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Including PML-Based Absorbing Boundary
Conditions in the MLFMA

Davy Pissoort, Dries Vande Ginste, and Frank Olyslager, Fellow, IEEE

Abstract—In this letter, the multilevel fast multipole algorithm
is extended to the use of complex coordinates. These complex coor-
dinates appear, e.g., when extracting the -parameters of an elec-
tromagnetic crystal device terminated by perfectly matched layer
based absorbing boundary conditions with the multiple scattering
technique. The coordinates of the centers of the boxes on the dif-
ferent levels in the multilevel multipole algorithm are chosen so
that they follow the path according to which the coordinates of the
cylinders’ centers become complex. Therefore, a new real coordi-
nate is introduced along this path. The boxes are first constructed
based on this real coordinate and after that the corresponding com-
plex coordinates are calculated. The described scheme is applied to
the analysis of a multiplexer-demultiplexer device.

Index Terms—Electromagnetic crystals, fast multipole methods,
perfectly matched layers (PMLs), photonic crystals.

I. INTRODUCTION

RECENTLY, a new perfectly matched layer (PML)-based
absorbing boundary condition was introduced for the

termination of periodic waveguides in integral equation like
simulation techniques. In [1], this PML-based absorbing
boundary condition was applied to the characterization of
two-dimensional (2-D) electromagnetic crystal (EC) devices
with the multiple scattering technique (MST) [2], [3]. Two-di-
mensional (2-D) ECs consist of parallel homogeneous dielectric
cylinders residing on a periodic lattice in a homogeneous back-
ground medium. The underlying periodic structure of an EC
gives rise to the appearance of frequency ranges (electromag-
netic bandgaps) for which the electromagnetic fields cannot
propagate inside the crystal. Disruption of the crystal period-
icity by introducing crystal defects induces a field localization
that allows the design of various interesting devices.

Most often, the goal of the simulations is the knowledge of the
-parameters of the EC device. Therefore, it is advantageous to

be able to model EC waveguide appendages that are infinitely
long. Exploiting the complex coordinate interpretation of a PML
[4], [5], the EC waveguides that constitute the ports of the EC
device are terminated by adding a couple for which the cylinders
have complex coordinates. If the waveguide enters the complex
plane in a smooth way, reflections caused by the periodicity dis-
turbance are low and at the same time a significant absorption
is achieved.

The main disadvantage of an integral equation technique is
that it requires the solution of a dense linear system of equa-
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Fig. 1. Transformation coordinate system.

tions whose dimension is proportional to the number of cylin-
ders in the EC device. Recently, there has been a considerable
interest in the development of fast schemes to iteratively solve
such systems [6]. A popular fast scheme is the multilevel fast
multipole algorithm (MLFMA), which is the multilevel version
of the fast multiple method (FMM). With this scheme, the cost
per iteration scales nearly linearly with the number of cylinders.
In this letter, the FMM is extended to the use of the PML-based
absorbing boundary conditions.

II. MULTIPLE SCATTERING TECHNIQUE

This section details the MST for characterizing 2-D EC de-
vices comprising identical, -invariant, homogeneous, di-
electric/magnetic circular cylinders with radius and consti-
tutive parameters embedded in a homogeneous back-
ground medium with constitutive parameters (Fig. 1).
Let , with a global position vector in the

-plane, denote a known incident -polarized electric field
generated by impressed sources in the absence of any cylin-
ders. The difference between the total electric field ,
defined as the field observed in the presence of the cylinders,
and the incident field is called the scattered field . To
describe these electric fields, a set of equivalent directed elec-
tric currents are introduced on the surface of every
cylinder . Let denote the electric
field generated by in an unbounded medium with pa-
rameters . For dielectric/magnetic cylinders, appropriate
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boundary impedances can be proffered. The boundary con-
dition on the surface of the th cylinder can then be cast as

(1)

To solve (1), the surface currents are expanded into a Fourier se-
ries in a local cylin-
drical coordinate system with respect to the center
of the corresponding cylinder. Likewise, (1) can be reexpressed
as

(2)

with [7]

(3)

Here, is the wavenumber inside a medium with
constitutive parameters is the th-order Bessel
function of the first kind and is the th-order Hankel
function of the second kind. In practice, the range of the modal
index can be restricted to , with a small
positive integer. The scattered electric field is given by

(4)

Inserting (4) into (2), truncating the infinite sums to a finite
number, and testing the resulting equation with

,
results in a linear system of equations

(5)

All examples presented below involve ECs composed of
dielectric cylinders with constitutive parameters

and radius that are arranged on a
Cartesian lattice with a square unit cell and lattice constant

. All cylinders reside in free space, viz. .
This EC has a bandgap that extends from to

.

