
 

 

biblio.ugent.be 

 

The UGent Institutional Repository is the electronic archiving and dissemination platform for all 
UGent research publications. Ghent University has implemented a mandate stipulating that all 
academic publications of UGent researchers should be deposited and archived in this repository. 
Except for items where current copyright restrictions apply, these papers are available in Open 
Access. 

 

This item is the archived peer-reviewed author-version of: 

Title:  

Synthesis of alpha-aryl-substituted and conformationally restricted fosmidomycin analogues as 
promising antimalarials  

Author(s): Haemers, T (Haemers, Timothy); Wiesner, J (Wiesner, Jochen); Busson, R (Busson, Roger); 
Jomaa, H (Jomaa, Hassan); Van Calenbergh, S (Van Calenbergh, Serge)  

Source: EUROPEAN JOURNAL OF ORGANIC CHEMISTRY (2006),17 ,3856-3863;  

DOI: 10.1002/ejoc.200600202  

 

http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=X2GPHbmDJ@1naicPmf9&field=AU&value=Haemers,%20T�
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=X2GPHbmDJ@1naicPmf9&author_name=Wiesner,%20J&dais_id=14751425�
http://apps.webofknowledge.com/OneClickSearch.do?product=WOS&search_mode=OneClickSearch&colName=WOS&SID=X2GPHbmDJ@1naicPmf9&field=AU&value=Busson,%20R�
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=X2GPHbmDJ@1naicPmf9&author_name=Jomaa,%20H&dais_id=11536292�
http://apps.webofknowledge.com/DaisyOneClickSearch.do?product=WOS&search_mode=DaisyOneClickSearch&colName=WOS&SID=X2GPHbmDJ@1naicPmf9&author_name=Van%20Calenbergh,%20S&dais_id=16009654�


- 1 - 

Synthesis of α-aryl substituted and conformationally restricted 

fosmidomycin analogues as promising antimalarials 

 

Timothy Haemers,a Jochen Wiesner,b Roger Busson,c Hassan Jomaab and Serge Van 

Calenbergha,* 

 

aLaboratory for Medicinal Chemistry (FFW), Ghent University, Harelbekestraat 72, 9000 

Gent, Belgium 

bUniversitätsklinikum Giessen und Marburg, Institut für Klinische Chemie und 

Pathobiochemie, Gaffkystrasse 11, 35392 Giessen, Germany 

cLaboratory  for Medicinal Chemistry, Rega Institute, Catholic University of Leuven, 

Minderbroedersstraat 10, 3000 Leuven, Belgium 

 

 

 

 

 

 

 

* Corresponding author. Tel. +32 (0)9 264 81 24; fax +32 (0)9 264 81 46; e-mail: 

serge.vancalenbergh@ugent.be 



- 2 - 

Keywords: Fosmidomycin / 1-Deoxy-D-xylulose 5-phosphate reductoisomerase / α-Aryl 

substituted phosphonate / rigidified analogues 

 

Abstract 

Fosmidomycin represents a new antimalarial drug, acting by inhibition of 1-deoxy-D-xylulose 

5-phosphate reductoisomerase, an essential enzyme of the mevalonate independent pathway 

of isoprenoid biosynthesis. This work describes the synthesis of a series of α-aryl substituted 

fosmidomycin analogues exhibiting improved antimalarial activity. A linear synthetic route, 

involving a 3-aryl-3-phosphoryl propanal intermediate, proved practical to prepare these 

derivatives. A phospha-Michael addition to cyclopent-2-enone gave access to 

conformationally restricted analogues.  
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1. Introduction 

 

In the 1970s Kuemmerle and co-workers reported the first isolation of fosmidomycin as a 

structurally simple antibiotic from Streptomyces lavendulae. In recent years, fosmidomycin 

received considerable attention due to its promising antimalarial activity and recent clinical 

trials conducted in Gabon and Thailand confirmed the potential of fosmidomycin as 

antimalarial drug.1

Chemical variations of fosmidomycin were mainly directed to increase the inhibitory activity 

against DXR or to achieve inhibitors with improved physicochemical properties. To study the 

structure-activity relationships, hydroxamic moiety modifications, including benzoxazolone 

and oxazolopyridinone functionalities, have been reported.7 Also, the phosphonate moiety has 

been altered to produce prodrugs with improved oral bioavailability.8,9,10  

,2 In 1998 the molecular target of fosmidomycin was discovered to be 1-

deoxy-D-xylulose 5-phosphate (DOXP) reductoisomerase.3 This enzyme plays an essential 

role in the mevalonate-independent pathway for the synthesis of isoprenoids and is absent in 

humans.4 Fosmidomycin was found to be a potent inhibitor for DOXP reductoisomerase 

(DXR) of P. falciparum.5,6 After this important discovery much attention has been focused on 

the chemical synthesis of fosmidomycin analogues. FR900098, the acetyl analogue of 

fosmidomycin, was shown to be approximately twice as active against P. falciparum in vitro 

as well as in a P. vinckei mouse model.3 

Surprisingly, modifications addressing the three carbon spacer are scarce. Recently, we 

reported the discovery of a series of α-aryl substituted fosmidomycin or FR900098 

derivatives 1 and 2, which generally proved superior to fosmidomycin in inhibiting P. 

falciparum growth.11 To sort out the influence of the lipophilicity and electronic properties of 

this phenyl moiety, substituents were introduced according to Topliss’ methodology.12 
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Briefly, in this methodology an operational scheme is used to quickly identify the optimum 

substitution on a benzene ring for maximizing drug potency by virtue of resulting changes in 

hydrophobic, electronic and steric effects. 

Here, we describe the detailed procedure used to synthesize these α-substituted analogues. 

Although strategies to synthesise products with a C-P bond are well documented,13 

introducing aryl substituents in α-position of a phosphonate (resulting in a P-CH(Ar)-C 

motive) is quite challenging. Fosmidomycin was first synthesised in the early eighties by 

Hemmi et al. using a Michaelis-Becker reaction.14 This approach cannot be easily adapted to 

allow the synthesis of α-substituted derivatives.  

In this study 3-aryl substituted 3-phosphoryl propanals were anticipated to be appropriate 

intermediates for the synthesis of a small series of α-aryl substituted fosmidomycin analogues. 

Depending on the availability of the starting material, a lithiation-allylation-alkene oxidation 

sequence or a Michael addition will be considered for the synthesis of these intermediates 

(Scheme 1). A drawback of this strategy is that every derivative has to be synthesized de 

novo, which does not permit to prepare an extended series of the envisaged analogues. 

