Lemma 12 applied to the elements of Zu . This α is not
uniquely defined, but we can do the following: F is a recursive field,
so it is given with a recursive presentation θ : F ∼→ N. We simply try
all numbers in N and check whether the corresponding α ∈ F satisfies
Lemma 12. We take the first α we find (Lemma 12 guarantees that we
will eventually find one).

• β = G(α) = F(α)pαp + α + 1.

Now we will do a further encoding of P1 inN×Fq[Z]×Fq[Z]. We encode
a triple (u, α, β) ∈ P1 as (u, A, B), where A is the minimal polynomial
(over Fq) of α and analogously B is the minimal polynomial of β. The set
of all these (u, A, B) will be called P .

Both these encodings are recursive procedures, therefore P1 and P are
r.e. sets. It follows from Sect. 5 that P is Diophantine over Fq[Z]. By
Lemma 15, it is also Diophantine over F[Z].
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Looking back at the definitions of P and P1, we can find a Diophantine
definition of the set S:

Theorem 16.

F ∈ S (18)
�

(∃u ∈ N)(∃A, B ∈ F[Z])(∃α, β ∈ F)
(u, A, B) ∈ P (19)

∧ A(α) = 0 ∧ B(β) = 0 (20)
∧ F ∈ Au ∧ F(α)pαp + α + 1 = β. (21)

Remark. In the formula above, we wrote “(∃α, β ∈ F)”, so we
need F to be a Diophantine subset of F[Z], but this is easy: X ∈ F ⇐⇒
X = 0 ∨ (∃Y )(XY = 1). A polynomial evaluation X(ξ) = η is also
Diophantine because it can be written as (Z − ξ)|(X − η).

Proof. If F ∈ S, we take the corresponding (u, α, β) ∈ P1 and
(u, A, B) ∈ P . Then (19) is obviously satisfied, and (20) and (21) are
true because of the construction of P1 and P .

Conversely, assume (19)–(21). By definition of P , it follows from
(u, A, B) ∈ P that there exist α′ and β′ with (u, α′, β′) ∈ P1 with α′
a zero of A and β′ a zero of B. This triple (u, α′, β′) has to come from
some F ′ ∈ S. If we write G′ = F ′ p Z p + Z + 1, this means that

G′ ∈ Zu and G′(α′) = β′.

However, writing G = F p Z p + Z + 1, if follows from (21) that

G ∈ Zu and G(α) = β.

But α and α′ are zeros of the same irreducible polynomial A, so they are
conjugates. The same holds for β and β′. Looking at how we used Lemma 12
on the set Zu to construct P1, we see that G = G′σ for some σ ∈ Gal(F/Fq).
Since Zσ = Z, it follows that F = F ′σ . But S is invariant under φq , so
F ′ ∈ S implies that F ∈ S. ��
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