
Statistically Rigorous Java Performance Evaluation

Andy Georges Dries Buytaert Lieven Eeckhout

Department of Electronics and Information Systems, Ghent University, Belgium

{ageorges,dbuytaer,leeckhou}@elis.ugent.be

Abstract

Java performance is far from being trivial to benchmark because

it is affected by various factors such as the Java application, its

input, the virtual machine, the garbage collector, the heap size, etc.

In addition, non-determinism at run-time causes the execution time

of a Java program to differ from run to run. There are a number of

sources of non-determinism such as Just-In-Time (JIT) compilation

and optimization in the virtual machine (VM) driven by timer-

based method sampling, thread scheduling, garbage collection, and

various system effects.

There exist a wide variety of Java performance evaluation

methodologies used by researchers and benchmarkers. These

methodologies differ from each other in a number of ways. Some

report average performance over a number of runs of the same

experiment; others report the best or second best performance ob-

served; yet others report the worst. Some iterate the benchmark

multiple times within a single VM invocation; others consider mul-

tiple VM invocations and iterate a single benchmark execution; yet

others consider multiple VM invocations and iterate the benchmark

multiple times.

This paper shows that prevalent methodologies can be mis-

leading, and can even lead to incorrect conclusions. The reason

is that the data analysis is not statistically rigorous. In this pa-

per, we present a survey of existing Java performance evaluation

methodologies and discuss the importance of statistically rigorous

data analysis for dealing with non-determinism. We advocate ap-

proaches to quantify startup as well as steady-state performance,

and, in addition, we provide the JavaStats software to automatically

obtain performance numbers in a rigorous manner. Although this

paper focuses on Java performance evaluation, many of the issues

addressed in this paper also apply to other programming languages

and systems that build on a managed runtime system.

Categories and Subject Descriptors D.2.8 [Software En-

gineering]: Metrics—Performance measures; D.3.4 [Pro-

gramming Languages]: Processors—Run-time environments

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. To copy otherwise, to republish, to post on servers or to redistribute
to lists, requires prior specific permission and/or a fee.

OOPSLA’07, October 21–25, 2007, Montréal, Québec, Canada.
Copyright c© 2007 ACM 978-1-59593-786-5/07/0010. . . $5.00

General Terms Experimentation, Measurement, Perfor-

mance

Keywords Java, benchmarking, data analysis, methodol-

ogy, statistics

1. Introduction

Benchmarking is at the heart of experimental computer sci-

ence research and development. Market analysts compare

commercial products based on published performance num-

bers. Developers benchmark products under development to

assess their performance. And researchers use benchmark-

ing to evaluate the impact on performance of their novel re-

search ideas. As such, it is absolutely crucial to have a rig-

orous benchmarking methodology. A non-rigorous method-

ology may skew the overall picture, and may even lead to

incorrect conclusions. And this may drive research and de-

velopment in a non-productive direction, or may lead to a

non-optimal product brought to market.

Managed runtime systems are particularly challenging

to benchmark because there are numerous factors affect-

ing overall performance, which is of lesser concern when it

comes to benchmarking compiled programming languages

such as C. Benchmarkers are well aware of the difficulty in

quantifying managed runtime system performance which is

illustrated by a number of research papers published over the

past few years showing the complex interactions between

low-level events and overall performance [5, 11, 12, 17, 24].

More specifically, recent work on Java performance method-

ologies [7, 10] stressed the importance of a well chosen and

well motivated experimental design: it was pointed out that

the results presented in a Java performance study are subject

to the benchmarks, the inputs, the VM, the heap size, and

the hardware platform that are chosen in the experimental

setup. Not appropriately considering and motivating one of

these key aspects, or not appropriately describing the context

within which the results were obtained and how they should

be interpreted may give a skewed view, and may even be

misleading or at worst be incorrect.

The orthogonal axis to experimental design in a perfor-

mance evaluation methodology, is data analysis, or how

to analyze and report the results. More specifically, a per-

formance evaluation methodology needs to adequately deal

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Ghent University Academic Bibliography

https://core.ac.uk/display/55834824?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

The remainder of this paper is not in-
cluded as this paper is copyrighted ma-
terial. If you wish to obtain an elec-
tronic version of this paper, please send
an email to bib@elis.UGent.be with a
request for publication P107.207.pdf.

1