However, when the proposed routes allow to obtain the desired analogues in good overall 

yields, they might be valuable for scale-up purposes, e.g., to prepare a selected inhibitor for in 

vivo studies. Interestingly, when applied to cyclopent-2-enone the Michael addition should be 

a useful approach to design unprecedented fosmidomycin analogues 3 and 4, in which the 3C 

spacer is part of a cyclopentane ring. Indeed, by incorporating the α- and β-carbon in a 

cyclopropane ring, we recently demonstrated that rigidification of fosmidomycin might result 

in potent DXR inhibitors.15  

2. Result and discussion  

2.1. Synthesis of α-aryl substituted fosmidomycin and FR900098 analogues  
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Retrosynthetic analysis toward the synthesis of the desired α-substituted fosmidomycin 

analogues is depicted in Scheme 1.  

[Scheme 1] 

Two synthetic pathways toward the aldehyde synthons were followed (Scheme 2). The first 

one started from the appropriate diethyl benzylphosphonate, which upon treatment with n-

BuLi in the presence of allyl bromide, afforded 6a,b in 97 and 33 % yield.16 Oxidation of 6a,b 

to the vicinal cis-diol with osmium tetraoxide in the presence of 4-methylmorpholine N-oxide 

followed by sodium periodate cleavage gave aldehydes 9a,b, which could be used in the next 

step without further purification. 

[Scheme 2] 

When the desired benzylphosphonate was not commercially available, an alternative strategy 

to prepare the desired aldehydes was followed. A 1,4-addition of triethyl phosphite to the 

appropriately substituted cinnamaldehyde in the presence of phenol gave the acetals 8c-e in 

70-85 % yield.17 Subsequent deprotection of the diphenyl acetal afforded in 76-83 % yield the 

corresponding aldehydes, which appeared stable enough to be purified by flash 

chromatography. If necessary, substituted cinnamaldehydes were synthesized. Several 

procedures are described in the literature. In our hands a palladium-catalyzed synthesis from 

acrolein diethyl acetal and the corresponding aryl iodide was very efficient.18 Only the (E)-

isomer was obtained as deduced from the large coupling (16 Hz) between the vinylic 

hydrogens. 

[Scheme 3]  

Conversion of the appropriate aldehydes to the desired analogues 1 and 2 is depicted in 

Scheme 3. Treatment of 9a-e with O-benzylhydroxylamine yielded (67-92 %) oximes 10a-e. 

13C-NMR revealed the presence of two geometric isomers, which were reduced with sodium 
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cyanoborohydride to produce the benzyloxyamines 11a-e in 91-96 % yield. Subsequent 

acetylation of 11a-e with acetyl chloride afforded 13a-e in good yield. For the formylation of 

11 different methods were investigated. Since the mixed anhydride method was unsuccessful, 

compound 11a was formylated with 2-thioxothiazolidine-3-carbaldehyde, prepared by 

reaction between 2-mercaptothiazoline and formic acid using DCC as coupling agent. A 

drawback of this approach was the long reaction time (more than 3 days at room temperature). 

Consequently, 11c,d,e were formylated using formic acid and 1,1’-carbonyl-diimidazole in 

dichloromethane. This method reduced the reaction time considerably.  

Benzyl deprotection by catalytic hydrogenation proved tricky, especially in the formyl series, 

where this reaction generally led to the formation of two reaction products. After their 

separation, MS was useful to assign these compounds as the desired product and the 

corresponding deoxygenated derivative, i.e. the amide. Further structural evidence for this 

deoxygenation was furnished by a 1H COSY NMR experiment of the side product, showing a 

strong coupling between the NCH2 protons and a heteroatom bound proton at 7.04 ppm, 

which is normally absent in the desired products as may be expected for such long range 4J 

(CH2NOH) coupling. Also the characteristic 13C NMR upfield shifts of the N-CH2 carbon are 

in agreement with the absence of the OH-group on nitrogen (β-substituent effect). Indeed, for 

the deoxygenated product the N-CH2 signal appeared at 35.8 ppm, while for product 14c two 

signals at 47 and 44 ppm were found. This indicates that 14c (and also 14e) exists as a 

mixture of syn and anti NOH rotamers in a 2:1 ratio. 

Compounds 14c,e and 15a-e were finally deprotected with 4 eq of TMSBr in CH2Cl2 at 

ambient temperature to afford pure 1c,e and 2a-e after purification by reversed phase HPLC. 

Although this reaction was almost quantitative, minor amounts of deacylated products were 

detected, probably due to small amounts of HBr in the TMSBr reagent. 
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2.2. Synthesis of conformationally restricted fosmidomycin and FR900098 analogues 

The approach used to convert the cinnamaldehydes 7c-e to the corresponding α-substituted 

fosmidomycin derivatives, was also successfully applied to prepare four 5-membered cyclic 

fosmidomycin analogues from cyclopent-2-enone (Scheme 4). Michael addition of triethyl 

phosphite to this cyclic α,β-unsaturated ketone gave direct access to the diethyl 3-

oxocyclopentylphosphonate.17  The remaining part of the synthesis involved the same 

transformations as used for the α-aryl phosphonates. Separation of the diastereomeric pairs 

was realized after the hydrogenolysis. The cis- and trans-isomers were assigned by 1H 

NOEDIF NMR experiments: an interaction between the NOH and the methyls of the 

phosphonate ester was observed for cis-22 and cis-23, as opposed to the trans isomer where 

such a contact was missing. The 13C NMR spectra of compounds 22 further point to the 

presence of a major and a minor form, most probably as a result of restricted rotation in the 

hydroxamic group with preferential formation of the syn isomer due to a likely hydrogen 

bond between NOH and the carbonyl.  

By using the described procedures, we have synthesized eleven analogues, allowing to 

perform initial SAR studies for the α-aryl series.11 Although these studies revealed that the α-

aryl analogues were generally weaker E. coli DXR inhibitors than fosmidomycin, these 

analogues unambiguously surpassed the activity of fosmidomycin to inhibit P. falciparum 

growth. Remarkably, the formyl analogues 1c and 1e consistently outperformed the acetyl 

derivatives 2c and 2e, both in the enzyme and the parasite growth inhibition assay.  

With an IC50 value of 0.036 μM compound 1e emerged as the most promising analogue. 

Amongst the fosmidomycin analogues in which the C-C-C spacer is part of a cyclopentane 

ring, the trans analogues proved notably more active than the cis isomers (Table 1). This is in 

agreement with recent results obtained with cyclopropane fosmidomycin analogues, where a 

trans orientation of the phosphonate group and the hydroxyamide moiety also yielded the 
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most potent inhibitor.15 Remarkably, in the cyclopropane series, the inhibitory activity of the 

formyl analogues surpassed that of the acetyl derivatives, while an opposite trend was 

observed in the cyclopropane series. 