III. FAST MULTIPOLE METHOD

When solving system (5) iteratively, many matrix-vector mul-
tiplications are required. In the FMM, the computational com-
plexity and memory requirements are minimized by dividing the

cylinders into boxes, each of which contain about cylin-
ders. The crux of the FMM is that it considers box-to-box in-
teractions in stead of unknown-to-unknown interactions. As this
idea of box-to-box interactions can only be applied if these two

boxes are sufficiently separated, the matrix-vector multiplica-
tion is decomposed in two contributions, namely, the near-field
and the far-field contribution, as follows:

(6)

As the matrix is a sparse matrix with nonzero ele-
ments, the computational complexity to calculate scales as

. To see how can be computed more efficiently using
box-to-box interactions, consider two sufficiently separated cir-
cular boxes with radius . The source box is centered about
and comprises cylinders centered about .
Likewise, the observation box is centered about and com-
prises cylinders centered about . Let
denote the th modal unknown on cylinder inside the source
box, ; . Following a similar rea-
soning as in [6], it can be shown that the box-to-box interaction
from the source to the observation box can be expressed as:

(7)

for and . Here,
and are the length and the angle with

respect to the positive -axis of the vector con-
necting the centers of the observation and the source box. The
diagonal translation operator is defined as

(8)

From (7), it is seen that the box-to-box interactions are calcu-
lated in three stages. First the radiation pattern of the source
group is sampled into outgoing plane waves in the di-
rections . Second, these
plane waves are converted into incoming plane waves
for the observation box upon multiplication by the translation
operator (8). Finally, the contribution of each plane wave is pro-
jected onto each cylinder in the observation box. According to
the theory founded in [6], the number of samples should equal

. In practice, a certain accuracy is
selected on beforehand. The appropriate sampling rate is found
by simply increasing until the desired accuracy is obtained.

In the MLFMA, the entire EC device is first enclosed in the
smallest square box that can contain the EC (level 1). Then this
box is divided into four square subboxes to form level 2. In its
turn, each box of level 2 is divided into four square subboxes
to generate the third level. This process is repeated until the
finest level , in which every box has a size of – , is
reached. While performing matrix-vector multiplications, inter-
actions between two boxes are calculated using the previously
described FMM approach on the highest level on which these
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Fig. 2. Source and observation box for testing the accuracy, complex
coordinates.

two boxes are well-separated. All the interactions that remain
on the lowest level are computed in the classical way and con-
stitute the near field contribution.

IV. COMPLEX COORDINATES

Although the MST can only handle finite EC devices, it does
not preclude the characterization of EC devices with semiin-
finite waveguide attachments. Such characterization can be
achieved by terminating sufficiently long EC device waveguide
appendages by PML-based absorbing boundary conditions [1].
Because of the complex coordinate interpretation of a PML,
this can be seen as if the EC waveguides make a bend into the
complex plane. In [1], it was heuristically shown that a good
absorption is obtained with a circular PML. This means that,
for example, for an EC waveguide appendage in the positive
direction, the coordinates of the cylinders in the extra periods
become complex according to a circle with radius

(9)

with and . Here,
is the coordinate of a cylinder in the th period in the

PML region; is the (real) coordinate of a cylinder in the
last period that is not in the PML region. Typical values for
the different parameters of the PML region are
and . This section will detail on how to incorporate
these complex coordinates in the MLFMA framework. In [8], it
is shown that the aforementioned addition theorem, which is the
foundation of both the MST and the MLFMA, remains valid for
complex coordinates.

First suppose that for the construction of the boxes and the
MLFMA tree, only the real parts of the coordinates of the cylin-
ders’ centers are considered. In this case, a cylinder is inside a
box if the real parts of its coordinates are located inside that box.
It is obvious that also all box centers are real. Consider the con-
figuration depicted in Fig. 2. It comprises a circular source and
observation box with radius . The distance between their cen-
ters is . Both boxes comprise one cylinder. The coordinates
of the source and observation cylinder are

(10)

(11)

Define the relative error as follows:

(12)

Fig. 3. Accuracy for R = (�=2) and � = 6, real box centers (� = 0).