 

3. Conclusion 

In conclusion, a synthetic procedure for the preparation of α-aryl substituted fosmidomycin 

analogues was developed starting from (a ring substituted) benzylphosphonate. Alternatively, 

these analogues were also accessible via a Michael addition of triethyl phosphite to an 

appropriate cinnamaldehyde. The latter method was also successfully used to prepare a series 

of cyclopentyl analogues of fosmidomycin.  

 

4. Experimental 

General 

IUPAC names were generated with Chemdraw Ultra 8.0 (Chemoffice 2004, Cambridge Soft, 

Cambridge, USA). Most  reactions were carried out under inert (N2) atmosphere. Precoated 

Merck silica gel F254 plates and precoated Macherey-Nagel (Düren, Germany) silica gel F254 

plates were used for TLC and spots were examined under UV light at 254 nm and revealed by 

a phosphomolybdic-cerium sulphate solution, iodine vapour or a dinitrophenol solution. 

Column chromatography was performed on ICN silica gel (63-200 μM). NMR spectra were 

obtained with a Varian Mercury 300 spectrometer. Chemical shifts are given in parts per 

million (ppm) (δ relative to residual solvent peak, in the case of DMSO-d6 2.54 ppm for 1H 

and 40.5 ppm for 13C, in the case of CDCl3 7.26 ppm for 1H and 77.4 ppm for 13C and in the 

case of acetone 2.05 ppm for 1H and 29.84 and 206.26 ppm for 13C. Coupling constants are 

expressed in Hz. Abbreviations used are: s = singlet, d = doublet, t = triplet, q = quartet, m = 



- 9 - 

multiplet, br = broad. All signals assigned to hydroxyl and to amino groups were 

exchangeable with D2O. Structural assignment was confirmed with COSY, DEPT, HMQC 

and/or NOEDIF/NOESY if necessary. Mass spectra and exact mass measurements were 

performed on a quadrupole/orthogonal-acceleration time-of-flight (Q/oaTOF) tandem mass 

spectrometer (qTof 2, Micromass, Manchester, U.K.) equipped with a standard electrospray 

ionization (ESI) interface. Samples were infused in a acetonitrile/water (1:1) mixture at 

3μL/min. Most chemicals were obtained from Sigma-Aldrich or Acros Organics and were 

used without further purification. 

 

Diethyl 1-phenylbut-3-enylphosphonate (6a) 

To a stirred solution of 5a (12 mL, 57.4 mmol) in dry THF (100 mL), cooled at -50 to -70 °C, 

was added under N2 atmosphere a 1.6 M solution of nBuLi (39 mL, 63.2 mmol) in hexane. 

After stirring for 15 minutes at the same temperature allyl bromide (5 mL, 57.4 mmol) was 

added. One hour after this addition the reaction mixture was refluxed for 2 h. After cooling to 

room temperature the reaction mixture was evaporated in vacuo, and the resulting oil was 

diluted with toluene (200 mL), washed with 10% NH4Cl (200 mL) and water (200 mL), dried 

over MgSO4 and concentrated in vacuo. Purification of the residue by flash chromatography 

(n-hexane/ethyl acetate 8:2→7:3→6:4) yielded compound 6a as a transparent oil (14.96 g, 

97%). 

1H-NMR (300 MHz, CDCl3): δ = 1.06 (3H, t, J = 7.0 Hz, OCH2CH3); 1.25 (3H, t, J = 7.0 

Hz, OCH2CH3); 2.61 – 2.74 (1H, m, allyl CH2); 2.76 – 2.88 (1H, m, allyl CH2); 3.05 (1H, 

ddd, JH,P = 22.0 Hz, J = 4.4 Hz en J = 11.1 Hz, CHP); 3.62 – 3.75 (1H, m, OCH2CH3); 3.80 – 

3.93 (1H, m, OCH2CH3); 3.95 – 4.09 (2H, m, OCH2CH3); 4.85 – 4.89 (1 H, m, CH=CH2, cis); 

4.93 – 5.00 (1 H, m, CH=CH2, trans); 5.51 – 5.65 (1 H, m, CH=CH2), 7.17 – 7.30 (5 H, m, 

arom. H) ppm. 
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13C-NMR (75 MHz, CDCl3): δ = 16.46 (d, 3JC,P = 5.7 Hz, OCH2CH3); 16.63 (d, 3JC,P = 6.0 

Hz, OCH2CH3); 34.26 (d, 2JC,P = 2.9, CH2CHP); 44.81 (d, 1JC,P = 137.1 Hz, CHP); 62.00 (d, 

2JC,P = 7.2 Hz, OCH2CH3); 62.77 (d, 2JC,P = 7.2 Hz, OCH2CH3); 117.03; 127.34; 128.62; 

129.55; 135.56; 135.82 ppm. 

Exact mass (ESI-MS): calculated for C14H22O3P [M+H]+: 269.1306; found: 269.1292 

 

General method for synthesis of 8c-e 

A mixture of the appropriate acryl aldehyde (6.17 mmol), triethylphosphite (1.34 mL, 7.71 

mmol) and phenol (1.54 g, 16 mmol) was heated to 100 °C. After 24 h TLC analysis 

(hexane/ethyl acetate 6:4) indicated that the reaction was finished and the reaction mixture 

was subsequently evaporated. The crude product was purified by flash chromatography 

hexane/ethyl acetate 6:4. After evaporation of the pure fractions, the desired acetals 8c-e were 

obtained as slightly yellow oils.  

 

Diethyl 1-(3,4-dichlorophenyl)-3,3-diphenoxypropylphosphonate (8e). Yield: 70% (2.29 

g). 

1H-NMR (300 MHz, CDCl3): δ= 1.13 (3H, t, J = 7.0 Hz, OCH2CH3); 1.25 (3H, t, J = 7.0 Hz, 

OCH2CH3); 2.43 – 2.57 (1H, m, PCHCH2); 2.70 – 2.82 (1H, m, PCHCH2); 3.38 (1H, ddd, JH,P 

= 22.7 Hz, J = 4.7 Hz and J = 10.3 Hz, CHP); 3.74 – 3.87 (1H, m, OCH2CH3); 3.89 – 3.99 (1H, 

m, OCH2CH3); 3.99 – 4.12 (2H, m, OCH2CH3); 5.66 (1H, dd, J = 6.8 Hz and J = 4.4 Hz, 

CH(OPh)2); 6.84 – 6.92 (3H, m, arom. H); 6.97 – 7.03 (2H, m, arom. H); 7.18 – 7.27 (6H, m, 

arom. H); 7.37 – 7.45 (2H, m, arom. H) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.51 (app t, 3JC,P = 5.8 Hz, OCH2CH3); 34.61 (d, 2JC,P = 

too small for detection, PCHCH2); 39.70 (d, 1JC,P = 139.9 Hz, CHP); 62.57 (d, 2JC,P = 7.2 Hz, 

OCH2CH3); 63.16 (d, 2JC,P = 6.6 Hz, OCH2CH3); 99.34 (d, 3JC,P = 15.8 Hz, CH(OPh)2); 
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117.66 (=CH); 117.68 (=CH); 122.99 (=CH); 123.01 (=CH); 128.75 (d, =CH); 129.83 (=CH); 

129.85 (=CH); 130.81 (d, =CH); 131.29 (d, =CH); 131.87 (d, =C); 133.01 (d, =C); 136.27 (d, 

=C); 155.95 (=C); 156.04 (=C) ppm. 

Exact mass (ESI-MS): calculated for C25H27Cl2O5PNa [M+Na]+: 531.0871; found: 531.0872 

 

General method for synthesis of 9a,b 

To a mixture of alkene 6a or 6b (6.56 mmol) and 4-methylmorpholine N-oxide (0.92 g, 7.87 

mmol) in dioxane (40 mL) was added an aqueous 1 % solution of OsO4 (99.1 mg, 0.39 

mmol). After stirring overnight at room temperature and protected from light, the starting 

material was completely converted according to TLC. Then sodium periodate (2.24 g, 10.5 

mmol) was added in small portions. After completion of the reaction (2 h), the mixture was 

diluted with ethyl acetate (100 mL), filtered through celite, and solids were washed with ethyl 

acetate. The combined filtrates were washed with saturated aqueous NaCl (100 mL), dried 

over MgSO4, and evaporated under vacuum to yield crude 9a or 9b, which were used in the 

next step whitout further purification. 

 

General method for synthesis of 9c-e 

Acetals 8c-e (5.0 mmol) were hydrolyzed by treatment with a mixture of water (7 mL), 

acetone (35 mL) and 2 N HCl (8 mL). After heating to 60-70 °C for 3-4 h TLC analysis (ethyl 

acetate) confirmed that the reaction was finished. The solvents were evaportated under vacuo 

and the residue was dissolved in ethyl acetate (200 mL) and transferred to a separatory funnel 

were it was washed twice with water (200 mL). The organic layer was dried with MgSO4 and 

evaporated. The residue was purified by flash chromatography using ethyl acetate as eluens 

yielding 9c-e as transparent oils.  
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Remark: NMR revealed by disappearance of CH=O, that 9a-e are prone to oxidation upon 

storage when dissolved in CDCl3. 

 

Diethyl 1-(3,4-dichlorophenyl)-2-formylethylphosphonate (9e). Yield: 76% (1.28 g). 

1H-NMR (300 MHz, CDCl3): δ = 1.11 (3H, t, J = 7.0 Hz, OCH2CH3); 1.23 (3H, t, J = 7.0 

Hz, OCH2CH3); 2.95 – 3.20 (2H, m, PCHCH2); 3.62 (1H, ddd, JH,P = 22.7 Hz, J = 4.7 Hz and J 

= 9.7 Hz, CHP); 3.74 – 3.83 (1H, m, OCH2CH3); 3.84– 3.95 (1H, m, OCH2CH3); 3.96– 4.07 

(2H, m, OCH2CH3); 7.12 – 7.40 (4H, m, arom. H); 9.61 – 9.62 (3H, m, HC=O) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.54 (app t, 3JC,P = 6.2 Hz, OCH2CH3); 37.20 (d, 1JC,P = 

141.9 Hz, CHP); 44.09 (d, 2JC,P = 2.3 Hz, PCHCH2); 62.75 (d, 2JC,P = 7.2 Hz, OCH2CH3); 

63.34 (d, 2JC,P = 6.9 Hz, OCH2CH3); 128.70 (d, 3JC,P = 6.3 Hz, =CoH); 130.75 (d, 4JC,P = 2.6 

Hz, =CmH); 131.15 (d, 3JC,P = 6.9 Hz, =CoH); 131.95 (d, 5JC,P = 3.7 Hz,. =Cp); 132.92 (d, 4JC,P 

= 2.9 Hz, =Cm); 136.03 (d, 2JC,P = 7.2 Hz, =Ci); 198.13 (d, 3JC,P = 15.0 Hz, HC=O) ppm. 

Exact mass (ESI-MS): calculated for C13H18Cl2O4P [M+H]+: 339.03204; found: 339.0325 

 

General method for synthesis of 10a-e and 18 

A mixture of aldehydes 9a-e (3.86 mmol) and O-benzylhydroxylamine hydrochloride (0.61 g, 

3.86 mmol) in pyridine/ethanol, 1:1 (14 mL) was stirred for 1.5 to 6 h at room temperature 

under nitrogen. After the solvent was removed by evaporation, the residue was coevaporated 

three times with toluene and subsequently chromatographed on a silica gel column (n-

hexane/ethyl acetate 6:4 or 6:4→1:1) to give a mixture of benzyloxyimines 10a-e as 

transparent oils.  

 

(E) and (Z)-Diethyl 3-(benzyloxy)imino-1-(3,4-dichlorophenyl)propylphosphonate (10e). 

Yield: 92% (1.57 g) 
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1H-NMR (300 MHz, CDCl3): δ = 1.17 (3H, dt, J = 7.0 Hz, JH,P = 1.47 Hz, OCH2CH3); 1.28 

(3H, dt, J = 7.0 Hz, JH,P = 3.2 Hz, OCH2CH3); 2.72 – 3.05 (2H, m, CHPCH2); 3.17 – 3.32 

(1H, m, PCH); 3.81 – 3.90 (1H, m, OCH2CH3); 3.93 – 3.98 (1H, m, OCH2CH3); 3.99 – 4.10 

(2H, m, OCH2CH3); 4.97 (1H, s, OCH2Ph); 5.08 (1H, s, OCH2Ph); 6.55 (1H, t, J = 5.3 Hz, 

HC=N); 7.11 – 7.39 (8H, m, arom. H) ppm. 

Exact mass (ESI-MS): calculated for C20H25Cl2NO4P [M+H]+: 444.090; found: 444.091 

 

Diethyl 3-(benzyloxy)iminocyclopentylphosphonate (18). Yield: 90% (3.07 g). 