Fig. 4. Accuracy for R = (�=2); � = 6, and � = 2, complex box centers.

Here, is the interaction between the th modal
unknown on the source cylinder and the th modal unknown
on the observation cylinder calculated with (6);
stands for the same interaction, but calculated using FMM.
Fig. 3 shows the relative error for versus the
sampling rate for increasing imaginary part of the coordinate
of the observation cylinder with ,
and . The minimal achievable increases with increasing

and this minimum requires a higher . This yields some
problems when choosing the optimal on each level in the
MLFMA. If only real coordinates are used for this choice, the
required accuracy will not be obtained for interactions involving
complex coordinates. When considering also complex coordi-
nates, the sampling rate will be much higher than necessary for
the interactions with only real coordinates. Also, it is clear that
for very large imaginary parts the FMM will break down. To cir-
cumvent these difficulties, the coordinates of the boxes’ centers
will be allowed to be complex, too. For the above example, the
coordinates of the source box remain real, but the coordinates
of the observation box are .
Fig. 4 shows for versus the sampling rate for

and for increasing values of . A better accuracy
can be achieved and this for a sampling rate that is the same
as for real coordinates. When making the center of the box
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Fig. 5. EC waveguide coupler.

also complex the lost accuracy from making the center of the
cylinders complex is fully recovered.

An issue that still remains to be solved is how to construct
the boxes and the MLFMA tree when allowing complex coor-
dinates for the box centers. Recall that the coordinates of the
cylinders in the PML regions become complex according to a
pre-described path, e.g., (9) for a circular PML in the positive

direction. The coordinates of the box centers will be chosen
such that they also follow this path. Consider, for example, the
configuration depicted in Fig. 1. A straight EC waveguide par-
allel to the direction is sandwiched between two circular PML
regions with radius . In this figure, and denote
the real and imaginary part, respectively. A new real coordinate

is introduced. This coordinate follows the circles according to
which the coordinates become complex, as indicated in Fig. 1.
These circles stop at the last cylinders in the complex plane and
from these points on the parameters follows a line parallel to
the real -axis. To construct the boxes and the MLFMA tree,
the complex coordinates of all cylinders are first transformed
into the real coordinates. The boxes are constructed based on
these coordinates. The corresponding complex coordinates
of the box centers can be easily calculated. The translation op-
erators, the outgoing, and incoming plane waves are calculated
using these complex coordinates.

V. EXAMPLE

The versatility of the adapted MLFMA is demonstrated here
via its application to the characterization of the ultracompact
two-channel multiplexer-demultiplexer depicted in Fig. 5, [9],
[10]. The combination of two EC waveguides can support even
and odd modes having different propagation constants and

, respectively. The normalized output power at ports 1, 2, and
3 can be estimated using the coupled mode theory [9]

(13)

(14)

(15)

with . Contrary to the multiple scat-
tering technique, coupled mode theory cannot account for re-
flections from the 90 waveguide bends. Fig. 6 shows the trans-
mission spectra calculated with the coupled mode theory and the
multiple scattering technique in combination with the MLFMA
for a coupling length of , assuming that nm.
In the MLFMA, circular PML regions are added at the output
ports. When comparing the results of both schemes, it is noted
that the normalized output power calculated with the MLFMA is
smaller than one. This is due to leakage from the sides of the EC

Fig. 6. Transmission spectrum of an EC coupler with l = 310a.

waveguides. This example comprises 10 752 unknowns and one
matrix-vector multiplication takes 0.3 s. With a block- diagonal
preconditioner, the BICGSTAB iterative solver requires about
200 iterations to solve the system of equations (5) to a tolerance
of . This takes about 240 s for one frequency point. The
memory requirements are 74 Mb.

VI. CONCLUSION

The FMM has been extended to the use of complex coordi-
nates to incorporate PML-based absorbing boundary conditions
in integral equation like techniques. The centers of the boxes in
the MLFMA tree are chosen along the predescribed path ac-
cording to which the EC waveguides enter into the complex
plane at the output ports of the EC device. This idea has been
applied to the simulation of ultracompact two-channel multi-
plexer-demultiplexer.
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