1H-NMR (300 MHz, CDCl3): δ = 1.30 (3H, t, J = 7.0 Hz, OCH2CH3); 1.31 (3H, t, J = 7.0 Hz, 

OCH2CH3); 1.80 – 2.89 (7H, m, C5H7P); 4.04 – 4.15 (4H, m, OCH2CH3); 5.06 (2H, s, 

CH2Ph); 7.26 – 7.34 (5H, m, arom. H) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.74 (d, 3JC,P = 5.8 Hz, OCH2CH3); 25.68 (d, JC,P = 2.6 Hz, 

CH2); 26.03 (d, JC,P = 3.2 Hz, CH2); 27.92 (d, JC,P = 12.1 Hz, CH2); 29.19 (d, JC,P = 1.7 Hz, 

CH2); 30.91 (d, JC,P = 11.5 Hz, CH2); 32.07 (d, CH2); 34.77 (d, JC,P = 151.4 Hz, CHP); 34.99 

(d, JC,P = 151.7 Hz, CHP); 62.06 (m, OCH2CH3); 75.92 (OCH2Ph); 75.95 (OCH2Ph); 127.93 

(=CH); 127.95 (=CH); 128.16 (=CH); 128.18 (=CH); 128.56 (=CH); 128.55 (=CH); 138.26 

(=C); 138.33 (=C); 164.12 (d, 3JC,P = 13.8 Hz, C=N); 164.33 (d, 3JC,P = 15.0 Hz, C=N) ppm. 

31P-NMR (120 MHz, CDCl3): δ = 32.12 and 32.36 ppm. 

Exact mass (ESI-MS): calculated for C16H25NO4P [M+H]+: 326.1521; found: 326.1523 

 

General procedure for the reduction of the O-benzyloximes 10a-e to 11a-e and 18 to 19 

Sodium cyanoborohydride (12.95 mmol, 0.81 g) was added to a solution of O-benzyloximes 

10a-e (2.59 mmol) in methanol (15 mL). Two drops of methyl orange indicator were added 

followed by dropwise addition of concentrated hydrochloric acid, until the solution remained 

pink and milky for at least half an hour. The reaction mixture was stirred for 3 to16 h at room 
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temperature. The solvent was removed under vacuo. The residue was taken up in CH2Cl2 (100 

mL) and washed until alkaline with 1 M potassium hydroxide solution and extracted thrice 

with CH2Cl2 (3 × 100 mL). The combined organic extracts were dried MgSO4, filtered and the 

solvent was removed. The residue was brought on silica column and eluted with 

CH2Cl2/MeOH 95:5 or n-hexane/ethyl acetate 4:6. After evaporation of the appropriate 

fractions O-benzyloxyamines 11a-e were obtained as clear oils. 

 

Diethyl 3-(benzyloxyamino)-1-(3,4-dichlorophenyl)propylphosphonate (11e). Yield: 91% 

(1.05 g). 

1H-NMR (300 MHz, CDCl3): δ = 1.16 (3H, t, J = 7.0 Hz, OCH2CH3); 1.28 (3H, t, J = 7.0 

Hz, OCH2CH3); 1.97 – 2.13 (1H, m, CH2CHP); 2.28 – 2.42 (1H, m, CH2CHP); 2.64 – 2.74 

(1H, m, CH2N); 2.85 – 2.93 (1H, m, CH2N); 3.20 (1H, ddd, JH,P = 22.6 Hz, J = 4.1 Hz and J = 

11.1 Hz, CHP); 3.77 – 3.89 (1H, m, OCH2CH3); 3.91 – 3.99 (1H, m, OCH2CH3); 3.99 – 4.13 

(2H, m, OCH2CH3); 4.61 – 4.70 (2H, m, PhCH2O); 7.13 – 7.17 (1H, m, arom. H); 7.26 – 7.40 

(7H, m, arom. H) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.56 (d, 3JC,P = 7.8 Hz, OCH2CH3); 16.64 (d, 3JC,P = 8.1 

Hz, OCH2CH3); 27.73 (d, 2JC,P = 2.9 Hz, CH2CHP); 41.35 (d, 1JC,P = 139.6 Hz, CHP); 49.48 

(d, 3JC,P = 15.3 Hz, NCH2); 62.36 (d, 2JC,P = 6.9 Hz, OCH2CH3); 62.88 (d, 2JC,P = 6.9 Hz, 

OCH2CH3); 77.88 (OCH2Ph); 128.13 (=CH); 128.61 (=CH); 128.63 (=CH); 128.87 (d, JC,P = 

6.6 Hz, =CH); 130.65 (d, JC,P = 2.6 Hz, =CH); 131.42 (d, JC,P = 6.9 Hz, =CH); 131.53 (=C); 

132.74 (d, JC,P = 2.9 Hz, =C); 136.73 (d, JC,P = 6.9 Hz, =C); 137.88 (=C) ppm. 

Exact mass (ESI-MS): calculated for C20H27Cl2NO4P [M+H]+: 446.1055; found: 446.1060 

 

Diethyl 3-(benzyloxyamino)cyclopentylphosphonate (19). Yield: 80% (1.83 g, mixture of 

cis and trans). 



- 15 - 

1H-NMR (300 MHz, CDCl3): δ = 1.30 (3H, t, J = 7.0 Hz, OCH2CH3); 1.30 (3H, t, J = 7.0 

Hz, OCH2CH3); 1.42 – 2.40 (8H, m, C5H8P); 3.58 – 3.69 (1H, m, NH); 4.03 – 4.15 (4H, m, 

OCH2CH3); 4.69 (1H, s, CH2Ph); 4.75 (1H, s, CH2Ph); 7.26 – 7.56 (5H, m, arom. H) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.76 (d, 3JC,P = 5.8 Hz, OCH2CH3); 25.27 (d, JC,P = 2.9 

Hz, CH2); 25.72 (d, JC,P = 2.6 Hz, CH2); 30.18 (s, CH2); 30.34 (s, CH2); 31.54 (d, JC,P = 2.3 

Hz, CH2); 31.67 (d, CH2); 33.73 (d, JC,P = 147.9 Hz, CHP); 34.55 (d, JC,P = 147.4 Hz, CHP); 

61.65 – 62.13 (d, OCH2CH3 and 2 x d, NCH); 77.59 (OCH2Ph); 76.95 (OCH2Ph); 128.11 

(=CH);128.61 (=CH); 128.67 (=CH); 129.57 (=CH); 130.42; 137.86 (=C) ppm. 

Exact mass (ESI-MS): calculated for C16H27NO4P [M+H]+: 328.1678; found: 328.1660 

 

Two methods have been used for the formylation of compounds 11 and 19.  

Method A involves the use of 2-thioxothiazolidine-3-carbaldehyde, which was obtained as 

follows. Formic acid (1 eq.) and 2-mercaptothiazoline (1 eq.) were dissolved in CH2Cl2 (0.5 

M), cooled to 0 °C and DCC (1 eq.) was added in one portion. After the reaction mixture was 

filtered and evaporated, the residue was chromatographed (CH2Cl2) to afford 2-

thioxothiazolidine-3-carbaldehyde as a yellow solid. 

Diethyl 3-(N-(benzyloxy)formamido)-1-(phenyl)propylphosphonate (12a).  

2-Thioxothiazolidine-3-carbaldehyde (1 eq.) was dissolved in CH2Cl2 and added to a solution 

of 11a (1 eq.) in CH2Cl2 (0.1 M). The reaction mixture was stirred for 3 days. The reaction 

mixture was extracted with water, dried over MgSO4 and evaporated in vacuo. The residue 

was purified by flash chromatography (CH2Cl2/MeOH 95:5) to yield 12a in a 89% yield. 

1H-NMR (300 MHz, CDCl3): δ = 1.07 (3H, t, J = 7.0 Hz, OCH2CH3); 1.26 (3H, t, J = 7.0 

Hz, OCH2CH3); 2.17 (1H, m, CH2CHP); 2.45 – 2.48 (1H, m, CH2CHP); 3.06 (1H, ddd, JH,P = 

23.0 Hz, J = 4.1 Hz and J = 11.1 Hz, CHP); 3.39 (1H, m, CH2N); 3.50 (1H, m, CH2N); 3.62 – 

3.75 (1H, m, OCH2CH3); 3.81 – 3.91 (1H, m, OCH2CH3); 3.97 – 4.10 (2H, m, OCH2CH3); 
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4.74 and 4.94 (2H, 2 x br s, PhCH2O); 7.26 – 7.35 (10H, m, arom. H); 8.16 (1H, br s, HC=O) 

ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.40 (d, 3JC,P = 5.7 Hz, OCH2CH3); 16.58 (d, 3JC,P = 6.0 

Hz, OCH2CH3); 27.42 (m, CH2CHP); 40 (d, 1JC,P = 140 Hz, CHP); 43.11 (m, NCH2); 62.19 

(d, 2JC,P = 7.2 Hz, OCH2CH3); 63.96 (d, 2JC,P = 7.2 Hz, OCH2CH3); 77.42 (OCH2Ph); 127.77 

(arom. C); 128.91 (arom. C); 129.26 (arom. C); 129.47 (arom. C); 129.56 (arom. C); 129.63 

(arom. C); 131.10 (arom. C); 135.09 (arom. C); 163.32 (m, HC=O) ppm. 

Mass (ESI-MS): calculated for C21H29NO5P [M+H]+: 406.1783; found: 406.1  

 

Method B for synthesis of 12c,e and 20 

 In a three-neck flask containing a solution of formic acid (0.61 mmol, 30 μl) in 0.6 mL 

CH2Cl2 was added 1,1’-carbonyl-diimidazol (0.64 mmol, 0.10 g). After 20 minutes 

benzyloxyamines 11c,e (0.61 mmol) were dissolved in 1 mL CH2Cl2 and were transferred to 

the three-neck flask. After 5 h the mixture was partioned between water (70 mL) and CH2Cl2 

(70 mL). The water layer was extracted twice with CH2Cl2 (70 mL). The combined organic 

layers were dried with MgSO4 and evaporated in vacuo and the residue was purified by flash 

chromatography (n-pentane/acetone 6:4) to give 12c,e as transparent oils.  

 

Diethyl 3-(N-(benzyloxy)formamido)-1-(3,4-dichlorophenyl)propylphosphonate (12e). 

Yield: 85% (245 mg). 

 1H-NMR (300 MHz, CDCl3): δ = 1.14 (3H, t, J = 7.0 Hz, OCH2CH3); 1.27 (3H, t, J = 7.0 

Hz, OCH2CH3); 2.07 – 2.21 (1H, m, CH2CHP); 2.37 – 2.51 (1H, m, CH2CHP); 3.00 (1H, ddd, 

JH,P = 23.0 Hz, J = 4.1 Hz and J = 11.4 Hz, CHP); 3.23 – 3.38 (1H, m, CH2N); 3.44 – 3.46 (1H, 

m, CH2N); 3.78 – 3.88 (1H, m, OCH2CH3); 3.89 – 3.99 (1H, m, OCH2CH3); 3.99 – 4.11 (2H, 
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m, OCH2CH3); 4.75 and 4.91 (2H, 2 x br s, PhCH2O); 7.12 – 7.40 (8H, m, arom. H); 8.16 

(1H, br s, HC=O) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.50 (d, 3JC,P = 6.1 Hz, OCH2CH3); 16.61 (d, 3JC,P = 6.1 

Hz, OCH2CH3); 27.34 (m, CH2CHP); 41.46 (d, 1JC,P = 138.48 Hz, CHP); 42.50 (m, NCH2); 

62.59 (d, 2JC,P = 7.2 Hz, OCH2CH3); 63.09 (d, 2JC,P = 6.9 Hz, OCH2CH3); 78.29 (OCH2Ph); 

128.86 (arom. C); 128.95 (arom. C); 129.94 (arom. C); 129.69 (arom. C); 130.81 (arom. C); 

131.24 (arom. C); 131.92 (arom. C); 132.93 (arom. C); 134.27 (arom. C); 135.87 (arom. C); 

163.32 (m, HC=O) ppm. 

Exact mass (ESI-MS): calculated for C21H27Cl2NO5P [M+H]+: 474.1004; found: 474.1000  

 

Diethyl 3-(N-(benzyloxy)formamido)cyclopentylphosphonate (20). Yield: 97% (1.3 g, 

mixture of cis and trans). 

1H-NMR (300 MHz, CDCl3): δ = 1.23 (6H, m, OCH2CH3); 1.64 – 2.39 (7H, m, C5H7P); 3.98 

– 4.09 (4H, m, OCH2CH3); 4.4 (1H, m, CHN); 4.90 (2H, br s, OCH2Ph); 7.30 – 7.32 (4H, m, 

arom. H); 8.12 (1H, br d, HC=O) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.76 (2C, d, 3JC,P = 5.8 Hz, OCH2CH3); 24.40 (d, CH2); 

25.60 (s, CH2); 29.98 (d, CH2); 33.31 (d, 1JC,P = 150.6 Hz, CHP); 33.66 (d, 1JC,P = 149.7 Hz, 

CHP); 57.73 (m, CHN), 59.03 (m, CHN); 62.01 (m, OCH2CH3); 79.50 (m, OCH2Ph); 128.95 

– 129.63 (three =CH); 134.72 ( =C); 165.10 (m, HC=O) ppm. 

Exact mass (ESI-MS): calculated for C17H27NO5P [M+H]+: 356.1627; found: 356.1629 

 

General method for the benzyl deprotection of 12,13, 20 and 21.  

A solution of compounds 12 and 13 or 20 and 21 (0.9 mmol) in MeOH (8 mL) was 

hydrogenated at atmospheric pressure in the presence of Pd 10 wt. % on activated carbon (40 

mg). After 5 h stirring the reaction mixture was filtered over a celite pad. The solvent was 
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removed under vacuo and the crude mixture was purified by column chromatography on silica 

gel (CH2Cl2/MeOH 95:5).  

 

Diethyl 3-(N-hydroxyformamido)-1-(3,4-dichlorophenyl)propylphosphonate (14e). Yield: 

57% (157 mg). 

1H-NMR (300 MHz, CDCl3): δ = 1.09 – 1.24 (6H, m, OCH2CH3); 2.11 (1H, m, CH2CHP); 

2.46 (1H, m, CH2CHP); 3.01 – 3.17 (1H, m, CHP); 3.22 – 3.35 (1H, m, CH2N); 3.45 – 3.56 

(1H, m, CH2N); 3.77 – 4.04 (4H, m, OCH2CH3); 7.08 and 7.11 (1H, arom. H); 7.32 – 7.37 

(2H, m, arom. H); 7.55 (1H, br s, HC=O); 8.24 (1H, s, NOH) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.48 (app t, 3JC,P = 5.8 Hz, OCH2CH3); 26.90 (CH2CHP, 

major); 27.08 (CH2CHP, minor); 40.09 (d, 1JC,P = 139.3 Hz, CHP, major); 40.96 (d, 1JC,P = 

139.3 Hz, CHP, minor); 44.60 (d, 3JC,P = 15.8 Hz, NCH2, minor); 47.45 (d, 3JC,P = 15.0 Hz, 

NCH2, major); 62.84 (d, 2JC,P = 6.9 Hz, OCH2CH3, major); 63.01 (d, 2JC,P = 7.2 Hz, 

OCH2CH3, minor); 63.24 (d, 2JC,P = 6.9 Hz, OCH2CH3, major); 63.32 (d, 2JC,P = 6.1 Hz, 

OCH2CH3, minor); 128.81 (d, JC,P = 6.3 Hz, =CH, major); 128.95 (d, JC,P = 6.9 Hz, =CH, 

minor); 130.69 (=CH, minor); 130.91 (=CH, major); 131.14 (d, JC,P = 6.9 Hz, =CH, major); 

131.24 (d, JC,P = 9.2 Hz, =CH, minor); 131.74 (d, JC,P = 3.8, =C, minor); 131.98 (d, JC,P = 3.8, 

=C, major); 132.70 (d, JC,P = 2.6, =C, minor); 133.01 (d, JC,P = 2.6, =C, major); 135.60 (d, JC,P 

= 7.2, =C, major); 136.00 (d, JC,P = 7.5, =C, minor); 157.37 (C=O, major); 163.03 (C=O, 

minor) ppm. 

Exact mass (ESI-MS): calculated for C14H21Cl2NO5P [M+H]+: 384.0535; found: 384.0530 

 

Diethyl 3-(N-hydroxyformamido)cyclopentylphosphonate (22cis). Yield: 19 % (90 mg). 
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1H-NMR (300 MHz, CDCl3): δ = 1.26 (6H, m, OCH2CH3); 1.75 – 2.42 (7H, m, C5H7P); 4.03 

– 4.22 (4H, m, OCH2CH3); 4.83 (1H, s, CHNOH), 7.88 (1H, s, HC=O); 8.25 (1H, s, HC=O); 

9.70 (1H, s, NOH) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.65 (d, 3JC,P = 5.8 Hz, OCH2CH3); 26.15 (major, CH2); 

26.66 (minor, CH2); 29.21 (minor d, JC,P = 12.7 Hz, CH2); 29.81 (major d, JC,P = 11.5 Hz, 

CH2); 29.81 (minor, CH2); 30.44 (major, CH2); 33,54 (major d, 1JC,P = 148.3 Hz, CHP); 35,51 

(minor d, 1JC,P = 148.9 Hz, CHP); 55.08 (major d, 3JC,P = 12.7 Hz, CHN); 60.19 (minor d, 

3JC,P = 11.5 Hz, CHN); 62.05 (OCH2CH3); 62.15 (OCH2CH3); 156.49 (major, C=O); 162.37 

(minor, C=O) ppm. 

Exact mass (ESI-MS): calculated for C10H21NO5P [M+H]+: 266.1158; found: 266.1131 

 

Diethyl 3-(N-hydroxyformamido)cyclopentylphosphonate (22trans). Yield: 35 % (170 

mg). 

1H-NMR (300 MHz, CDCl3): δ = 1.18 (3H, t, J = 7.0 Hz, OCH2CH3); 1.18 (3H, t, J = 6.8 

Hz, OCH2CH3); 1.75 – 2.08 (7H, m, C5H7P); 3.95 (4H, m, OCH2CH3); 4.68 (1H, s, CHNOH), 

7.80 (1H, minor s, HC=O); 8.17 (1H, major s, HC=O); 9.78 (1H, br s, NOH) ppm. 

13C-NMR (75 MHz, CDCl3): δ = 16.60 (d, 3JC,P = 5.5 Hz, OCH2CH3); 25.25 (CH2); 28.08 

(major d, JC,P = 10.4 Hz, CH2); 28.83 (minor d, JC,P = 11.2 Hz, CH2); 29.4 (major s, CH2); 

30.07 (minor, CH2); 33.41 (major d, 1JC,P = 148.3 Hz, CHP); 34.22 (minor d, 1JC,P = 150.0 Hz, 

CHP); 55.44 (major d, 3JC,P = 15.8 Hz, CHN); 60.50 (minor d, 3JC,P = 18.1 Hz, CHN); 62.10 – 

62.47 (2C, m, OCH2CH3); 156.43 (minor, C=O); 162.48 (major, C=O) ppm. 

Exact mass (ESI-MS): calculated for C10H21NO5P [M+H]+: 266.1158; found: 266.1143 

 

General method for the phosphonate deprotection 
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Esters 14, 15, 22 and 23 (0.84 mmol) were dissolved in CH2Cl2 (10 mL) and treated dropwise 

with TMSBr (3.36 mmol, 0.50 g) under N2. The reaction mixture was stirred for 2 h at room 

temperature. After completion of the reaction the volatile compounds were removed in vacuo 

to give the corresponding phosphonic acids in almost quantitative yield. All final compounds 

were purified using a preparative HPLC system on a C18 column (5μm; Phenomenex; Luna; 

250 x 21.2 mm) with a linear gradient of acetonitrile in 5 mM NH4OAc solution over 20 min 

at a flow rate of 17.5 mL/min. The purity of all target compounds was assessed by analytical 

HPLC (5μm; Phenomenex; C18(2); 250 x 4.6 mm) using the same gradient at a flow rate of 1 

mL/min. All final compounds were obtained as hygroscopic powders after lyophilisation. All 

powders were white, except the 5-membered cyclic analogues which were obtained as orange 

powders. 

 

3-(N-hydroxyformamido)-1-(3,4-dichlorophenyl)propylphosphonic acid (1e). 

1H NMR (300 MHz; D2O): δ = 1.93 – 2.15 (1H, m, β-CH); 2.24 – 2.38 (1H, m, β-CH); 2.73 

– 2.87 (1H, m, α-CH); 3.17 – 3.47 (2H, m, γ-CH2); 7.07 – 7.12 (1H, m, arom. H); 7.33 – 7.39 

(2H, m, arom. H); 7.44 and 8.07 (1H, 2 x s, major and minor HC=O) ppm. 

13C NMR (75 MHz; D2O): δ = 26.49 (s, β-CH2); 42.82 (d, α-CH, 1JC,P = 129.6 Hz); 48.86 (d, 

γ-CH2, 3JC,P = 17.0 Hz); 128.92 (d, JC,P = 5.8 Hz, =CH); 130.04 (d, JC,P = 3.8 Hz, =C) ; 130.55 

(d, JC,P = 2.6 Hz, =CH); 130.73 (d, JC,P = 6.0 Hz, =CH); 131.88 (d, JC,P = 3.2 Hz, =C); 138.80 

(d, JC,P = 7.2 Hz, =C); 159.70 and 163.76 (2 x s, major and minor C=O) ppm. 

31P NMR (121 MHz; D2O): δ = 21.46 and 21.78 ppm. (major and minor isomer) 

Exact mass (ESI-MS): calculated for C10H11Cl2NO5P [M-H]-: 325.9751; found: 325.9745 

 

(1R,3R)-3-(N-hydroxyformamido)cyclopentylphosphonic acid and (1S,3S)-3-(N-

hydroxyformamido)cyclopentylphosphonic acid (trans-3). 
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1H NMR (300 MHz; D2O): δ = 1.73 – 2.04 (7H, m, α-CH and CH2); 4.13 (1H, br s, NCH); 

7.84 and 8.07 (1H, 2 x s, major and minor HC=O) ppm. 

13C NMR (75 MHz; D2O): δ = 25.55 (d, CH2); 28.56 (d, CH2, JC,P = 10.4 Hz); 31.10 (d, 

CH2); 35.94 (d, 1JC,P = 141.7 Hz, α-CH); 61.46 (d, JC,P = 17.3 Hz, NCH) ; 159.23 (s, C=O) 

ppm. 

31P NMR (121 MHz; D2O): δ = 27.71 and 27.91 ppm. (major and minor isomer) 

Exact mass (ESI-MS): calculated for C6H11NO5P [M-H]-: 208.0374; found: 208.0366 

 

(1R,3S)-3-(N-hydroxyformamido)cyclopentylphosphonic acid and (1S,3R)-3-(N-

hydroxyformamido)cyclopentylphosphonic acid (cis-3). 

1H NMR (300 MHz; D2O): δ = 1.49 – 2.17 (7H, m, α-CH and CH2); 4.21 (1H, br m, NCH); 

7.88 and 8.09 (1H, 2 x s, major and minor HC=O) ppm. 

13C NMR (75 MHz; D2O): δ = 25.73 (d, CH2); 29.89 (d, CH2, JC,P = 11.2 Hz); 31.76 (s, 

CH2); 36.47 (d, 1JC,P = 141.5 Hz, α-CH); 61.36 (d, JC,P = 10.9 Hz, NCH) ; 159.11 (s, C=O) 

ppm. 

31P NMR (121 MHz; D2O): δ = 27.74 ppm. (major and minor isomer)  

Exact mass (ESI-MS): calculated for C6H11NO5P [M-H]-: 208.0374; found: 208.0378 
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Tables 

Table 1. Inhibitory activity on E. coli DXR enzyme 

Compounds IC50 (μM) 

fosmidomycin 0.029 

FR900098 0.035 

trans-3 0.20 

cis-3 2.3 

trans-4 2.3 

cis-4 12 
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Legends 

 

Figure 1. Structures of fosmidomycin, FR900098 and analogues under study. 

 

Scheme 1. Retrosynthetic route toward analogues 1 and 2. 

 

Scheme 2. Reagents and conditions: (a) (i) n-BuLi, THF, -50 to -70 °C, (ii) allyl bromide, -70 

°C; (b) (i) OsO4, 4-methyl-morpholine N-oxide, dioxane (ii) NaIO4; (c) triethyl phosphite, 

phenol, 100 °C; (d) 2N HCl, rt. 

 

Scheme 3. Reagents and conditions: (a) O-benzylhydroxylamine, pyridine, EtOH, rt; (b) 

NaCNBH3, MeOH, HCl, rt; (c) Acetyl chloride, CH2Cl2, EtN3, 0 °C or carbonyldiimidazole, 

HCOOH, CH2Cl2, rt (or 2-thioxothiazolidine-3-carbaldehyde for 12a) ; (d) H2, Pd/C, MeOH, 

rt; (e) TMSBr, CH2Cl2, rt. 

 

Scheme 4. Reagents and conditions: (a) triethyl phosphite, phenol, 100 °C; (b) O-

benzylhydroxylamine, pyridine, EtOH, rt; (c) NaCNBH3, MeOH, HCl, rt; (d) Acetyl chloride, 

CH2Cl2, EtN3, 0 °C or carbonyldiimidazole, HCOOH, CH2Cl2, rt; (e) H2, Pd/C, MeOH, rt; (f) 

TMSBr, CH2Cl2, rt. 
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Scheme 2 
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Scheme 3 

N

H

R1

P
OEtO

EtO
OBn

N
H

R1

P
OEtO

EtO
OBn

N

R1

P
OEtO

EtO

OBn
O

R

N

R1

P
OEtO

EtO

OH
O

R

N

R1

P
OHO

HO

OH
O

R

9a-e

10a-e 11a-e

12a,c,e (R = H)
13a-e (R = CH3)

(a) (b)

(c)

(d)(e)

R2 R2

R2R2R2

14c,e (R = H)
15a-e (R = CH3)

1c,e (R = H)
2a-e (R  = CH3)

 

Scheme 4 

O
O

P
O OEt

OEt

N

P
O OEt

OEt

BnO
NH

P
O OEt

OEt

BnO

N

P
O OEt

OEt

BnO

R

O
N

P
O OEt

OEt

HO

R

O
N

P
O OH

OH

HO

R

O

16
17 18 19

20 (R = H)
21 (R = CH3)

trans-22 (R = H)
cis-22 (R = H)
trans-23 (R = CH3)
cis-23 (R = CH3)

trans-3 (R = H)
cis-3 (R = H)
trans-4 (R = CH3)
cis-4 (R = CH3)

(a) (b) (c)

(d)

(e)(f)

 


	Word-template
	ID 352800

